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A B S T R A C T

Terrestrial laser scanning (TLS) is a ground-based approach to rapidly acquire 3D point clouds via Light
Detection and Ranging (LiDAR) technologies. Quantifying tree-scale structure from TLS point clouds requires
segmentation, yet there is a lack of automated methods available to the forest ecology community. In this work,
we consider the problem of segmenting a forest TLS point cloud into individual tree point clouds. Different
approaches have been investigated to identify and segment individual trees in a forest point cloud. Typically
these methods require intensive parameter tuning and time-consuming user interactions, which has inhibited
the application of TLS to large area research. Our goal is to define a new automated segmentation method
that lifts these limitations.

Our Topology-based Tree Segmentation (TTS) algorithm uses a new topological technique rooted in discrete
Morse theory to segment input point clouds into single trees. TTS algorithm identifies distinctive tree structures
(i.e., tree bottoms and tops) without user interactions. Tree tops and bottoms are then used to reconstruct
single trees using the notion of relevant topological features. This mathematically well-established notion helps
distinguish between noise and relevant tree features.

To demonstrate the generality of our approach, we present an evaluation using multiple datasets,
including different forest types and point densities. We also compare our TTS approach with open-source
tree segmentation methods. The experiments show that we achieve a higher segmentation accuracy when
performing point-by-point validation. Without expensive user interactions, TTS algorithm is promising for
greater usage of TLS point clouds in the forest ecology community, such as fire risk and behavior modeling,
estimating tree-level biodiversity structural traits, and above-ground biomass monitoring.
1. Introduction

Forest inventory is a fundamental tool for tracking the structure,
biomass and ecological condition of a forest. Since manual field surveys
are expensive, time-consuming, and potentially dangerous (Zhen et al.,
2016), remote sensing technologies have been adopted to assist with
the generation of forest inventories. Among these, Light Detection
and Ranging (LiDAR) allows to collect detailed information about the
forest through sensors that emit laser signals and calculate distances
based on the time delay of the returned laser pulses. Terrestrial LiDAR,
also known as the Terrestrial Laser Scanning, can scan the surrounding
environment and generate billions of three-dimensional (3D) points
from which tree metrics, such as location, height, and diameter (Liang
et al., 2018), and tree models (Raumonen et al., 2013; Hackenberg
et al., 2015a,b) can be derived.
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To run this type of analysis, it is first necessary to identify ev-
ery single tree in the point cloud. However, inconsistent point cloud
quality, diverse forest structures, and complicated plant morphology
make it extremely hard to find a general, efficient, and fully automated
solution (Wilkes et al., 2017; Liang et al., 2018; Calders et al., 2020;
Martin-Ducup et al., 2021).

Most individual tree segmentation methods aim to extract single
tree point clouds from the input forest point cloud by adding external
information, such as allometric functions (Burt et al., 2019), user-
defined parameters (Trochta et al., 2017) or manual inspection and
correction of segmentation results (Burt et al., 2019; Raumonen et al.,
2015; Calders et al., 2015). At the same time, external information
makes an algorithm dataset specific, difficult to generalize, and usable
only by knowledgeable experts.
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Fig. 1. Pipeline of the proposed Topology-based Tree Segmentation (TTS) approach. Input vegetation point cloud is divided into tree clusters (see Section 3.2). Single tree point
clouds are then extracted from each tree cluster (see Section 3.3), which consist of the final labeled point cloud. Single tree extraction can be executed in parallel, which is marked
by dashed arrows.
This work aims to define an automated approach capable of pro-
viding robust results without demanding user interactions. To achieve
this goal, we define a new approach, called Topology-based Tree Seg-
mentation (TTS). TTS identifies distinctive structures in the forest, like
tree bottoms and tops, and extracts individual trees using a topological
structure defined via discrete Morse theory (Forman, 1998).

The performance of TTS is demonstrated on different forest types
(i.e., coniferous forests as well as deciduous forests) and point char-
acteristics (e.g., point density). We also compare our TTS method to
state-of-the-art approaches, which are available in the public domain,
namely 3D Forest (Trochta et al., 2017) and Forest Structural Complexity
Tool (FSCT) (Krisanski et al., 2021a). Multiple levels of validation are
designed to examine segmentation results for tree identification and
tree segmentation. Without any parameter tuning process, TTS shows
superior performance demonstrating to be well-suited for a wide range
of forest analysis applications, including forest inventory, tree model-
ing, and above-ground biomass estimation. Our main contributions are
as follows:

1. A novel automated topology-based approach for individual tree
segmentation on TLS point clouds.

2. Extensive experimental evaluation performed on different forest
types with ground truth data.

3. Objective comparison with two state-of-the-art and open-source
approaches for individual tree segmentation.

4. Proven robustness of the proposed method over different forest
and points characteristics (i.e., forest type, stem density and
point density).

The remainder of the paper is organized as follows. In Section 2,
we introduce related work. In Section 3, we present the workflow of
the proposed TTS method. Experimental results and internal parameter
settings are discussed in Section 4 and Section 5, respectively. We draw
some concluding remarks in Section 6.

2. Related work

Segmenting a forest TLS point cloud into individual tree point
clouds is known as individual tree segmentation (Calders et al., 2020) or
individual tree isolation (Martin-Ducup et al., 2021). Although manual
segmentation is time-consuming, laborious, and even infeasible for
areas containing many trees (Martin-Ducup et al., 2021; Burt et al.,
2019), only a few algorithms have been developed to automate the
individual tree segmentation process. Most automated individual tree
segmentation methods are bottom-up, which means they identify and
grow trees from the tree bottoms. Because TLS point clouds are scanned
from the ground, stem surface points are usually complete, and tree
bottoms are reliable for locating trees (Calders et al., 2020).
2

Trochta et al. (2017) proposed a bottom-up individual tree segmen-
tation algorithm. Points are clustered on slices, which are parallel to
the ground. Later, the tree bases are located as low-height clusters.
Finally, single trees are built from detected stems by merging nearby
clusters with nearby stems. In the end, many user-defined parameters
are needed to guide the segmentation. Usually, manual adjustments are
also needed to clean extracted single tree point clouds.

Ecological knowledge has been utilized for better segmentation
results. For example, metabolic scaling theory (West et al., 1997) has
been used in Tao et al. (2015) and Wang (2020). A graph of points
is generated first in both works (Tao et al., 2015; Wang, 2020). Then,
single tree point clouds are formed by assigning points to the detected
closest stems in terms of the shortest path on the graph, where the
path distance is scaled based on metabolic theory (West et al., 1997).
Although the metabolic ecology theory is expected to be a universal
scaling law of tree growth, many factors should be considered, like
demographic traits and light, when applying the theory in practical
datasets (Tao et al., 2015). For both methods from Tao et al. (2015)
and Wang (2020), several parameters need to be defined by the user,
such as determining the size of the tree and filtering valid results. As a
consequence, it takes time to learn those methods and find appropriate
settings.

Allometric relationships among tree measurements are also used in
the segmentation methods. Burt et al. (2019) developed a segmentation
method, namely treeseg, based on the Point Cloud Library (PCL) (Rusu
and Cousins, 2011). After detecting tree stems, Burt et al. (2019)
used allometric relationships between stem diameter to tree height
and crown extent to extract tree crowns. As far as we have tested,
the implemented software hardcoded parameters in the source code.
Because of the applied allometric functions related to specific forests,
treeseg may not work on datasets out-of-box.

