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ABSTRACT
We design a novel unsupervised approach to delineate building
footprints on large-scale LiDAR point clouds. By computing an
𝛼-shape on low-height points, we delineate the building bottoms
on the ground. We then use the terrain ruggedness index and vector
ruggedness measurement on the entire points to find flat surface
areas. Finally, valid building footprints are filtered by checking flat
surfaces in the detected bottom areas. Compared to the Artificial
Intelligence (AI)-assisted mapping results from Microsoft Building
Footprints, the accuracy of the proposed method is 17% higher in
the test areas. The simple and effective pipeline makes the proposed
method easy to use and suitable for a wider range of applications.

CCS CONCEPTS
• Computing methodologies→ Shape analysis; • Information
systems → Geographic information systems.
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1 INTRODUCTION
This work is presented as part of the 11th SIGSPATIAL Cup competi-
tion1 which considers the problem of delineating building footprints
from point clouds generated by airborne laser scanning (ALS). ALS
can preserve the 3D structure of objects in large-scale point clouds
with high spatial resolution. The possibility of detecting spatial
objects from ALS point clouds has been proved in existing studies,
such as single tree extraction [10]. Nowadays, ALS point clouds
have been explored for automatically generating building maps at
a large scale in various applications, such as cellular network plan-
ning [2] and smart city planning [1]. To achieve accurate building
1https://sigspatial2022.sigspatial.org/giscup/index.html
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maps, it is first necessary to identify every building and compute
the footprint of detected objects (i.e., building boundary) in the
point cloud.

As large-scale ALS point clouds also contain a large portion of
vegetation, the pipeline of traditional methods includes distinguish-
ing vegetation points from building points [11], which complicates
the entire process. New deep learning techniques have also been
utilized in the semantic segmentation from LiDAR data, including
building detection [9]. At the same time, the high computational re-
quirements and sophisticated system design raise the bar for users
using such tools. Furthermore, external information, like satellite
images, is also imported to help delineate buildings in the point
clouds [2]. However, such external information is not feasible ev-
erywhere and introduces more challenges in registering different
data sources. To provide an effective and easy-to-use building foot-
print delineation method for large-scale point clouds, we propose
a novel unsupervised approach that works on points without any
other external information. Applying the 𝛼-shape [3] of low-height
points, we delineate holes on the ground as boundaries of build-
ing bottoms. We use the terrain ruggedness index [7] and vector
ruggedness measurement [4, 8] to find flat surface areas. The fi-
nal building footprints are filtered by checking the flat surfaces in
the bottom areas. The competition results show that the proposed
method achieves better mapping results than Microsoft Building
Footprints2 in the experimental areas.

2 METHOD OVERVIEW
Our building footprint delineation method contains three steps.
Given input ALS point cloud, we first detect building bottoms on
the ground. Then, we identify the building tops from the entire point
cloud as plane areas. Finally, we filter valid buildings by finding
detected bottoms that cover enough flat areas.

2.1 Detecting building bottoms
We assume buildings are impenetrable and leave no return points
at the low level of ALS point clouds. Thus, the first step aims to
delineate building bottoms where there are no laser return points at
the low height (i.e., ground points). The ground points are already
labeled in the competition data. Otherwise, other tools (i.e., lastools
[5]) can detect ground points. Then we generate a Digital Terrain
Model (DTM) from low points. The cell width is 1m, and the value
of each cell is the average elevation value of points inside the cell.
Thus, the buildings are located in cells without any value. Then, we
collect the center points of empty cells and generate a 𝛼-shape [3]
with the value of 𝛼 = 1.1𝑚 (see Section 3). Finally, the boundaries of
connected components in the 𝛼-shape delineate building bottoms.
2https://www.microsoft.com/en-us/maps/building-footprints
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Figure 1: Example of delineated polygons at the ground points. (a) Input point clouds colored by elevation in a blue-red
colormap. (b) Generated Digital Terrain Model (DTM) with empty cells colored in white. (c) Center points of empty cells. (d)
Generated 𝛼-shape of center points. (e) Delineated bottom polygon for a big building. (f) Delineated bottom polygon for a
building surrounded by trees.

We present a running example in Figure 1. Input point clouds
are colored based on elevation in Figure 1(a). The generated DTM is
shown in Figure 1(b), where empty cells, which are also called pits,
are presented in white. The center points of such pits are presented
in Figure 1(c). We generate an 𝛼-shape of pit points that outlines
the boundaries of objects in Figure 1(d). Two building details are
zoomed in Figure 1, where a large building is well delineated in
Figure 1(e). Even surrounded by trees, our method can still detect
the building bottom in Figure 1(f).

