
Parallel Topology-aware Mesh Simplification on Terrain

Trees

YUNTING SONG , University of Maryland, College Park, USA

RICCARDO FELLEGARA , German Aerospace Center (DLR), Institute for Software Technology,

Braunschweig, Germany

FEDERICO IURICICH , Clemson University, Clemson, USA

LEILA DE FLORIANI , University of Maryland, College Park, USA

We address the problem of performing a topology-aware simplification algorithm on a compact and dis-
tributed data structure for triangle meshes, the Terrain trees. Topology-aware operators have been defined to
coarsen a Triangulated Irregular Network (TIN) without affecting the topology of its underlying terrain, i.e.,
without modifying critical features of the terrain, such as pits, saddles, peaks, and their connectivity. How-
ever, their scalability is limited for large-scale meshes. Our proposed algorithm uses a batched processing
strategy to reduce both the memory and time requirements of the simplification process, and thanks to the
spatial decomposition on the basis of Terrain trees, it can be easily parallelized. Also, since a Terrain tree after
the simplification process becomes less compact and efficient, we propose an efficient post-processing step
for updating hierarchical spatial decomposition. Our experiments on real-world TINs, derived from topo-
graphic and bathymetric LiDAR data, demonstrate the scalability and efficiency of our approach. Specifically,
topology-aware simplification on Terrain trees uses 40% less memory and half the time compared to the most
compact and efficient connectivity-based data structure for TINs. Furthermore, the parallel simplification al-
gorithm on the Terrain trees exhibits a 12 × speedup with an OpenMP implementation. The quality of the
output mesh is not significantly affected by the distributed and parallel simplification strategy of Terrain
trees, and we obtain similar quality levels compared to the global baseline method.

CCS Concepts: • Computing methodologies → Mesh geometry models ; Shape analysis; Shared memory

algorithms; • Information systems → Data structures ; Geographic information systems;

Additional Key Words and Phrases: Terrain simplification, edge contraction, spatial indexes, topological meth-
ods, shared memory processing

ACM Reference Format:

Yunting Song, Riccardo Fellegara, Federico Iuricich, and Leila De Floriani. 2024. Parallel Topology-aware
Mesh Simplification on Terrain Trees. ACM Trans. Spatial Algorithms Syst. 10, 2, Article 7 (May 2024),
39 pages. https://doi.org/10.1145/3652602

This work has been partially supported by the US National Science Foundation under grant number IIS-1910766. It has also
been performed under the auspices of the German Aerospace Center (DLR) under grant DLR-SC-2712024 (VisPlore). The
Great Smokey Mountains, Canyon Lake, Yosemite Rim Fire, Dragons Back Ridge, and Moscow Mountain point clouds are
kindly provided by the OpenTopography Facility with support from the National Science Foundation under NSF Award
Numbers 1948997, 1948994 & 1948857.
Authors’ addresses: Y. Song and L. De Floriani, University of Maryland, 4600 River Road, Riverdale, Maryland 20737, USA; e-
mails: ytsong@umd.edu, deflo@umd.edu; R. Fellegara, German Aerospace Center (DLR), Institute for Software Technology,
Lilienthalpl. 7, Braunschweig, Germany, 38108; e-mail: riccardo.fellegara@dlr.de; F. Iuricich, Clemson University, McAdams
Hall 305, Clemson, South Carolina 29631, USA; e-mail: fiurici@clemson.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 2374-0353/2024/05-ART7
https://doi.org/10.1145/3652602

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

https://orcid.org/0000-0002-3053-1748
https://orcid.org/0000-0002-8758-2802
https://orcid.org/0000-0002-6605-9131
https://orcid.org/0000-0002-1361-2888
https://doi.org/10.1145/3652602
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3652602
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652602&domain=pdf&date_stamp=2024-05-21

7:2 Y. Song et al.

1

M

fi

d

m

a

p

o

N

a

p

t

t

f

T

i

i

s

t

t

t

T

a

a

r

a

f

u

s

p

t

[

O

i

T

f

A

 INTRODUCTION

orse theory is a powerful mathematical framework that enables the segmentation of a scalar
eld according to the regions of influence of its critical points. This general task has proved fun-
amental in many application domains, including material science [41], chemistry [56], environ-
ental science [69], forest monitoring [72], and urban analysis [25], to mention a few. Terrain
nalysis, particularly, the segmentation of a terrain according to its critical points (i.e., peaks and
its), provides information regarding terrain morphology that is fundamental for assessing the risk
f landslides or floods. Terrain surfaces are usually described by either Triangulated Irregular

etworks (TINs) or raster-based Digital Elevation Models (DEMs) . Although TINs can better
dapt to irregularly distributed data, their usage is constrained by their large storage costs com-
ared to DEMs. At the same time, the increasing availability of large point clouds [57] intensifies
he need for scalable data representations for TINs.
Spurious critical points, naturally occurring in data due to noisy acquisitions, can severely affect

errain analysis. For this reason, several simplification approaches capable of removing spurious
eatures, while maintaining important critical points, have been defined in the literature [6 , 16 , 52].
hese approaches reduce the morphological complexity of the dataset, while leaving the underly-
ng digital terrain model unchanged. However, when working with large terrain datasets, a notable
ssue arises: the complexity of extracting, representing, and visualizing topological features and
tructures is directly related to the resolution of the terrain model. A possible solution is to lower
he resolution of a terrain model, which, however, may affect its topology in an uncontrolled way,
hereby deteriorating the simulation and segmentation results.
In Reference [46], we recently addressed this problem by defining a local simplification opera-

or, called gradient-aware edge contraction . This operator is capable of reducing the resolution of a
IN while preserving the topology of the underlying terrain. By combining such an operator with
 topological simplification operator, users are able to simplify the resolution of both the topology
nd the geometry of a terrain in a completely controlled way. However, when processing large ter-
ains, multiple issues arise. First, encoding the original TIN requires significant memory resources,
nd, thus, there is the need to use efficient representations to reduce memory usage. Second, per-
orming a large number of simplifications sequentially is time-consuming [46], directly affecting
ser interactions during data exploration. Thus, there is a need to develop a parallel simplification
trategy.
In this work, we address both issues by designing and implementing a new simplification ap-

roach for triangulated terrains. The algorithm performs topology-aware simplification by ex-
ending gradient-aware edge contraction on a highly efficient data structure, the Terrain trees
 27], which have been shown to be the most compact representation for triangulated terrains.
ur approach reduces the geometric complexity of large triangulated terrains without affect-

ng their morphology or incurring limitations due to processing time or space constraints.
he major contributions of this article, which extends the work in Reference [68], include the
ollowing:

(1) the design and implementation of a topology-aware mesh simplification method on a com-
pact data representation for triangle meshes, Terrain trees;

(2) the definition of a leaf-locking strategy on Terrain trees and the design of a parallel
topology-aware mesh simplification algorithm;

(3) the design of an algorithm for updating a Terrain tree after simplification, which can be
applied independently of the way the mesh encoded in the Terrain tree is modified;

(4) an experimental evaluation on the new simplification methods in terms of computing
performances and quality of the output mesh;
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:3

e

2

m

m

d

b

n

c

i

t

p

d

a

t

p

a

p

m

w

2

I

t

r

a

a

o

t

M

b

o

a

f

t

c

a

a

o
a

g

c

(5) a discussion on leaf capacity selection for efficient mesh simplification on Terrain trees;
(6) an optimized simplification strategy on Terrain trees for improving output mesh quality.

While the design and implementation of the simplification algorithm on Terrain trees and the
valuation of the computational performance were previously presented at ACM SIGSPATIAL
021 [68], this article contains the full description of the Terrain tree update algorithm, experi-
ents on simplified mesh quality, the discussion on the relationship between leaf capacity and
esh quality, and the description of an enhanced quality-oriented simplification strategy. In ad-
ition, compared to the conference paper [68], we provide a more comprehensive review of the
ackground notions and related works.
The remainder of the article is organized as follows. Section 2 reviews some related background

otions on discrete Morse theory. Section 3 discusses related work on triangle mesh simplifi-
ation and on topology-based simplification. Section 4 briefly reviews the Terrain trees, which
s the underlying data structure of our algorithms, while Section 5 provides the definition of a
opology-aware edge contraction operator. Section 6 describes the proposed topology-aware sim-
lification algorithm, and Section 7 defines a new parallel simplification algorithm relying on the
istributed nature of Terrain trees. Section 8 describes an algorithm for updating a Terrain tree
s a post-processing step, which is necessary to keep the downstream operations efficient. Sec-
ion 9 discusses several mesh quality metrics for evaluating the output meshes generated by the
roposed simplification algorithms. In Section 10 , we experimentally evaluate both the sequential
nd the parallel topology-aware simplification on Terrain trees and compare them against an im-
lementation of the topology-aware simplification on a state-of-the-art compact data structure for
eshes. Finally, in Section 11 , we draw some concluding remarks and discuss directions for future
ork.

 BACKGROUND

n this section, we review fundamental elements of discrete Morse theory, which is the basis for
wo-dimensional (2D) scalar field topology, but restricting ourselves to triangle meshes. Interested
eaders are referred to other work [19 , 31] for a comprehensive overview of the theory and its
pplication in shape analysis and visualization.
Morse theory [53] is a mathematical tool studying the relationships between the topology of

 manifold shape M and the critical points of a smooth scalar function f defined over M . Based
n Morse theory, we can define segmentations for shape M based on the regions of influence and
he connectivity of its critical points. Discrete Morse Theory [31] is a combinatorial counterpart to
orse theory, which nicely extends the results of Morse theory to discrete data, and thus it has
een used for analysis of 2D and 3D scalar fields [27 , 41 , 61 , 70].
We consider a pair (Σ, F), where Σ is a triangle mesh and F : Σ→ R is a scalar function defined

n all the simplices of Σ. Function F is a discrete Morse function (also called a Forman function) if
nd only if, for every k-simplex σ ∈ Σ, all the (k − 1)-simplices on the boundary of σ have a lower
unction value than σ , and all the (k + 1)-simplices bounded by σ have a higher function value
han σ , with at most one exception. If such an exception exists, then it defines a pairing of cells,
alled a gradient pair . A gradient pair can be viewed as an arrow formed by a head (k-simplex) and
 tail ((k − 1)-simplex). A simplex involved in no pairs is called a critical simplex. We call a V -path

 sequence of simplices [σ0 , τ0 , . . . , σi , τi , . . . , σr , τr] such that σi and σi+1 are on the boundary
f τi and (σi , τi) are paired simplices, where i = 0 , . . . , r . A V -path is said to be closed if σ0 = σr

nd trivial if r = 0 . The collection of all paired and critical simplices of Σ forms a discrete Morse

radient (also called a Forman gradient) if there is no closed V -path. A separatrix V j -path is a V -path
onnecting two critical simplices of dimension j + 1 and j, respectively.
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:4 Y. Song et al.

Fig. 1. (a) Forman gradient and (b) separatrix V -paths connecting pairs of critical simplices. Regions of in-

fluence of maxima are computed by visiting the V -paths (c) at the maxima and (d) until the whole region of

influence is visited.

F

m

a

t

i

R

c

p

d

g

s

a

a

s

c

r

p

r

t

o

a

b

d

i

d

t

3

I

t

c

A

Given a triangle mesh Σ with elevation values defined at the vertices, we can extend it to a
orman function F defined on all simplices of Σ using the Robin’s algorithm [61]. In a triangle
esh, we have arrows formed by a triangle and an edge (triangle-edge pair) and by an edge and
 vertex (edge-vertex pair). There are three types of critical simplices in a triangle mesh: critical
riangles indicating maxima, critical edges indicating saddles, and critical vertices indicating min-
ma. Figure 1 (a) shows an example of a discrete Forman gradient computed on a triangle mesh.
ed, green, and blue dots indicate critical triangles, edges, and vertices, respectively. Arrows indi-
ate gradient vectors. Critical simplices are the discrete counterpart of critical points. It has been
roved by Fugacci et al. [35] that critical simplices appear in correspondence of critical points
efined for the piecewise linear surface approximation according to the theory by Banchoff [3].
For terrain analysis, the Forman gradient can be seen as the combinatorial counterpart of the

radient of the elevation function f [61 , 70] and allows direct computation of different topological
tructures [19]. Figure 1 (b) shows the separatrix V -paths connecting pairs of critical simplices,
nd the collection of such paths is referred to as a critical net . Moreover, the Forman gradient is
lso used to segment a dataset based on the regions of influence of its critical cells. Figure 1 (c)
hows the regions of influence for two critical triangles (maxima). Each region of influence is
omputed by starting from the gradient vectors outgoing the critical triangle and expanding the
egion recursively until no more gradient vector can be visited (see Figure 1 (d)).