Recently, deep learning tools have been applied to TLS point cloud
analysis. Krisanski et al. extended their deep learning-based semantic
segmentation method (Krisanski et al., 2021b) to extract single tree
point clouds and designed Forest Structural Complexity Tool (FSCT)
(Krisanski et al., 2021a). In FSCT, PointNet++ (Qi et al., 2017) is used
to classify forest points into terrain, vegetation, coarse woody debris,
and stem points. Tree skeletons are generated by grouping stem points
via density-based clustering methods, such as HDBSCAN (McInnes
et al., 2017) and DBSCAN (Ester et al., 1996). Cylinder fitting via
RANSAC (Fischler and Bolles, 1981) is repeatedly applied on skeleton
points to generate cylinders representing stems and branches. The
complete tree structures are achieved by grouping close neighboring
cylinders. Finally, points are assigned to the closest tree cylinder to
form the single tree point clouds. Due to the applied deep learning tool,
FSCT demands large computational resources, which is also an obstacle
in dealing with big data. Apart from PointNet++ (Qi et al., 2017), dif-
ferent deep learning techniques ares used to extract tree locations from
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point clouds before the segmentation. Focusing on TLS points-derived
images, Fan et al. (2022) used YOLOv3 (DarkNet-53) (Redmon and
Farhadi, 2018) to extract tree crown boundaries and Wang et al. (2019)
applied Faster R-CNN (Ren et al., 2015) to detect trunk locations. Xi
and Hopkinson (2021) used CenterNet (Duan et al., 2019) to extract
tree crown boundaries on the voxel-based representations of a point
cloud. While very promising, these approaches (Fan et al., 2022; Xi and
Hopkinson, 2021; Wang et al., 2019) need to transfer 3D point clouds
into images or voxels before applying deep learning techniques. Fur-
thermore, deep learning-based approaches require an extensive amount
of annotated data to be trained, which can be challenging to collect in
real scenarios (Calders et al., 2020).

3. Topology-based tree segmentation (TTS) approach

The proposed TTS approach for individual tree segmentation is
composed of two steps. The entire pipeline is presented in Fig. 1. First,
in the dividing step, we split the input vegetation TLS point cloud
into sub-regions, called tree clusters. Intuitively, each tree cluster is a
group of trees with intersecting canopy (see Section 3.2). Then, an
extracting step is used to find every single tree through a bottom-
up segmentation method (see Section 3.3). In the remainder of this
section, we first introduce briefly background notions on simplicial
complexes, 𝛼-complexes and discrete Morse theory, which are helpful
to understand the proposed method.

3.1. Discrete morse theory

Simplicial complexes and 𝛼-complexes. We use simplicial complexes to
infer a topological (i.e., connectivity) structure on the 3D point cloud.
Formally, a 𝑘-simplex 𝜎 is the convex hull of 𝑘+1 affinely independent
points in the Euclidean space. For instance, a 0-simplex is a point, a 1-
simplex a straight line segment, a 2-simplex a triangle, and a 3-simplex
a tetrahedron. 𝑘 is called the dimension of 𝜎. We denote 𝑘-simplex
𝜎 spanned by the vertices 𝑣0, 𝑣1,… , 𝑣𝑘 as 𝜎 = {𝑣0, 𝑣1,… , 𝑣𝑘}. Any
simplex 𝜏, which is the convex hull of a non-empty subset of the points
generating a simplex 𝜎, is a face of 𝜎.

A simplicial complex 𝛴 is a finite set of simplexes, such that: (i) each
face of a simplex in 𝛴 belongs to 𝛴; (ii) for each pair of simplexes 𝜎
and 𝜏, either 𝜎 ∩ 𝜏 = ∅ or 𝜎 ∩ 𝜏 is a face of both.

An 𝛼-complex is a simplicial complex constructed from the simplexes
of a Delaunay tetrahedralization 𝛴𝑇 (Delaunay et al., 1934). Let 𝜎 a
simplex in 𝛴𝑇 , and let 𝐶𝜎 the circumsphere (or circumcircle) of 𝜎 with
radius 𝑟. The 𝛼-complex (Edelsbrunner, 2010) 𝛴𝛼 is a subcomplex of 𝛴𝑇

containing all vertices of 𝛴𝑇 , plus all simplexes 𝜎 such that: (i) 𝑟 < 𝛼
and 𝐶𝜎 contains no points in 𝑃 , or (ii) 𝜎 is a face of 𝜏 ∈ 𝛴𝛼 .

Discrete morse theory. Discrete Morse theory (Forman, 1998) is a com-
binatorial counterpart of Morse theory (Milnor, 1963) which allows to
study the topology of a simplicial complex 𝛴.

Given a simplicial complex 𝛴, a discrete vector is a pair of simplices
(𝜎, 𝜏), where 𝜎 is a face of 𝜏. A discrete vector field 𝑉 is a collection of
pairs (𝜎, 𝜏) such that, each simplex of 𝛴 is in at most one pair of 𝑉 .
Simplices that belong to no vector are called critical. In a triangle mesh,
critical triangles are maxima, critical edges are saddles and critical
vertices are minima. Pairs are formed by a triangle and an edge; and
by an edge and a vertex. A V-path is a sequence 𝜎1, 𝜏1, 𝜎2, 𝜏2,…, 𝜎𝑟, 𝜏𝑟,
such that (𝜎𝑖, 𝜏𝑖) ∈ 𝑉 , 𝜎𝑖+1 is a face of 𝜏𝑖, and 𝜎𝑖 ≠ 𝜎𝑖+1. A V-path with
𝑟 > 1 is closed if 𝜎1 is a facet of 𝜏𝑟 different from 𝜎𝑟−1. A discrete vector
field 𝑉 is called Forman gradient if it has no closed V-paths. A separatrix
𝑉𝑖-path is a 𝑉 -path connecting two critical simplexes of dimension 𝑖+1
and 𝑖, respectively. In a triangle mesh, we have each separatrix 𝑉0-path
connecting a critical edge to a critical vertex and separatrix 𝑉1-path
connecting a critical triangle to a critical edge.

When the discrete gradient 𝑉 is computed according to an input
scalar function 𝑓 ∶ 𝛴 → R, 𝑉 can serve as a combinatorial representa-
tion of the gradient of 𝑓 and its critical points. For example, Fig. 2(a)
3

Fig. 2. (a) Scalar function 𝑓 , defined on a triangle mesh 𝛴, color coded by means
of a blue–red divergent color map. (b) Forman gradient computed on the same scalar
field. Arrows indicate gradient pairs. Blue, green and red dots indicate critical minima
(vertices), saddles (edges), and maxima (triangles). Minimum points are also marked by
circles. (c) Four point clusters with labels corresponding to the four minima computed
by navigating the gradient paths. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

shows a scalar function 𝑓 defined on a triangle mesh 𝛴. Fig. 2(b)
shows arrows indicating the gradient pairs while points indicate the
critical simplexes. Blue points indicate minima, green points indicate
saddles, and the red point indicates the maximum. Notice that all
the gradient pairs, depicted with arrows, mimic the gradient of the
function indicating the direction in which the function values decrease.
To this end, many approaches have been defined for computing a
discrete gradient on regular grids (Guylassy et al., 2008; Robins et al.,
2011; Shivashankar et al., 2012; Shivashankar and Natarajan, 2012)
and simplicial complexes (Weiss et al., 2013; Fellegara et al., 2014). A
complete overview of these methods is presented by De Floriani et al.
(2015).