2.2 Detecting flat surfaces
However, as presented in Figure 1(d), other objects are also detected
from low points except buildings. As buildings usually have planar
roofs, which are different from other uneven objects (e.g., treetops),
our goal in this step is to outline flat surfaces. We fill empty cells
in the generated DTM by interpolating the value of an empty cell
as the average value of its nearby cells. Then we calculate the
height over the DTM for all points and generate a digital surface
model (DSM) in a grid with a width of 1m. Working on DSM, we
use the terrain ruggedness index (TRI) [7] and vector ruggedness
measurement (VRM) [4, 8] to measure the planarity of surface. TRI
[7] expresses the height difference between one cell and its adjacent

cell. To compute the TRI value of each cell, we first compute the
height difference between it and its eight neighbor cells. We then
calculate the mean value of squared height differences. The TRI
measurement value for the cell is the square root of the calculated
mean value. Unlike TRI, VRM [4, 8] measure the surface roughness
by considering both slope and aspect. For each cell, we first set a
neighbor region 𝑁𝑥𝑁 (i.e., 3x3). Later, we decompose the slope and
aspect into 3-dimensional vectors and calculate the resultant vector
magnitude |𝑉𝑟 | within the neighbor region. In the end, the VRM
value of the cell is computed as 1 − |𝑉𝑟 |

𝑁 2 .
After calculating TRI and VRM over DSM, we find flat cells if

𝑣 ⊂ [𝑇𝑅𝐼𝑚𝑖𝑛,𝑇𝑅𝐼𝑚𝑎𝑥 ], or 𝑣 ⊂ [𝑉𝑅𝑀𝑚𝑖𝑛,𝑉𝑅𝑀𝑚𝑎𝑥 ], where 𝑣 is the
cell value,𝑇𝑅𝐼𝑚𝑖𝑛,𝑇𝑅𝐼𝑚𝑎𝑥 ,𝑉𝑅𝑀𝑚𝑖𝑛,𝑉𝑅𝑀𝑚𝑎𝑥 are threshold values,
which are discussed in Section 3. Then, similar to the previous step,
we compute the 𝛼-shape over flat cells.

Figure 2(a) and (b) shows the TRI and VRM grid generated on
points in Figure 1(a), respectively. Flat points are presented in Fig-
ure 2(c) and our computed 𝛼-shape is showed in Figure 2(d). We ob-
serve that flat roof areas from the big building and tree-surrounding
building are well delineated(see Figure 2(e) and (f)).
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Figure 2: Example of delineated polygons at the top points. (a) Generated terrain ruggedness index (TRI) grid of input points,
colored based on the TRI value in a blue-red colormap. (b) Generated vector ruggedness measure (VRM) grid. (c) Center points
of selected flat cells. (d) Generated 𝛼-shape of center points. (e) Delineated top polygon for a big building. (f) Delineated top
polygon for a building surrounded by trees.

2.3 Filtering buildings
In the last step of our method, we filter valid buildings, where the
detected building bottoms should cover enough flat surfaces. We
provide a series of heuristic filtering to find buildings correctly.
First, we consider rectangularity for each detected bottom 𝑃𝑏 . The
rectangularity (RI) of 𝑃𝑏 is computed as 𝑅𝐼 = 𝑃𝑏∩𝑃𝑚𝑏

𝑃𝑏∪𝑃𝑚𝑏
, where 𝑃𝑚𝑏

is the minimum bounded rectangle of 𝑃𝑏 . If a large bottom 𝑏 has
a larger RI value than the set value 𝑡ℎ𝑅𝐼 , we mark the bottom as
a valid building footprint. Otherwise, we search the flat surface 𝑡
overlapped with 𝑏 and calculate the Intersection with Union (IoU)
[6] between 𝑏 and 𝑡 . If the value of IoU is larger than the set value
𝑡ℎ𝐼𝑜𝑈 , we also mark 𝑏 as a valid building footprint.

Figure 3(a) shows the final detected buildings. We also compare
our delineated building with the satellite images from Google Earth.
Large building with the concave shape is well captured (see Fig-
ure 3(b)). Even a small building surrounded by trees, our method
can still delineate it in Figure 3(c).