Topological descriptors offer representations of a terrain topology well suited for analytical com-
arisons. The most widely used topological descriptor is the persistence diagram , a compact rep-
esentation rooted in the theory of persistent homology [26].
Formally, a persistence diagram is a multi-set of points representing all critical simplices of the

errain. Each point p, with coordinates (b, d), in the persistence diagram corresponds to a pair
f critical simplices p 1 and p 2 connected by a separatrix V -path (e.g., a minimum-saddle pair or
 saddle-maximum pair). The x-coordinate is called the birth of the point p, which is defined as
 = f (p 1); the y-coordinate is called the death of the point p, which is defined as d = f (p 2). The
ifference between the death and the birth of the point p, denoted as persistence , measures the
mportance of the pair of critical simplices p 1 and p 2 . Figure 2 shows an example of a persistence
iagram containing four points. For example, the blue point has coordinates (3, 4) and its persis-
ence value is 1.

 RELATED WORK

n this section, we review state-of-the-art research related to this work. In Section 3.1 , we review
riangle mesh simplification methods, with a focus on the improvement of memory and time effi-
iency. In Section 3.2 , we review topology-based simplification methods.
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:5

Fig. 2. Example of (a) a persistence diagram formed by four points and (b) its birth-persistence chart. Points

with the same color in (a) and (b) correspond to the same point.

3

T

s

v

m

g

a

c

r

m

a

e

o
d

o

t

q

s

q

d

[

d

o

p

i

v

p

3

.1 Triangle Mesh Simplification

he task of mesh simplification has been extensively studied in the literature [11 , 42 , 64]. In this
ection, we provide an overview of some techniques and challenges in triangle mesh simplification.
Popular techniques for mesh simplifications include vertex decimation [65], edge collapse [43],

ertex clustering [62], and triangle collapse [44]. Vertex decimation , also referred to as vertex re-

oval , consists of removing from the mesh a vertex and all the triangles incident at it and trian-
ulating the “hole” left behind. Edge collapse , also known as edge contraction , involves contracting
n edge to a single vertex. When the edge is contracted to one of its endpoints, this operation is
alled half-edge-collapse . Vertex clustering consists of grouping nearby vertices into clusters and
epresenting each cluster with a few new points. Triangle collapse removes a triangle from the
esh by collapsing it into one vertex.
After selecting a simplification operator, one should define the order in which simplifications

re performed. When considering edge contraction, a simple metric is to always contract the short-
st edge [71]. Several more sophisticated metrics have been defined for optimizing the quality of
utput meshes, such as minimizing an energy function [43], setting a threshold on the Hausdorff
istance between the original and the simplified models [47], minimizing the error quadrics [36],
r setting a threshold on the error volume [38]. The Quadric Error Metric (QEM) [36] is one of
he few approaches that keeps a good balance between computational costs and resulting mesh
uality. These metrics are designed to optimize the geometric quality of the simplified mesh, but a
implification operator following them can still create non-valid meshes. To avoid such a situation,
uality conditions, like the link condition [23] and fold condition [9], have been proposed.
Processing large terrains presents multiple issues. First, encoding the original TIN is memory

emanding. Second, performing a large number of simplifications sequentially is time-consuming
 46] and directly affects user interactions during data exploration.
One solution for handling memory limitation is to use out-of-core partitioning methods to pro-

uce sub-meshes that can be processed by a single computer [7 , 50 , 51]. While these methods
vercoming the limitation on memory, they do not reduce the memory costs of the simplification
rocess itself and incur extra I/O time compared to in-core methods. In our research, we focus on
n-core methods and use efficient representations to minimize memory requirements.
To expedite mesh simplification, many parallel mesh simplification algorithms have been de-

eloped. While a few of them focus on vertex decimation [32] and vertex clustering [21], most
arallel approaches rely on the edge contraction operator due to its intrinsic flexibility [7 , 22 , 32 ,
7 , 49 , 59]. These latter methods can be roughly categorized into two classes.
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:6 Y. Song et al.

[

a

t

a

e

G

e

e

t

c

a

p

s

s

L

n

u

f

i

d

f

t

e

p

c

e

t

o

f

a

3

I

n

p

t

p

t

(

b

i

i

c

b

A

The first class defines heuristics to prevent concurrent contractions of adjacent edges. Franc et al.
 32] first introduced the concept of super-independent vertices, and a set of such vertices, named
 super-independent set , can be contracted simultaneously. Papageorgiou and Platis [59] improved
his algorithm by parallelizing the identification of super-independent vertices. However, such an
lgorithm is still complex and time-consuming, since only a subset of the vertices is processed at
ach iteration, and a pre-processing step is required every time to find a super independent set.
rund et al. [37] devised a new method in which an edge e can be contracted only if all the other
dges adjacent to e have higher costs according to QEM. This method ensures that no adjacent
dges of e (i.e., edges sharing a common vertex with e) can be contracted at the same time. While
his approach is fast and efficient when only the edge cost is considered, it cannot avoid possible
onflicts in parallel mesh simplification when the check of quality conditions (e.g., link condition
nd fold condition) involves more than the adjacent edges.
A different strategy is partitioning the mesh into sub-meshes that can be then processed inde-