A Forman gradient implicitly defines a segmentation of 𝛴 according
to the regions of influence of the critical points of 𝑓 (De Floriani
et al., 2015). In this work, we focus on the regions of influence of
the minima of 𝑓 , also called minimum-ascending regions. A minimum-
ascending region for a minimum vertex 𝜎 is defined as the collection
of vertices belonging to the 𝑉0-paths reaching 𝜎. Fig. 2(c) shows the
minimum-ascending regions of the Forman gradient shown in Fig. 2(b).
Every vertex belongs to the minimum-ascending region of one of the
four minima characterizing 𝑉 (see four blue points in Fig. 2(b)).

3.2. Computing tree clusters

In the remainder of this work, we refer to the forest vegetation point
cloud as the input point set 𝑃 . All parameter values introduced in this
section are discussed and motivated in Section 5.

The first objective of TTS method is to divide 𝑃 into tree clusters by
dividing easily separable trees. We achieve this goal by computing an
𝛼-complex 𝛴 on 𝑃 and finding connected components of 𝛴.

When computing an 𝛼-complex, the value of 𝛼 affects the shape
of 𝛴 and the number of connected components. Thus, the objective
is to obtain a 𝛼-complex that outlines the tree shapes (i.e., branches,
trunks) while disconnecting easily separable trees. Fig. 3 shows three
𝛼-complexes generated with different 𝛼 values. When the 𝛼 value is very
small, such as 𝛼 = 0.02 m in Fig. 3(a), the 𝛼-complex is made up of
isolated points and fails to outline tree shapes. However, with a larger 𝛼
value (𝛼 = 0.3 m) in Fig. 3(c), trees are connected into one component,
which is hard to split. Furthermore, woody structures (i.e., branches,
stems) in 𝛼-complex presented in Fig. 3(c) are not as clear as the built
𝛼-complex with 𝛼 = 0.1 m in Fig. 3(b). To this end, our experiments
identified 𝛼𝑠 = 0.1 m as the ideal value to use.

Once 𝛼-complex 𝛴 is computed, we process its connected compo-
nents. For each component, we consider the vertex with the lowest
elevation and the length of the component. The component length is
defined as the elevation difference between the highest and lowest
points in the component. Then, a component of 𝛴 is classified as a
tree cluster if and only if the elevation of its lowest vertex is less than

𝑡ℎ𝑙𝑜𝑤 = 1.5 m and the length is larger than 𝑡ℎ𝑙𝑒𝑛 = 2 m to remove noise



International Journal of Applied Earth Observation and Geoinformation 116 (2023) 103145X. Xu et al.
Fig. 3. Generated 𝛼-complexes with (a) 𝛼 = 0.02 m, (b) 𝛼 = 0.1 m, and (c) 𝛼 =
0.3 m, respectively. 0-simplices (points) are colored in blue in (a), and simplices with
dimension ≥ 1 are colored in gray in (b) and (c). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Tree clusters computed from the point cloud. (a) Input forest vegetation
point cloud is colored by height. (b) Two tree clusters are colored in green and red,
respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

and small vegetation. This leads to a subdivision of the forest points into
tree clusters. Fig. 4 illustrates two tree clusters computed from a point
cloud with three trees. There are two components of the 𝛼-complex
built on the point cloud (see Fig. 4(b)). Both components successfully
outline the critical tree features, such as treetop branches and stems.
Three trees are divided into two clusters, where one cluster includes a
single tree (see green points in Fig. 4(b)) while the other cluster has
two close trees with intersecting canopy (see red points in Fig. 4(b)).

3.3. Extracting individual trees

After computing tree clusters, the objective is to identify individual
trees in each cluster. To this end, we use a bottom-up segmentation
approach based on discrete Morse theory (Forman, 1998).

Let 𝛴𝑡𝑐 be the 𝛼-complex component corresponding to a tree cluster.
We define a scalar function 𝑓 on the vertices of 𝛴𝑡𝑐 as the height
function. Formally, 𝑓 (𝑝) = 𝑝.𝑧 where 𝑝 is a vertex in 𝛴𝑡𝑐 and 𝑝.𝑧 is its
elevation. Then, we compute the Forman gradient 𝑉 corresponding to
𝛴𝑡𝑐 and 𝑓 (see Section 3.1), and we use critical points, namely minima,
to guide the tree cluster segmentation.

Compute minimum-ascending regions. Given a Forman gradient 𝑉 com-
puted on 𝛴 , we extract a segmentation of the vertices of 𝛴 by
4

𝑡𝑐 𝑡𝑐
Fig. 5. Over-segmentation results on the tree cluster points. (a) Tree cluster points
colored in a blue–red colormap based on point height. (b) Computed minima colored
in red points. (c) Computed minimum-ascending regions in different colors. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

computing influence regions corresponding to the minima of 𝑓 (see Sec-
tion 3.1). The region of influence of a minimum, namely the minimum-
ascending region, is a collection of vertices obtained through a breadth-
first traversal of the vertex-edge arrows in the Forman gradient. Start-
ing from a minimum vertex 𝑣, we insert 𝑣 into a queue 𝑄. At each
iteration we extract a vertex 𝑣1 from 𝑄 and we compute the edges
incident in 𝑣1. For each of such edges, we retrieve if they are paired
with some vertex 𝑣2 different from 𝑣1. If this is the case, we add
𝑣2 to 𝑄. The cluster corresponding to minimum vertex 𝑣 is obtained
by collecting all the vertices touched by such visit. Fig. 5(c) shows
the minimum-ascending regions computed from the minima shown in
Fig. 5(b). The numerous minimum-ascending regions imply that tree
cluster points are over-segmented. Intuitively, each minimum repre-
sents one point with a minimum elevation value with respect to the
neighboring points. For 𝛼-complex 𝛴𝑡𝑐 , minima correspond to either
tree bottoms or branches facing downward (see Fig. 5(b)). Therefore,
the computed minimum-ascending regions only represent small tree
components instead of complete trees. Naturally, we will unite tree
components to build single trees. Rather than merging points directly,
we will work on the minima to group minima that are in the same
single trees so that each single tree point cloud can be found from the
same group of minima-ascending regions.

Locate tree seeds. We first identify minima presenting the tree bottoms.
To distinguish between tree bottoms and branches from minima, we
clip 𝛴𝑡𝑐 by removing all points and simplices (i.e., edges, triangles and
tetrahedrons) above 𝑡ℎ𝑠𝑡𝑒𝑚 = 0.5 m. We call the remaining 3-complexes
the clipped simplicial complex and we denote it as 𝛴′

𝑡𝑐 .
Then, we match each component of 𝛴′

𝑡𝑐 with the minima in 𝑉 .
Namely, if a component in 𝛴′

𝑡𝑐 contains at least a minimum vertex, the
component is called a seed component and the minimum is classified as
a seed vertex. Please note that one seed component can include multiple
minima as seeds. Fig. 6 shows seed components and seed vertices found
from the tree cluster. Two stems are well captured from clipped 𝛴′

𝑡𝑐 ,
as two seed components are isolated. Each seed component includes
several minima colored in green and red.

Grow single trees. Once trees have been seeded, the TTS algorithm
associates the remaining minima to the seeds and combines all points
to form single tree point clouds.