3 EXPERIMENTAL RESULTS
Dataset. The 11th SIGSPATIAL Cup competition includes five

test areas in various environments. For example, a town in North

Caroline within the humid subtropical climate zone is surrounded
by vigorous forests. Three towns within the warm summer conti-
nental climate zone are located in Montana, New York, and Wiscon-
sin, respectively. Moreover, a city in New Mexico under the zone of
tropical and subtropical steppe climate sits on an unforested, dry
and grassy plain. On average, each test area includes 39 buildings in
an extensive area (1,592,057𝑚2). The LiDAR data is provided by the
United States Geological Survey (USGS) as part of the 3D Elevation
Program (3DEP)3. And, the ground truth building footprints are
provided by the competition board.

Results. The validation is based on Intersection over Union [6].
For one test area 𝑖 , given ALS-derived results 𝑂 and ground truth
𝐺 , the IoU value is calculated as 𝐼𝑜𝑈𝑖 =

𝐴𝑟𝑒𝑎 (𝑂 )∩𝐴𝑟𝑒𝑎 (𝐺 )
𝐴𝑟𝑒𝑎 (𝑂 )∪𝐴𝑟𝑒𝑎 (𝐺 ) , where

𝐴𝑟𝑒𝑎(𝑂) is the union of all polygons in𝑂 and𝐴𝑟𝑒𝑎(𝐺) is the union
of the all polygons in 𝐺 . If more polygons are detected in 𝑂 , 𝐼𝑜𝑈𝑖

is further scaled as 𝐼𝑜𝑈𝑖 = 𝐼𝑜𝑈𝑖 · |𝐺 |
|𝑂 | , where | ∗ | shows the number

of polygons. The final accuracy is set as the average of 𝐼𝑜𝑈𝑖 for the
total five test areas.

3https://www.usgs.gov/3d-elevation-program
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Figure 3: (a) Final delineated building footprints. (b) The detected big building over the satellite image. (c) The detected tree-
surrounding building over the satellite image. Both satellite images are provided by Google Earth.

Our proposedmethod can delineate buildings automatically from
ALS point clouds with an average IoU value of 0.62, which is 17%
higher than the baseline results achieved by Microsoft Buildings. Vi-
sually checking our results, evident buildings are correctly outlined
(see Figure 3(b)). Buildings adjacent to trees can also be delineated,
such as the one in Figure 3(c). Several parameters used in our
method reflect the real physical characteristics of buildings, which
makes them easy to adjust. During the experiment, with manually
tuned parameters, the overall accuracy can be increased 10%. How-
ever, the default settings can be starting points and provide good
results. Internal key parameter settings are discussed below.

Parameter settings. The key parameters in our method include
the value of 𝛼 , threshold values of terrain ruggedness index (TRI)
[7] and vector ruggedness measurement (VRM) [4, 8] to filter flat
cells and the values of rectangularity and IoU to find valid buildings.

The value of 𝛼 controls the 𝛼-shape from points, which is used in
delineating both building bottoms and flat surfaces (see Section 2.1
and 2.2). We set a fixed value of 1.1m, which is suitable for drawing
the boundaries of buildings of interest (i.e., with each width larger
than 2.2m). We use TRI and VRM to filter flat cells (see Section 2.2).
The smaller value of TRI means that the cell is flatter. We set𝑇𝑅𝐼𝑚𝑖𝑛

as 0, and 𝑇𝑅𝐼𝑚𝑎𝑥 = 0.22𝑚. Considering the grid width is 1m in our
method, the 0.22m also means a low slope (12◦). For the VRM value,
0 shows the flat, and 1 means the most rugged. Inspired by the
study by Sappington et al. [8], we found that 𝑉𝑅𝑀𝑚𝑖𝑛 = 0, and
𝑉𝑅𝑀𝑚𝑎𝑥 = 0.05 are applicable for test areas. Two threshold values
rectangularity 𝑡ℎ𝑅𝐼 and 𝑡ℎ𝐼𝑜𝑈 are used to find valid buildings (see
Section 2.3). Our method finds building footprints if the delineated
shape is very close to a rectangle. Thus we set a high value of
𝑡ℎ𝑅𝐼 = 0.72. The IoU value is used to check whether the bottom
area has a flat surface, and we set 𝑡ℎ𝐼𝑜𝑈 = 0.36.

4 CONCLUSIONS
We design a novel unsupervised approach to delineate building foot-
prints on large-scale LiDAR point clouds. Our approach is effective
and easy to use. Moreover, unlike sophisticated deep learning-based
methods [9], our approach does not need a time-consuming and

data-hungry training process. The heuristic parameter settings in
our method are physically meaningful and easy to adjust for better
performance. Furthermore, the simplicity of our approach (i.e., no
need to distinguish vegetation and buildings in the points) makes
it suitable, for example, for interactive applications where the user
wants to quickly visualize the result of building delineation on
large-scale ALS point clouds.
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