endently. The main advantage of this strategy is that it supports better quality control for the
implified mesh. Dehne et al. [22] partitioned the mesh by dividing the vertices of a mesh into
ubsets without duplicates, ensuring edges with endpoints in different subsets are not contracted.
ee and Kyung [49] introduced a new parallel edge contraction method with a lazy-update tech-
ique. The idea is to symbolically simplify the mesh while working in parallel and then encode the
pdates at the end of the simplification process. Cabiddu et al. [7] designed a parallel algorithm
or distributed systems. The mesh is divided by a binary space partitioning [33] and the result-
ng sub-meshes are then grouped into independent sets. As a result, each group of sub-meshes
oes not share any element with the others. Recently, Mousa and Hussein [54] proposed a method
or parallel mesh simplification in which the mesh is subdivided into disjoint blocks with a k-d
ree. Each block is processed independently by removing edges based on the order of edge costs
ncoded in a global queue. This method has then the same contraction order as a method sim-
lifying directly the triangle mesh. If an edge e intersects two blocks, then only one of the two
ontracts e , while the other is locked and cannot contract any other edge until the contraction of
is completed. However, the locking strategy defined in this method does not avoid conflicts be-
ween blocks when the check of quality conditions involves also the triangles in the neighborhood
f e . Our parallel simplification method extends [7 , 54] by considering the conflicts between dif-
erent blocks in a more comprehensive way, by using a hierarchical decomposition of the domain,
nd by processing independent blocks at the same time.

.2 Topology-based Mesh Simplification

n this work, we focus on topology-preserving simplifications, i.e., a simplification combining the
eed to reduce the size of a mesh with the need to maintain its topological properties, such as
eaks and valleys. Typically, simplification operators are not topology-preserving, meaning that
hey can modify the number or connectivity of critical points of a terrain in an uncontrolled way.
This problem was first addressed in Reference [2] by introducing a simplification operator that

reserves the critical points of the terrain. The operator removes a vertex from the terrain and re-
riangulates the neighborhood such that the remaining vertices maintain the same classification
i.e., minimum, saddle, maximum, non-critical). The method preserves the topology of the terrain,
ut it lacks an efficient implementation for re-triangulating the terrain.
In Reference [18], the first efficient topology-aware operator based on edge contraction was

ntroduced. This method preserves critical points connectivity by checking the separatrix lines
ncident at the endpoints of a contracted edge. However, while preventing the removal of existing
ritical points, it does not avoid the creation of new ones. The first topology-aware simplification
ased on discrete Morse theory was introduced by Iuricich and De Floriani [46]. The basic
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:7

o

t

B

I

v

F

o

a

t

o

t

t

F

b

a

r

t

f

t

m

4

I

R

m

W

(

a

T

T

i

t

n

P

t

w

t

perator, called gradient-aware edge contraction , is able to preserve both the critical simplices and
heir connectivity by using a Forman gradient as the underlying descriptor of the terrain topology.
efore contracting an edge e , the operator checks the gradient pairs in the neighborhood of e .
f these pairs are organized in a valid configuration, then the contraction guarantees the preser-
ation of the terrain topology. On top of that, a multi-resolution model called a Hierarchical

orman Triangulation (HFT) is introduced. This model combines geometric and topological
perators to enable mesh simplification or refinement by varying the resolution of both topology
nd geometry on-demand. This is fundamental for interactive exploration of a mesh dataset in real
ime.
Building upon the gradient-aware simplification operators, Dey and Slechta [24] relaxed the

riginal criteria to allow the removal of more critical simplices. While this operator does not lead
o a multi-resolution model like HFT, it increases the number of admissible edge contractions and,
hus, the compression rate. Recently, a new approach based on vertex removal was proposed by
ugacci et al. [34]. The simplification operator is similar to the one introduced in Reference [2],
ut in this case, the topology is preserved by checking a descriptor whose definition is rooted in
lgebraic topology, i.e., persistent homology [26]. A vertex removal is valid only if the link of the
emoved vertex can be re-triangulated while preserving the persistence diagram, which is proven
o be equivalent to preserving critical points.
In this work, we use the gradient-aware edge contraction from Reference [46], which allows

or constructing the HFT multi-resolution model. Unlike vertex removal [34], the edge contrac-
ion operator comes with several metrics for controlling and optimizing the quality of the output
eshes [36 , 38 , 43 , 47].

 TERRAIN TREES

n this section, we briefly introduce the data structure used in our work. We refer the reader to
eference [27] for more details. A variety of data structures have been developed for triangle
eshes, and the most compact of them encode only the vertices and the triangles of the mesh [20].
ithin this class of data structures we can find the Indexed data structure with Adjacencies

IA data structure) [58], the Corner Table [63], and the Sorted Opposite Table [40]. Recently,
 new compact family of spatial data structures designed for triangulated terrain meshes, called
errain Trees , has been developed [27]. Based on Terrain trees, we have developed the Terrain

rees library (TTL) [29], a library for terrain analysis, which contains a kernel for connectiv-
ty and spatial queries, as well as modules for morphological terrain analysis and for extracting
opological structures, based on the discrete Morse gradient. Terrain trees are based on different
ested subdivision strategies of the TIN domain D , which led to three data structures, called PR ,
M , and PMR Terrain trees , respectively. In our experiments, the PR Terrain tree has been shown
o be slightly more compact and efficient than the other two strategies. Therefore, in this work,
e use the PR Terrain tree to encode meshes, and we refer to it as the Terrain tree in the rest of
he article for the sake of simplicity.
A Terrain tree on a triangle mesh Σ consists of the following:

(1) a global vertex array ΣV , encoding, for each vertex of Σ, its coordinates and elevation,
(2) a global triangle array ΣT , encoding, for each triangle of Σ, a triplet of vertex indices in

the global vertex array,
(3) a bucketed PR-quadtree T describing the nested subdivision of D , which acts as a bucketing

structure for the mesh vertices, and
(4) a list of leaf blocks B obtained from the subdivision of D , where each leaf block b contains

the vertices of the mesh that fall in b plus the triangles that intersect b.
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:8 Y. Song et al.