TTS still uses the Forman gradient 𝑉 as well as critical complexes
(i.e., minima and 1-saddles) previously computed. We compute a graph
representing the connectivity of the minima and 1-saddles. More specif-
ically, starting each minimum, we follow the 𝑉 -path and find its
connected 1-saddle. If two minima are connected to the same 1-saddle,
we call these minima connected. Finally, the graph is denoted as 𝐺 =
𝑚
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Fig. 6. Detected seed components and seed vertices from the tree cluster. Two seed
components are colored in blue–gray, and corresponding seed vertices are in green and
red, respectively. The 𝛼-complex is pictured with light gray as the background. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 7. Demonstration of labeling minima nodes from seeds. (a) Seeds are colored
in red and blue, respectively. (b) Label neighbor nodes from the red seed. (c) Label
neighbor nodes from the blue seed. (d) Final labeled nodes. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

(𝑁,𝐴,𝑅), where nodes in 𝑁 correspond to the minima of 𝑉 and arcs
in 𝐴 connects two nodes if the corresponding minima are connected.
𝑅 is a label assigned to each seed node in 𝑁 . Seed nodes belonging to
the same seed component have the same label. All remaining nodes are
marked as unlabeled.

Then, we insert all nodes in 𝑁 corresponding to tree seeds (i.e., min-
ima labeled as seed points) in an ordered queue, keeping nodes sorted
in ascending order of elevation. For each node 𝑛 extracted from the
queue, we retrieve the nodes in 𝐺𝑚 connected to 𝑛. For each unla-
beled node 𝑛𝑏𝑟 connected to 𝑛, we assign to 𝑛𝑏𝑟 the same label as 𝑛
(i.e., 𝑅(𝑛𝑏𝑟) = 𝑅(𝑛)) and we insert 𝑛𝑏𝑟 in the queue. Fig. 7 shows the
minima labeling procedure. For illustration purposes, we place seeds
(colored in red and blue, respectively) and unlabeled yellow nodes
based on their 𝑓 values. As red seed 1 is lower than blue seed 2 in
Fig. 7(a), we have a queue initialized as {1, 2}. We first check red seed
1 and label its adjacent unlabeled nodes 4 and 7 (see Fig. 7(b)). The
queue becomes {2, 4, 7}. Similarly, we grow blue seed 2 via merging its
neighbor unlabeled nodes 3 and 6 in the next step in Fig. 7(c). And,
we have the queue {3, 4, 6, 7} in an ascending order based on their 𝑓
values. When we check nodes 3 and 4, there are no unlabeled nodes
adjacent to nodes 3 and 4, respectively. Therefore, there are no new
nodes labeled. The queue becomes {6, 7}. Finally, we work on node 6
and assign its unlabeled node 5. The queue has {5, 7} now. However,
all neighbor nodes of nodes 5 and 7 are already labeled. In other words,
all nodes are labeled now as presented in Fig. 7(d).

Once all nodes in 𝐺𝑚 have been labeled, we propagate the label
assigned to each minimum to its region of influence, which will start
forming the tree point clouds and have input cluster points labeled.
Fig. 8(a) and (b) shows the labeled minima at the initial and final states,
respectively. In the beginning, only seeds at the bottom are labeled,
while the remaining minima are unlabeled. After growing trees from
5

Fig. 8. Minima labeling on a 𝛼-complex built on the tree cluster points. (a) Initial
minimum seeds are colored in green and red, respectively. Unlabeled minima are in
blue. (b) All minima are labeled in the end. (c) Labeled single tree point clouds. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 9. Complete individual tree segmentation results. (a) Extracted single tree points
from 𝛴. (b) Final single tree point clouds after labeling sparse points. (c) Comparison
between results from (a) and (b) at the treetop. Points from (a) are colored in green,
while results from (b) are colored in red. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

the bottoms, the rest minima are successfully assigned to the stems with
a tree label. Based on the minima-ascending regions, points are labeled
in Fig. 8(c) where two trees are successfully extracted from the tree
cluster points.

Append sparse points. The generated 𝛼-complex 𝛴 may not include all
tree points, especially for poor quality point clouds with sparse treetop
points. Generally, the single tree point clouds extracted up to this step
will identify hard objects of the tress (i.e., trunks and branches), but
they might miss sparse treetop points. The final extraction step aims to
assign sparse points to the extracted single trees. The idea is to expand
the point labeling by modifying the 𝛼-complex. To ensure connectivity
for all points, we generate a new 𝛼-complex 𝛴𝑙 of entire forest points
𝑃 with a larger value of 𝛼 (i.e., 𝛼𝑙 = 0.3 m). Then, we reuse the same
greedy search (demonstrated in Fig. 7) using the connectivity encoded
in 𝛴𝑙𝑔 to add missed points to each extracted single tree point cloud.
Fig. 9 shows an example of the trees segmented after the final step. Two
trees are entirely extracted from the tree cluster points. As shown in
Fig. 9(c), missed sparse treetops points are correctly added in Fig. 9(b).

4. Experimental results

This section focuses on the results obtained with our proposed
Topology-based Tree Segmentation (TTS) method on experimental
datasets. The selected experimental datasets cover different forest types
(i.e., from needleleaf to deciduous broadleaf forests) and exhibit TLS
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point clouds with different characteristics (i.e., point density). Experi-
ments have been performed on a desktop computer equipped with an
Intel® Core™ CPU i7-8700 @ 3.20 GHz and 32 GB memory of RAM.
Due to the size of the largest dataset, Wytham Woods (Calders et al.,
2022), we used another computer with more memory (192 GB) and
an Intel® Xeon® X5660 @ 2.8 GHz to process it. We investigate the
erformance of our segmentation method on two levels of validations:
oint-level and tree-level.

.1. Point-level experiments

In the point-level experiments, input TLS point clouds are labeled
s the reference data. Each point has location coordinates and tree
abel information (𝑥, 𝑦, 𝑧, 𝑙𝑎𝑏𝑒𝑙). Points with the same tree label consist

of one individual tree. We provide multiple point-by-point valuation
methods to thoroughly evaluate the single tree point clouds extracted
from labeled TLS point clouds.

4.1.1. Datasets
Four different datasets are selected to test segmentation methods

comprehensively in different forest types and point densities. Following
the definition from Wilkes et al. (2017) and Calders et al. (2020), we
calculate the vegetation point density as the average value of four-
nearest neighbor distances of points in vegetation points. Therefore,
dense point clouds have smaller values of point density. Tree set (Hack-
enberg, 2022) includes four groups of single tree point clouds. There
are 60 trees in total, covering evergreen sub-tropical trees, cherry, and
pine trees. Each single tree point cloud is scanned from a single tree.
We merge each group of single tree point clouds into one forest point
cloud to simulate a labeled plot-level TLS point cloud. Therefore, the
merged point clouds have the densest points in our experiments with
a point density of 0.64 cm. Merged point clouds also include adjacent
rees with overlapped crowns, which can be found in the following
iscussions (i.e., Fig. 12). Labeled Fire data is extracted from Ferguson

Fire Mensuration TLS data and manually labeled by ourselves. The
Ferguson Fire Mensuration TLS point clouds are provided by the Global
Environmental Analysis and Remote Sensing (GEARS) Laboratory (Green-
berg et al., 2022). The plots are in the Northern Sierras forest, where
pines are dominated. We manually labeled 58 trees from the extracted
areas. The point density of labeled point clouds is 5.07 cm. 3D Forest
sample data (Trochta et al., 2022a) is from 3D Forest software (Trochta
et al., 2017, 2022b). It includes 26 labeled trees. However, it has the
sparsest points in our experiments with a point density of 9.89 cm.
Wytham Woods (Calders et al., 2022) is the largest and most challenging
dataset we have in the experiment. The site is located in one broadleaf
deciduous forest in Oxford, UK. This dataset includes 459 trees and very
dense TLS point clouds with a point density of 2.75 cm. More details of
abeled experimental datasets are provided as additional material (Xu
t al., 2022).