Fig. 3. Example of edge contraction not satisfying the link condition. Given edge e = { v a , v b } , we have

Lk(v a)
⋂

Lk(v b) = {v d , v д , v f , {v f , v д }} and Lk(e) = {v д , v d }. The condition is not satisfied, since Lk(v a) ∩
Lk(v b) contains vertex v f and edge { v f , v д } that are not in Lk(e).

g

t

i

w

c

n

(

v

I

t

i

s

t

r

5

E

e

e

m

c

t

o

e

e

s

t

i

t

f

p

c

A

The domain D of a TIN is referred to as the root block of a Terrain tree. The subdivision of D is
uided by a capacity value kv on the vertices of the TIN. If a block contains more than kv vertices,
hen it is recursively split into four rectangle blocks of the same size. A block is called internal if
t is split in the subdivision, and it is called leaf if it is not further split. When a block b is split,
e call the resulting four blocks the children of b, and conversely, b is called the parent of its four
hildren.
Each leaf block contains the minimum amount of information required for extracting all con-

ectivity relations, encoded through a compression method based on sequential range encoding

SRE) , introduced in Reference [30]. This method, combined with a reindexing of the two global
ertex and triangle arrays, enables a Terrain tree to encode a triangle mesh with low storage cost.
t requires approximately 36% less storage than the most compact state-of-the-art mesh data struc-
ure (the IA data structure), while maintaining comparable performance in extracting connectiv-
ty relations. Moreover, the hierarchical domain decomposition of Terrain trees makes them well
uited for parallel computation, as several leaf blocks can be processed simultaneously. These fea-
ures make Terrain trees more scalable than other triangle-based data structures and desirable for
epresenting large triangle meshes.

 TOPOLOGY-AWARE EDGE CONTRACTION

dge contraction is a widely used operator for triangle mesh simplification [43]. Given an edge
 = {v 1 , v 2 } in a triangle mesh Σ, e is contracted to one of its endpoints, and edge e , one of its
ndpoints, and the triangles incident in e are removed from Σ. An edge contraction operator can
odify the shape of the TIN creating non-valid meshes. To prevent this, we verify that the edge
ontraction satisfies two fundamental validity conditions, namely the link and fold conditions.
The link condition [23] ensures that the simplified mesh has the same homological properties as

he original one. The link Lk(v) of a vertex v consists of all vertices adjacent to v in the mesh and
f all the edges opposite to v bounding the triangles incident in v . Similarly, the link Lk(e) of an
dge e consists of the two vertices of the triangles incident in e that are not endpoints of e . An edge
 = {v 1 , v 2 } ∈ Σ is said to satisfy the link condition if and only if Lk(v 1) ∩ Lk (v 2) ⊆ Lk (e). Figure 3
hows an example of an edge contraction that violates the link condition. If edge e is contracted
o v a , then the resulting mesh becomes invalid, since more than two triangles would be incident
n the same edge (i.e., edge { v a , v f }).
The fold condition [9] ensures that for every edge e ′ in Lk(v 2), v 1 and v 2 lie on the same side of

he line l passing through e ′ . If this condition is not verified, then Σ will have at least one triangle
olding over itself after contracting e to v 1 .
Our purpose is to preserve the topological features of the scalar field defined on Σ while sim-

lifying the underlying mesh. This translates into maintaining the Forman gradient and, thus, the
ritical simplices and their connectivity. To this aim, we apply the gradient-aware condition [46].
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:9

Fig. 4. Two possible gradient configurations and corresponding updates after contracting edge {v 1 , v 2 } (in

red) to v 1 . Black arrows represent gradient pairs and red arrows represent contraction direction.

G

v

n

fi

t

t

f

e

t

e

W

c

o

w

p

F

t

e

o

a

t

6

I

t

g

i

e

t

s

iven a mesh Σ endowed with a Forman gradient V , an edge e = {v 1 , v 2 } can be contracted to
ertex v 1 if and only if (1) all simplices to be removed (v 2 , e , and two triangles incident in e) are
ot critical, and (2) either v 1 or v 2 is paired with e in V . For instance, as shown in Figure 4 (a), it is
ne to contract edge e = {v 1 , v 2 }, since none of e , t 1 , t 2 , or v 2 is critical, and e is paired with v 1 .
A gradient-aware edge contraction requires, in addition to the modification of the mesh, also

he update of the Forman gradient V . When contracting edge e , two triangles t 1 and t 2 adjacent
o e are removed. The updates of V involve at most four triangles, which share an edge different
rom e with either t 1 or t 2 .
Since the updates are symmetric with respect to e , we only discuss the updates on the left part of

 , where edge e is considered as oriented from v 2 to v 1 . We denote the other two triangles adjacent
o t 1 as t 3 and t 4 and the vertex opposite to e in t 1 as v 3 . The updates on the left part need to
nsure that vertices v 1 , v 3 , edge {v 1 , v 3 }, and triangles t 3 and t 4 are still paired after simplification.
e know that edge e is paired with either v 1 or v 2 . Thus, if e is paired with v 2 , then, after the

ontraction, the pairing of v 1 does not change; otherwise, v 1 will be paired with the simplex paired
riginally to v 2 .
Now we consider edges {v 1 , v 3 } and {v 2 , v 3 }. Before the contraction, t 1 should have been paired
ith either {v 1 , v 3 } or {v 2 , v 3 }, since edge e was paired and t 1 was not a critical triangle. If t 1 was
aired with {v 1 , v 3 }, then {v 2 , v 3 } should have been paired either with one of its endpoints (see
igure 4 (a)), or with another triangle, t 4 (see Figure 4 (b)). In both cases, t 3 and t 4 are paired with
he same simplices after the contraction. After the removal of t 1 because of the edge contraction,
dge {v 1 , v 3 } is paired with the simplex originally paired with edge {v 2 , v 3 }, i.e., either with one
f its endpoints (see Figure 4 (a)), or with another triangle t 4 (see Figure 4 (b)). The same reasoning
pplies when t 1 was paired with { v 2 , v 3 } . The same update strategy is applied to the simplices on
he right of the edge e to maintain the topology of the discrete gradient [46].

 TOPOLOGY-AWARE SIMPLIFICATION ON TERRAIN TREES

n this section, we present a new topology-aware simplification algorithm developed on a Terrain
ree T to simplify a triangle mesh Σ. To define the terrain topology, this algorithm uses a Forman
radient V computed on Σ inside the Terrain tree, which is encoded as a bit vector using the same
ndexing of ΣT , resulting in a storage cost of one byte per triangle [70]. As an error metric for
dge contraction, we use the QEM [36]. Appendix A.1 provides a comprehensive explanation of
he process for computing the initial error quadrics associated with each vertex v , representing a
et of planes incident in v .
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:10 Y. Song et al.

a

e

q

v

e

t

o

f

o

f

e

T

s

o

r
(

ν

t

o

a

t

c

1

i

f

t

i

i

e

i

c

d

u

A

To simplify Σ, all leaf blocks in T are visited through a depth-first traversal. Algorithm 1 provides
 pseudo-code description of the simplification procedure within a leaf block b in T . The cost of
ach edge e , which is the error introduced if e is contracted, is computed from the initial error
uadrics of its endpoints. In our implementation, edge e = {v 1 , v 2 } is contracted to either v 1 or
 2 depending on which vertex leads to the smallest cost for edge e . We consider e as a candidate

dge for leaf block b only if the vertex to be removed is contained in b , and the cost of e is lower
han a user-defined threshold ω. Edge e is an internal edge for b if also the other vertex of e is in b ;
therwise, e is a cross edge .
For each leaf block b , the algorithm performs the following steps:

(1) Extract the Vertex-Triangle (VT) relations for the vertices in b (row 1): The VT relation for
a vertex v in b is defined as the set of triangles incident in v .

(2) Build a priority queue Q of candidate edges (row 3): The edges in the queue are sorted in
ascending order based on their costs.

(3) Simplify candidate edges (rows 4–21): For each candidate edge e , the three validity con-
ditions discussed before are checked. If these conditions are satisfied, then edge e is con-
tracted, and the Forman gradient updated together with the Terrain tree. This step is de-
scribed in details below.

The link, fold, and gradient-aware conditions are checked for each edge e = {v 1 , v 2 } extracted
rom Q . These checks require the VT relations for v 1 and v 2 and the Edge-Triangle (ET) relation

f e (rows 9–11). ET (e) consists of the two triangles sharing edge e . If e is an internal edge, then
unction get_vt directly retrieves V T (ν1) and V T (ν2) from array local_vts . Conversely, if e is a cross
dge, and v 1 is contained by another leaf block b 1 , then get_vt must extract the VT relations of b 1 .
o optimize this latter step, we use an auxiliary Least Recent Used (LRU) cache C for encoding a
ubset of the extracted VT relations. When v 1 is in block b 1 , get_vt looks first if the VT relations
f block b 1 are in C . If such relations are not in C , then they are extracted and saved to C . The ET
elation of a candidate edge e is extracted by traversing V T (v 1) and finding triangles incident to e
 get_et procedure at row 11). To check the link condition (row 12), the set of vertices adjacent to

1 or ν2 are extracted on the fly in link_condition by traversing the VT relations of ν1 and ν2 .
If e satisfies all three conditions, then it is contracted to its optimized position (i.e., v 1) by func-

ion contract (row 15). This procedure takes as input edge e , the VT relation of ν2 , the ET relation
f e , the array of vertex error quadrics E , and TIN Σ. It removes vertex ν2 as well as the two triangles
djacent to e . In each remaining triangle in V T (ν2), it replaces ν2 with ν1 . After the contraction,
he error quadric of v 1 is updated by adding the quadric of ν2 to it. The pseudo-code of function
ontract is in Algorithm 3 (see Appendix A.2).
After the contraction, both the Forman gradient V and the Terrain tree T are updated (rows

6–18). The update of gradient V (update_gradient procedure at row 16) follows the method
ntroduced in Section 5 . This involves up to four triangles adjacent to triangles in ET (e) (see Figure 4
or an example). Such triangles are retrieved by using the corresponding VT and ET relations.
The update of T is performed by function update_index (row 17). If e is an internal edge , then

he current leaf block b is updated by removing the index of ν2 and the indexes of the triangles
ncident in e . If e is a cross edge and ν1 is indexed in leaf block b 1 , then both b and b 1 are updated
n a similar way. In this latter case, the indexes of those triangles that were incident in ν2 but not
ncoded in b 1 are also added to b 1 . The VT relation of vertex ν1 is updated by adding the triangles
n the VT relation of ν2 and by removing the triangles adjacent to e (row 18).
Since the error quadric of v 1 is updated after the contraction of e , the costs of all edges

urrently incident in v 1 need to be updated accordingly (row 19). A local auxiliary array up-

ated_edges which is initialized in row 4, is used to keep track of the updated edge costs. All
pdated edges are added to Q again. Note that we do not update the costs of edges in Q directly,
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:11

ALGORITHM 1 : leaf_simplification (b , Σ, V , E , ω, C , b R

)

Input:

b: current leaf block
Σ: the TIN

V : the Forman gradient on Σ
E: the array of vertex error quadrics
ω: the edge cost threshold
C: LRU cache
b R

: root block of the hierarchy
// Extract the local V T relations for the vertices in b

1: l ocal _ vts ← local_vt (b , ΣT)
// Create an array for encoding the updated edges costs

2: updated_edges ← []
// Create a priority queue of candidate edges

3: Q ← candidate_edges (b , ΣT , E , ω)
4: while Q � ∅ do

5: e ← deqeue (Q) // e = {ν1 , ν2 }
// Check if e has been updated and if its cost is updated

6: if e ∈ updated_edges and not same_cost (e , updated_edges) then

7: skip e // If its cost is not updated, then skip this edge
8: end if

9: V T (ν1) ← get_vt (ν1 , l ocal _ vts , C , b R

, Σ)
10: V T (ν2) ← get_vt (ν2 , l ocal _ vts , C , b R

, Σ)
11: ET (e) ← get_et (e , V T (ν1))