.1.2. Comparing accuracy
We apply each test method to extract single tree point clouds

nd then compare them against the reference segmentation results.
e use Rand index (Rand, 1971), normalized directional Hamming dis-
ance (Huang and Dom, 1995) and mean Intersection over Union (Jac-
ard, 1908) to measure the similarity between the segmentation results

and true segmentation 𝑇 .

and index. For each point 𝑝𝑖, we have two labels 𝑙𝑖, 𝑙′𝑖 assigned on 𝑝𝑖
ased on 𝑇 and 𝑅 segmentation, respectively. We use 𝑁 to count the
umber of paired points which have the same label relationship in 𝑇
nd 𝑅. Given two points 𝑝𝑖 and 𝑝𝑗 , if 𝑙𝑖 = 𝑙𝑗 and 𝑙′𝑖 = 𝑙′𝑗 , we add 1 to
. When 𝑙𝑖 ≠ 𝑙𝑗 and 𝑙′𝑖 ≠ 𝑙′𝑗 , we also add 1 to 𝑁 . Finally, Rand index is

alculated as

𝐼 = 𝑁
|𝑇 |2

,

where |𝑇 | is the number of total points in 𝑇 .
6

Directional hamming distance. We denote 𝐷𝐻 (𝑇 ⇒ 𝑅) the Hamming
distance when using reference results 𝑇 to check the segmentation
results 𝑅. To compute 𝐷𝐻 (𝑇 ⇒ 𝑅), we start by constructing the
correspondences between each region of 𝑇 with a region of 𝑅 such that
𝑡𝑖 ∩ 𝑟𝑗 is maximized. Then,

𝐷𝐻 (𝑇 ⇒ 𝑅) =
∑

𝑟𝑖∈𝑅

∑

𝑡𝑘≠𝑡𝑗 ,
𝑡𝑘∩𝑟𝑖≠0

|𝑟𝑖 ∩ 𝑡𝑘|,

where | ∗ | shows the number of points in a set. Directional Hamming
distance is further normalized as,

𝐷𝐻𝐷 = 1 −
𝐷𝐻 (𝑇 ⇒ 𝑅) +𝐷𝐻 (𝑅 ⇒ 𝑇 )

2 × |𝑇 |
,

where |𝑇 | is the number of total points.

Mean intersection over union (iou). Following the IoU-based assessment
method used in Wang (2020), we first pair each reference tree point
cloud with an extracted single tree point cloud, if it exists. Then, we
use entry 𝑐𝑖𝑗 to record the number of points from reference tree 𝑖 in 𝑇
predicted as an extracted tree 𝑗 in 𝑆. We sort extracted trees so that
𝑐𝑖𝑖 presents the number of common points between the reference tree 𝑖
and its matched tree. Then the 𝐼𝑜𝑈 of tree 𝑖 is calculated as:

𝐼𝑜𝑈𝑖 =
𝑐𝑖𝑖

𝑐𝑖𝑖 +
∑

𝑗≠𝑖 𝑐𝑖𝑗 +
∑

𝑘≠𝑖 𝑐𝑘𝑗

Thus, the mean IoU (𝑚𝐼𝑜𝑈) of all reference trees is computed by:

𝑚𝐼𝑜𝑈 =
∑𝑁𝑟𝑒𝑓

𝑖=1 𝐼𝑜𝑈𝑖

𝑁𝑟𝑒𝑓
,

where 𝑁𝑟𝑒𝑓 is the number of reference trees in 𝑇 .
All values (𝑅𝐼 , 𝐷𝐻𝐷, and 𝑚𝐼𝑜𝑈) should be one when the segmenta-

ion matches the ground truth results perfectly and are decreased when
ore mismatch exists between 𝑇 and 𝑅.

4.1.3. Results and discussions
We compare our TTS method to two segmentation approaches, 3D

Forest (Trochta et al., 2017, 2022b) and Forest Structural Complexity
Tool (FSCT) (Krisanski et al., 2021a, 2022). Both are implemented
as open-source packages, well-maintained and documented. 3D For-
est (Trochta et al., 2017) is a classic bottom-up segmentation method,
and FSCT (Krisanski et al., 2021a) focuses on plot-level tree measure-
ments and supports single tree segmentation by applying the deep
learning technique in its workflow (see Section 2).

Fig. 10 presents validation results of test methods performed on
labeled TLS point clouds. Overall, our TTS method has the largest Rand
index (RI), directional Hamming distance (DHD) and mean Intersection
over Union (mIoU) in all test data regardless of forest types and point
densities. On average, we have 0.96 of RI, 0.90 of DHD and 0.78
of mIoU. All assessment values are close to one, implying that our
segmentation results are significantly similar to the reference results. In
contrast, 3D Forest (Trochta et al., 2017) has 0.75, 0.79 and 0.46 for
RI, DHD and mIoU, respectively. And, FSCT (Krisanski et al., 2021a)
has the similar values, 0.79, 0.73 and 0.49 for RI, DHD and mIoU,
respectively. Considering the forest type, we observe that test methods
tend to perform better in coniferous forests from the labeled Fire
data. In contrast, it is harder to extract single trees from deciduous
broadleaf forests (i.e., Wytham Woods data) and mixed forests, like
3D Forest sample data, which includes multiple layers of trees and
diverse forest morphology. As presented in Fig. 10(c), compared to
the labeled Fire data, the IoU values of 3D Forest (Trochta et al.,
2017) and FSCT (Krisanski et al., 2021a) decrease by about 50% at
complicated forests (i.e., 3D Forest sample data and Wythem Woods
data). Unlike this drastic drop, the IoU value of our approach only
declines by about 20%. A similar pattern can also be found in the Rand
index and Hamming distance results. For example, 3D Forest (Trochta
et al., 2017) has less than half of the Rand index in Wythm wood data

compared to the Fire data (see Fig. 10(a)). It also has more than 20%
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Fig. 10. (a) Rand index, (b) directional Hamming distance and (c) mean Intersection over Union values of test segmentation methods performed on labeled TLS point clouds. 3D
Forest sample data (Trochta et al., 2022a) and Wytham Woods data (Calders et al., 2022) are denoted as 3DF data and W.W data, respectively.
Fig. 11. Details of three extracted single trees in 3D Forest sample data performed by
(a) TTS, (b) 3D Forest (Trochta et al., 2017), and (c) FSCT (Krisanski et al., 2021a),
respectively.

drop of directional Hamming distance value. Instead, our approach has
a drop of less than 10% as presented in Fig. 10(b), indicating that our
method is stable and resilient to different forest types. The superior
performance of our TTS approach is the result of improvements to stem
detection, branch isolation and crown delineation. Below we discuss the
reasons for these improvements.

Our TTS method can identify stems correctly even in complicated
forests, which is critical for bottom-up methods like TTS and 3D For-
est (Trochta et al., 2017). For example, Fig. 11 shows three trees having
very close stems. Only TTS can distinguish these close stems correctly as
presented in Fig. 11(a). However, both 3D Forest (Trochta et al., 2017)
and FSCT (Krisanski et al., 2021a) fail to isolate trees and combine two
trees into one tree (see Fig. 11(b) and (c)).