// Check three conditions introduced in Section 5 for e
12: if link_condition (e , V T (ν1), V T (ν2), ET (e))
13: and fold_condition (e , V T (ν2), ET (e))
14: and gradient_condition (e , V T (ν2), ET (e), V) then

15: contract (e , V T (ν2), ET (e), E , Σ)
16: update_gradient (e , V T (ν1), V T (ν2), ET (e), V)
17: update_index (e , V T (ν2), b , b R

)
// Update the VT relation of ν1

18: VT(ν1) ← V T (ν1) ∪ V T (ν2) - ET (e)
// Update the cost of edges, and add these edges to Q

19: updated_edges ← update_costs (ν1 , V T (ν1), E , Q)
20: end if

21: end while

22: C ← C ∪ l ocal _ vts // Add l ocal _ vts to the LRU-cache

a

o

u

t

7

I

i
nd, therefore, each time we process an edge e from Q , we check if e has been updated in previ-
us contractions (row 6). If e has been updated and the cost stored with e is not the one stored in
pdated_edges , then we discard e and process the next edge in Q .
Finally, after the simplification of leaf block b , the l ocal _ vts array, containing the updated vertex-

riangle relations, is inserted into C (row 22).

 PARALLEL TOPOLOGY-AWARE EDGE CONTRACTION ON TERRAIN TREES

n this section, we propose a parallel algorithm that extends and enhances the algorithm described
n Section 6 . In Section 7.1 , we introduce the design of this parallel algorithm. The main challenge
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:12 Y. Song et al.

Fig. 5. (a) Example of 1-neighborhood (vertices in green) and 2-neighborhood (vertices in green and vertices

in blue) of a vertex v. (b) Example of a vertex v and two vertices in its 2-neighborhood. (c) Example of edge

contraction on edge e = {v 1 , v 2 } (in red), where v 2 , t 1 , and t 2 are removed by the contraction. Gradient pairing

information of cyan triangles may be modified due to the contraction of e . Red vertices are reconnected to

v 1 after the contraction during which v 2 is removed.

o

v

a

7

T

p

p

t

w

l

t

p

i

b

p

b

b

(

e

e

A

f parallel mesh simplification is to prevent conflicts that may occur if two threads modify the same
ertex or triangle concurrently. In Section 7.2 , we discuss why the proposed parallel algorithm can
void such conflicts.

.1 Parallel Edge Contraction Algorithm

he hierarchical domain decomposition of Terrain trees makes them well suited for parallel com-
utation, since different leaf blocks can be processed at the same time. The key idea behind our
arallel simplification strategy is to assign each leaf block to a single thread from a set of available
hreads. To avoid conflicts between two different threads, we have devised a leaf locking strategy ,
hich is based on the definition of conflict block . A leaf block b 0 is called a conflict block for another

eaf block b 1 if there exists a cross edge e = {v 1 , v 2 }, where v 1 is in b 0 and v 2 is in b 1 . Clearly, in
his case, b 1 is a conflict block for b 0 as well.
There are four possible statuses a leaf block b may have (1) active , (2) default , (3) conflict , and (4)

rocessed . A leaf block b is active when it is being processed. A leaf block b is in the default status
f b is neither being processed nor a conflict block of any active block. A conflict block of an active

lock is set to the conflict status. When the simplification process is completed, block b is set to the
rocessed status. A leaf block b can be processed only if its status is default and none of its conflict
locks has conflict status.
The parallel simplification strategy performs the following steps:

(1) Generating auxiliary data structures: The list of all conflict blocks of a leaf block b , denoted
as Cl(b), is computed by traversing all triangles encoded in b . Given a triangle t with at
least one vertex in b , we check if the other two vertices of t are also in b . If a vertex v of t
is not in b , then we locate the block b i containing v and add b i to Cl(b).

(2) Computing the initial error quadrics: The initial error quadric of each vertex is computed
using a parallel version of the algorithm introduced in Appendix A.1 .

(3) Simplification: Each leaf block is simplified by a thread following the steps described in
Algorithm 1 with one difference. Each thread needs to update the lists of conflict blocks
which change due to the undergoing simplifications, as described below.

Assume a cross edge e = {v 1 , v 2 } is contracted to vertex v 1 , with v 1 in block b 1 and v 2 in block
 2 . Note that e is simplified only when b 2 is an active block. Vertices adjacent to v 2 , but not to v 1

for instance, red vertices in Figure 5 (c)), are connected to v 1 after contracting edge e to v 1 . For
xample, if vertex v 6 is not encoded in either b 1 or b 2 , then the edge connecting v 6 and v 1 is a cross
dge and may create a new conflict block for b 1 .
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:13

l

w

t

u

t

a

s

b

s

f

t

r

a

t

t

t

s

S

p

p

a

7

W

b

v
a
i

1

t

t

b

t

a

n

v

w

c

c

b

b

t
To update the list of conflict blocks after contracting a cross edge, we modify the
ink_condition procedure (row 12 of Algorithm 1) to extract also an auxiliary array vv outer ,
hich encodes the vertices adjacent to v 2 that are not contained in either b 1 or b 2 . After the con-
ract procedure (row 15 of Algorithm 1), we add a step for updating the conflict block list. To
pdate Cl(b 1) after the contraction of e , we find, for each v

′ in vv outer , the leaf block b
′ that con-

ains v

′ , and add it to Cl(b 1) if it has not been added yet. Similarly, b 1 is added to Cl(b ′) when b ′ is
dded to Cl(b 1). The update of Cl(b 1) and Cl(b ′), when processing b 2 , does not affect the concurrent
implification of other blocks. Thanks to the definition of conflict block, both b ′ and b 1 are conflict
locks of b 2 and, thus, they cannot be active when b 2 is active. Also, being b ′ and b 1 in a conflict

tate, none of leaf blocks in their conflict lists can have an active state.
In contrast to the sequential algorithm, the parallel one does not use a global LRU cache C

or storing VT relations, since it could raise resource conflicts when multiple threads access C at
he same time. Instead, a local cache at a thread level provides a safe way to encode just the VT
elations of blocks in Cl(b) when processing b . Similarly to the sequential case, the local cache is
ccessed and updated only when simplifying a cross edge . Once the simplification of b is finished,
he local cache is discarded. In Section 7.2 , we show why the local caching strategy is thread-safe
hanks to the leaf locking strategy.
We use OpenMP [17] to process multiple leaf blocks in parallel in a Terrain tree. It is notewor-

hy that, while each step makes use of multi-threading internally, the three steps are organized
equentially, i.e., each step of the pipeline is executed only when the previous one is completed.
ince the computations performed in steps 1 and 2 are entirely local to a leaf block, they can be
rocessed in a perfectly parallel manner. In step 3, conflicts among threads can prevent the sim-
lification of a leaf block and, thus, the list of the blocks is traversed multiple times until all blocks
re simplified.