The applied 𝛼-complex in our TTS approach can mark tree bottoms
correctly and outlines tree branches well. With discrete Morse theory-
based analysis, TTS can study the tree shape and divide close branches
in various conditions. Even for more challenging tree shapes, such as
leaning trees and intersecting with each other (see Fig. 12), our TTS
method is still able to correctly identify two trees by outlining tree
branches. Unlike TTS, 3D Forest (Trochta et al., 2017) cannot reveal
two trees in Fig. 12(b). Fig. 12(c)–(f) shows a small understory tree
extracted by test methods. All three methods can detect this small tree
without isolating its adjacent vegetation. They are acceptable results
for a multiple-stem tree. However, compared to 3D Forest (Trochta
et al., 2017) and FSCT (Krisanski et al., 2021a) results, the tiny tree
branches of our extracted tree in Fig. 12(d) is complete and more like
the reference result in Fig. 12(c).

Besides better tree stem detection and branch isolation, our TTS
approach can also distinguish different tree crown points better. For
example, tree crown points can be relatively sparse in TLS point clouds.
Because limited by laser scanning, distant objects (i.e., treetops) to the
LiDAR scanners have fewer return points in TLS point clouds. Despite
sparse tree crown points, our TTS method outperforms other methods
for labeling tree crown points. The mixed forest from 3D Forest sample
7

Fig. 12. Examples of two trees extracted by test methods. (a) and (b) Segmentation re-
sults of one plot (Quercus plot) in Tree set data achieved by TTS and 3D Forest (Trochta
et al., 2017), respectively. (c) One small reference single tree point clouds in Wytham
Woods tile 45. Entire point clouds are colored in gray as the background. (d), (e) and
(f) Segmentation results from TTS, 3D Forest (Trochta et al., 2017) and FSCT (Krisanski
et al., 2021a), respectively.

data (Trochta et al., 2022a) is more difficult because of various trees
and complicated tree structures. Our accuracy is much higher than any
other methods (see Fig. 10). For example, the mIoU value of TTS is
1.7 times of that achieved by 3D Forest (Trochta et al., 2017), and 2.2
times of FSCT (Krisanski et al., 2021a). One reason is that extracted
trees from other methods are incomplete and usually miss crown points.
Fig. 11 already shows detailed segmentation results of three trees from
3D Forest sample data (Trochta et al., 2022a). It is clear to see that
3D Forest (Trochta et al., 2017) and FSCT (Krisanski et al., 2021a)
methods have larger errors labeling the sparse treetop points. We can
preserve complete tree crowns and find label crown points correctly in
Fig. 11(a), even though green and blue trees have very sparse treetop
points. Fig. 13 shows the segmentation results of entire 3D Forest
sample data (Trochta et al., 2022a) achieved by test methods. Once
again, Fig. 13(c) and (d) present that most crown points are incomplete
from 3D Forest (Trochta et al., 2017) and FSCT (Krisanski et al., 2021a),
while TTS has a better overall segmentation result with more complete
crown points in Fig. 13(b).

When tree crowns have more points due to better LiDAR scan-
ners and multiple TLS scanning, the challenge becomes distinguishing
trees from neighbors. Fig. 14 presents one big tree in the Wytham
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Fig. 13. Segmentation results of 3D Forest sample data. Ground points are colored in gray. Single tree points are colored to distinguish each other. (a) Reference results. (b), (c) and
(d) Segmentation results from TTS, 3D Forest (Trochta et al., 2017) and FSCT (Krisanski et al., 2021a), respectively. The entire points are colored in light gray as the background.
Fig. 14. Details of one big tree in Wytham Woods tile 45. (a) Reference single tree point
clouds. Entire point clouds are colored in gray as the background. (b) Segmentation
results from TTS, (c) Segmentation results from FSCT.

Woods (Calders et al., 2022) tile 45. Our method and FSCT (Krisanski
et al., 2021a) can extract this big tree, while 3D Forest (Trochta
et al., 2017) cannot identify this tree from its segmentation results.
Considering that other close trees surround this big tree, our automated
result segmentation result is promising as our results are very similar
to the reference results, even for crown branches. On the contrary,
FSCT (Krisanski et al., 2021a) fails to extract single tree point correctly,
as there are points from other trees in Fig. 14(c).

Compared to other test methods, TTS is aggressive at detecting
stems. If low branches of trees are very close to the ground, these
branches are sometimes treated as tree bottoms by TTS. Fig. 15 demon-
strates the one tree with very low branches. These low branches are
extremely near the ground, and the branch ends are not close to the
stem trunk. Thus, TTS sets the low branch as the tree stem. The problem
can be easily fixed by adjusting stem detection height 𝑡ℎ𝑠𝑡𝑒𝑚 (see Sec-
tion 5) in TTS to detect tree bottoms. However, one of our motivations
is to provide the tree segmentation method without an intense tuning
process, which could also be used to improve the performance of
3D Forest (Trochta et al., 2017) and FSCT (Krisanski et al., 2021a).
Therefore, we keep using the same height thresholds in all test data to
8

Fig. 15. Bottom points of segmentation results in single-tree study area 7 in labeled
Fire data. (a) Input vegetation points. (b) Results performed by TTS.

make our method easy. Despite that, our method does not over-segment
single trees when tree trunks are clear. Even processing a multiple-
stems tree, TTS still considers one trunk because multiple stems are
clustered. For example, two trees with one connecting trunk are treated
as one tree in our results presented in Fig. 12(d).

There are other exceptional cases in actual TLS data besides low
branches touching the ground, such as falling trees or leaning trees.
For example, one fallen tree touches two trees in the 3D Forest sample
data (Trochta et al., 2022a). Extraction-focused methods, like TTS and
3D Forest (Trochta et al., 2017), still output this fallen tree in the
final results and label fallen tree points to nearby trees (see Fig. 13(b)
and (c)). However, measurement-focused FSCT (Krisanski et al., 2021a)
uses cylinder fitting on points to filter out this fallen tree. For the sake
of simplicity, we do not handle such particular scenarios at the current
stage.

Considering all experiment results with labeled TLS point clouds,
the experimental results show that our TTS method can achieve more
accurate and more stable segmentation results in different forest types.
TTS is also robust to varying point densities. More importantly, TTS
works without parameter tuning in all test datasets.
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Table 1
Unlabeled data overview. Column T.Den presents stem density (stems/ha) in the data,
nd Column P.Den (unit: cm) records the average point density of experimental TLS
oint clouds. Single-scanned and Multiple-scanned TLS point clouds are presented as
S and MS in EuroSDR dataset.
Dataset T.Den P.Den

Fire data (Greenberg et al., 2022) Before-fire 762.17 5.31

After-fire 589.23 4.95

EuroSDR data (Liang et al., 2018)

Easy SS 659.18 0.92
Easy MS 0.87

Medium SS 1103.52 0.93
Medium MS 0.8

Difficult SS 1791.99 0.72
Difficult MS 0.66

4.2. Tree-level experiments

The tree-level experiment aims to examine the locations of extracted
single trees. Many critical tree metrics are based on tree locations at the
single and plot levels (i.e., stem density, spatial pattern). Therefore, tree
locations are commonly used to validate a method’s accuracy (Liang
et al., 2018). This level experiment evaluates the tree locations de-
rived from vegetation segmentation results with the conventional tree
matching-based validation method.

4.2.1. Datasets
Two large datasets, Ferguson Fire Mensuration TLS data (namely

Fire dataset in our following content) (Greenberg et al., 2022) and
EuroSDR benchmark data (Liang et al., 2018), involving different forest
structures and point densities, are selected in this experiment. Both
datasets include TLS point clouds and reference data, such as tree
locations, heights, and DBHs.

Table 1 presents an overview of experimental datasets, including the
tree numbers, stem density (stems/ha), and vegetation point density.
Fire dataset (Greenberg et al., 2022) includes point clouds scanned
before and after the wildfire Ferguson 2018. The EuroSDR benchmark-
ing dataset (Liang et al., 2018) includes six plots divided into three
levels. Each plot has two versions of TLS point clouds in each plot:
single-scanned (SS) and multiple-scanned (MS). Single-scan (SS) data
is achieved from the plot center scan, while co-registering all scan
data generate multiple-scan (MS) data (Liang et al., 2018). Overall, the
experimental data include a broad range of stem densities, from 589
stems/ha to 1791 stems/ha. The TLS point clouds also present different
point densities from 0.6 cm to 5.3 cm. More information on the two
atasets can be found in Xu et al. (2022).

.2.2. Tree matching-based validation
In this level of experiments, we follow the traditional tree matching-

ased validation method to check the accuracy of detected tree lo-
ations derived from segmentation results. The tree matching-based
alidation method searches and finds pairs of extracted trees and field
rees that refer to the same trees. The details and scripts of tree
atching steps can be found in Xu et al. (2022).

Based on the tree matching results, we count the field trees 𝑓𝑡𝑠.𝑛𝑢𝑚,
xtracted trees 𝑠𝑡𝑠.𝑛𝑢𝑚, and matched trees 𝑚𝑡𝑠.𝑛𝑢𝑚, and then compute

the Completeness, Correctness and Mean Accuracy following the exact
definition used in the EuroSDR benchmark (Liang et al., 2018). In
general, the larger values, the better results.

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = 𝑚𝑡𝑠.𝑛𝑢𝑚
𝑓𝑡𝑠.𝑛𝑢𝑚

,

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑡𝑠.𝑛𝑢𝑚
𝑠𝑡𝑠.𝑛𝑢𝑚

,

𝑒𝑎𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 2 ∗ 𝑚𝑡𝑠.𝑛𝑢𝑚
𝑓𝑡𝑠.𝑛𝑢𝑚 + 𝑠𝑡𝑠.𝑛𝑢𝑚

.
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Table 2
Pearson correlation values between characteristics of experimental
datasets and accuracy achieved by test methods. Columns 𝜌𝑎𝑐𝑐−𝑝 and
𝜌𝑎𝑐𝑐−𝑡 show the correlation of accuracy results on point density and stem
density, respectively. Both 𝜌𝑎𝑐𝑐−𝑝 and 𝜌𝑎𝑐𝑐−𝑡 are computed on the results
of Fire data and EuroSDR Multiple-scanned data to ensure the same TLS
scanning type.
Method 𝜌𝑎𝑐𝑐−𝑝 𝜌𝑎𝑐𝑐−𝑡
TTS 0.399 −0.857
3D Forest (Trochta et al., 2017) 0.715 −0.958
FSCT (Krisanski et al., 2021a) −0.219 −0.653

4.2.3. Results and discussions
The tree matching-based validation results, including completeness,

correctness, and mean accuracy, are presented in Fig. 16(a), (b), and
(c), respectively. Overall, we have comparable accuracy of detected
tree locations. The average accuracy values of our TTS method, 3D
Forest (Trochta et al., 2017) and FSCT (Krisanski et al., 2021a) are 0.50,
0.25 and 0.54, respectively. Our accuracy is close to the best result
of FSCT (Krisanski et al., 2021a). Also, our accuracy is almost twice
that of 3D Forest (Trochta et al., 2017). In the Fire dataset (Greenberg
et al., 2022), we observe that all test methods have better performance
from after-fire data than before-fire data. Moreover, TTS has the highest
accuracy in the most challenging areas from the EuroSDR dataset (Liang
et al., 2018), scoring 1.29 times better than FSCT (Krisanski et al.,
2021a) and 5.5 times better than 3D Forest (Trochta et al., 2017).

We also calculated Pearson correlations to investigate the corre-
lations between segmentation accuracy and data characteristics (i.e.,
point density and stem density). The Pearson correlation value ranges
between −1 and 1. There is no correlation if the correlation value is
0. If the correlation value is larger than zero, the correlation type is
positive. Otherwise, it is a negative correlation.

Table 2 shows that our TTS method and 3D Forest (Trochta et al.,
2017) have a strong positive correlation between point density and
accuracy, with the correlation values of 0.4 and 0.7, respectively. In
contrast, FSCT (Krisanski et al., 2021a) has a negative correlation
value of −0.22. Please note that here a smaller point density means
a denser point cloud. Thus, the correlation values indicate that tree
measurement-focused FSCT (Krisanski et al., 2021a) works better at
dense point clouds than in sparse areas. Because, compared to TTS and
3D Forest (Trochta et al., 2017), FSCT (Krisanski et al., 2021a) is more
conservative and cares more about the correctness of detected trees that
are thoroughly preserved in the point clouds. At the same time, TTS
and 3D Forest (Trochta et al., 2017) focus on segmenting the forest
point cloud into single tree point clouds. However, our TTS method
is more resilient as our correlation value is about half of the 3D For-
est (Trochta et al., 2017). Table 2 also shows all methods have a strong
negative correlation between stem density and accuracy. Both Fig. 16
and Table 2 show that it is more difficult to keep high performance
in dense and complicated forest areas. Despite that, our TTS achieves
better performance in the densest ‘‘Difficult’’ areas than other methods.
This result shows that our method is more stable and resilient to input
data making our method more valuable. Thanks to our small 𝛼-complex
that can outline trees comprehensively and our Forman theory-based
segmentation that can investigate trees and split trees correctly, TTS
can find more trees and have the largest completeness values among
test methods in ‘‘Difficult’’ areas (see Fig. 16(a)). At the same time,
there are also more noises in dense and multiple-layer forest areas, so
not all extracted trees from our results are valid in the field data. For
example, detected stems of small trees are not recorded in the field
data. Similar observations are also reported in Wang’s work (Wang,
2020). Thus TTS has a lower correctness value than FSCT (Krisanski
et al., 2021a) in Fig. 16(b). However, considering both completeness
and correctness, TTS has better accuracy than FSCT (Krisanski et al.,

2021a) presented in Fig. 16(c).
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Fig. 16. Tree matching results of test methods performing on experimental datasets. (a), (b) and (c) show values of completeness, correctness, and mean accuracy, respectively.
Overall, our TTS method is robust to different forests. It is also
stable in the forest after the wildfire. Moreover, automated TTS with-
out parameter tuning achieves comparable results in the dataset and
outperforms other methods in the most challenging areas, making TTS
promising. Please note that 3D Forest (Trochta et al., 2017) is also
tested in Liang et al. (2018) under the name of RILOG (see Appendix
Section in Liang et al. (2018)). Even with the human effort (i.e., manu-
ally single tree detection), the accuracy of RILOG is still not very ideal,
especially for single-scanned TLS point clouds (< 75%), which shows
the difficulty of EuroSDR benchmarking datasets.

5. Setting parameters

Several internal parameters are used in TTS including values of
𝛼𝑠 and 𝛼𝑙, tree validation threshold values 𝑡ℎ𝑙𝑜𝑤 and 𝑡ℎ𝑙𝑒𝑛, and stem
detection height 𝑡ℎ𝑠𝑡𝑒𝑚. Those parameters are set based on theories and
tested through experiments involving an eclectic mix of datasets.

Values of 𝛼𝑠 and 𝛼𝑙. The value of 𝛼 controls the 3D 𝛼-complex generated
from points. TTS has two alpha values: a small value 𝛼𝑠 and a large one
𝛼𝑙. Fixed values of 𝛼 have been used to generate the 𝛼-complex of points
𝑃 . For example, Bayer et al. (2013) suggest using 0.25 m while Hess
et al. (2018) document better results using 0.5 m. We utilize existing
ground truth data including tree locations (x,y) and DBHs to calculate
boundary to boundary distances among tree stems. Given trees 𝑝1, 𝑝2
with DBHs 𝑑1, 𝑑2 respectively, the boundary to boundary distance is
calculated as 𝑑𝑖𝑠𝑏𝑏 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝1, 𝑝2) − (𝑑1 + 𝑑2)∕2. We find that the
average value of 𝑑𝑖𝑠𝑏𝑏 can be lower than 0.1 m.

However, not all trees are well captured in TLS point clouds. Small
trees are usually incompletely scanned due to occlusions (i.e., blocked
by larger trees), whereas the stems of large trees are typically easier
to model. At the same time, large trees have more points in the point
cloud. Therefore, it is practical and critical to label large trees correctly
in the segmentation results. We observe that the shape of tree with
the boundary to boundary distance around 0.1 m has been persevered
well in TLS point cloud. Furthermore, in the 𝛼-complex generated with
a very small value of 𝛼 (i.e., 𝛼 < 0.1 m), large tree stems can be
over-segmented into multiple parts (see Fig. 18(b)). Considering factors
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Fig. 17. Built 𝛼-complexes of point clouds with three close trees. (a) Input forest point
cloud colored by height. (b) Generated 3D 𝛼-complex with 𝛼 = 0.1 m. Three valid
components in the 𝛼-complex are colored.

mentioned above, it is important to acknowledge that we prioritized
large trees in our validation experiments and set 𝛼𝑠 to 0.1 m.

Fig. 17 shows one tree cluster point cloud including three trees.
A 3D 𝛼-complex (𝛼 = 0.1 m) is generated in Fig. 17(b). The clipped
stem points are presented in Fig. 18(a), where the right stem points
are not complete due to the common occlusion issue in TLS sampling.
For the sake of simplicity and demonstration purposes, we present 2D
𝛼-complex generation results in Fig. 18, where built 𝛼-complexes with
𝛼 = 0.05 m, 𝛼 = 0.10 m, and 𝛼 = 0.15 m are presented in Fig. 18(b)
Fig. 18(c) and Fig. 18(d), respectively. Fig. 18(b) shows that using a
small value of 𝛼, the left tree stem points are split into multiple parts,
while a large value of 𝛼, all stem points are combined into one shape,
as presented in Fig. 18(d). However, an appropriate alpha value brings
the precise stem shapes (see Fig. 18(c)) and outlines tree woody objects
(i.e., trunks and branches) correctly (see Fig. 17(b)).
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Fig. 18. Examples of built 𝛼-complexes of stem points from three close trees in Fig. 17. (a) Stem points with 𝑝.ℎ < 1 m. Built 2D 𝛼-complexes of stem points with (b) 𝛼 = 0.05 m,
(c) 𝛼 = 0.1 m, and (d) 𝛼 = 0.15 m.
The 𝛼-complex with value of 𝛼𝑙 is generated to include all points,
especially the sparse crown points from the input point cloud. Our
method is independent of this value, as any large value should work,
such as 0.25 m from Bayer et al. (2013) or 0.5 m from Hess et al. (2018).
For simplicity, we fix 𝛼𝑙 to be equal to 0.3 m in our implementation.
Overall, 𝛼𝑠 and 𝛼𝑙 are applicable to the range of tree sizes and point
cloud properties tested.

Threshold values of bottom elevation 𝑡ℎ𝑙𝑜𝑤 and length 𝑡ℎ𝑙𝑒𝑛. Parameters
𝑡ℎ𝑙𝑜𝑤 and 𝑡ℎ𝑙𝑒𝑛 are designed to find valid trees by checking the bottom
elevation and length of extracted point clouds. Recall that, tree length
is defined as the elevation difference between the tree’s highest point
and the lowest point. Both parameters are used in two steps of TTS.
The first usage is to check tree clusters after finding components in the
generated 𝛼-complex (see Section 3.2). The other usage is to examine
extracted single tree point clouds in Section 3.3. 𝑡ℎ𝑙𝑜𝑤 is set to 1.5 m
to help us get rid of ‘‘float’’ trees where the tree bottoms are far away
from the ground level. Combined with 𝑡ℎ𝑙𝑒𝑛 = 2 m, we can better avoid
low-vegetation in our results.

Tree height threshold value 𝑡ℎ𝑠𝑡𝑒𝑚. 𝑡ℎ𝑠𝑡𝑒𝑚 is used to find stems from
the generated 3D 𝛼-complex of vegetation points (see Section 3.3).
As tree bottoms are usually evident and reliable in dense TLS point
clouds (Calders et al., 2020; Burt et al., 2019; Trochta et al., 2017),
we set 𝑡ℎ𝑠𝑡𝑒𝑚 as 0.5 m to clip the 𝛼-complex below 0.5 m. The clipped
𝛼-complex components are considered tree stems.

6. Concluding remarks

We have proposed a general, robust, and automated Topology-based
Tree Segmentation (TTS) approach for forest TLS point clouds with
𝛼-complex and Forman theory. Our plug-and-play method was also
demonstrated to work on different out-of-box datasets without param-
eter tuning. However, testing across a wider range of forests, TLS
instruments and survey properties is required.

We have designed experiments with multiple levels of validation.
Labeled TLS point clouds have been utilized to examine the extracted
single point clouds point-by-point via computing three metrics: Rand
index, directional Hamming distance, and mean Intersection over
Union (IoU). In the experiments, we have compared our TTS ap-
proach with open-source methods, 3D Forest (Trochta et al., 2017) and
FSCT (Krisanski et al., 2021a). The results proved that TTS provides
better accuracy regardless of forest types, stem densities, and point den-
sities of input TLS point clouds. TTS achieves the highest average rand
Index of 0.96, directional Hamming distance of 0.90, and mean IoU
of 0.78, which indicate high-accurate segmentation results. Moreover,
TTS requires no user-defined parameters and works directly in different
forests and datasets. Together with the reliability and generality, TTS
is promising for greater usage of TLS point clouds, such as fire risk and
behavior modeling, estimating tree-level biodiversity structural traits,
and above-ground biomass monitoring.

We plan to test TTS on more forests in different scanning designs in
the future. Public TLS point clouds with labeled tree points are urgently
needed for this aim. Considering the varying point density due to shad-
ows and overlapped tree branches in TLS point clouds (Trochta et al.,
2017), 𝛼-complex based on weighted Delaunay triangulation (Edels-
brunner, 2010) is under study with the scope of improving tree shape
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delineation and segmentation performance. Our region growing from
the stems is also expected to benefit from metabolic scaling the-
ory (West et al., 1997), which has also been utilized in the individual
tree segmentation works in Tao et al. (2015) and Wang (2020). Lastly,
the computational performance of our method is also being addressed
in parallel work. Thanks to our divide-and-conquer strategy, parallel
computation is naturally supported by our method and vastly im-
proves computational performance. For scalability issue, we will use
distributed data structures, like Stellar tree (Fellegara et al., 2021) to
process large 𝛼-complexes built from big point clouds.
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