.2 Discussion on the Leaf Locking Strategy

e prove here that the leaf locking strategy introduced in Section 7.1 ensures that no conflict occurs
etween threads during a parallel simplification process. Given a vertex v in Σ, we call the set of
ertices adjacent to v in Σ as the 1-neighborhood of v . We then define the 2-neighborhood of v
s the set of vertices that share an edge with any vertex in the 1-neighborhood of v excluding v
tself. By this definition, the 1-neighborhood of v is a subset of its 2-neighborhood. An example of
-neighborhood and 2-neighborhood of v in Σ is displayed in Figure 5 (a).
Let us consider an edge e = {v 1 , v 2 } being contracted to v 1 on Σ. We need to ensure that (1)

he check on e is not affected by other threads; (2) the update of Σ, the Forman gradient V , and
he vertex error quadrics after contracting e do not conflict with any update operations started
y other threads; and (3) the local cache does not contain conflicting information with other
hreads.
When a vertex v in leaf block b 1 is to be removed in an edge contraction operation in the par-

llel simplification, from the definition of 2-neighborhood, we know that a vertex v

′ in the 2-
eighborhood either is adjacent to v (e.g., v 1 in Figure 5 (b)) or has a sharing adjacent vertex with
(e.g., v 2 in Figure 5 (b)). We first consider the case that a vertex v 2 shares an adjacent vertex v 1

ith v , with two edges e 1 = { v, v 1 } and e 2 = { v 1 , v 2 } between v and v 2 . There are three possible
ases for e 1 and e 2 : (1) both are internal edges, (2) one is an internal edge and the other one is a
ross edge, and (3) both are cross edges. In case (1), v and v 2 belong to the same block and cannot
e removed at the same time. In case (2), v 2 belongs to a conflict block of b, while in case (3), v 2

elongs to a block b 2 that shares a conflict block b 1 with b as shown in Figure 5 (b). In both cases,
he block encoding v 2 cannot be processed when b is in status active according to the definition of
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:14 Y. Song et al.

l

v

i

c

u

t

b

c

b

o

F

p

d

t

f

i

2

fi

T

t

l

T

b

m

t

e

Σ

e

2

t

w

h

F

e

o

T

e

A

eaf locking strategy. Recall that for a leaf block b, an edge is only considered as candidate if the
ertex to be removed is encoded in b. Therefore, v 2 cannot be removed when the block encoding
s not set to active .
Similarly, when v

′ is adjacent to v , v

′ is either in b or in a conflict block of b. In both cases, v

′

annot be considered in an edge contraction operation. Therefore, when the parallel simplification
ses the leaf locking strategy, we have the following:

Proposition 7.1. Any vertex belonging to the 2-neighborhood of v 2 cannot be removed by any

hread while edge e = {v 1 , v 2 } is being processed and v 2 is the vertex to be removed.

From Proposition 7.1 , we have that no triangle in the VT relations of v 1 or v 2 can be modified
y other threads. Therefore the validation of link and fold conditions, and the update of Σ after
ontracting e cannot be affected by other threads. Similarly, the error quadric of vertex v 1 can only
e updated by a single thread; otherwise, the other vertex being removed is in the 1-neighborhood
f v 1 and in the 2-neighborhood of v 2 .
We discuss now how to check and update the Forman gradient V during parallel simplification.

rom the description of the gradient-aware edge contraction in Section 5 , we have the following
roposition:

Proposition 7.2. The gradient pairing information associated with a triangle t can be modified

uring the contraction of edge e only if t is adjacent to a triangle incident in e , i.e., t is adjacent to a

riangle to be removed during the contraction of e .

The validation of the gradient condition involves only the triangles in VT(v 2). It is straight-
orward to prove that if another edge contraction operation is modifying the gradient pairing
nformation of a triangle in VT(v 2), then the vertex to be removed by that operation is in the
-neighborhood of v 2 and, thus, breaks the leaf locking strategy condition.
Now we prove that the gradient pairing information associated with a triangle cannot be modi-

ed by two threads at the same time. Suppose triangle t 3 in Figure 5 (c) is modified by two threads
 h 1 and T h 2 at the same time and edge e is being removed by T h 1 . From Proposition 7.2 , we know
hat t 3 should be adjacent to two triangles being removed by T h 1 and T h 2 , respectively. Without
oss of generality, we assume that t 5 (pink triangle in Figure 5 (c)) is a triangle to be removed by
 h 2 . Then, either { v 4 , v 5 } or { v 3 , v 5 } is the edge to be removed by T h 2 . In both cases, the vertex to
e removed is in the 2-neighborhood of v 2 , which violates Proposition 7.1 .
We have proved that the leaf locking strategy ensures that the validation of three conditions and
ost of the update within an active block will not be affected by other threads. But it is possible

hat the cost of one edge is updated by different threads at the same time. Let us consider an
dge e 1 = {v 1 , v 2 } being contracted to v 2 and another edge e 2 = {v 3 , v 4 } being contracted to v 3 on
. If v 2 and v 3 are connected by an edge e 0 (see Figure 6 (a)), then it is still possible that e 1 and
 2 are contracted by different threads at the same time, since v 1 and v 4 are not in each other’s
-neighborhood. Assume that e 1 is contracted on T h 1 and e 2 is contracted on T h 2 . If T h 1 updates
he error quadric of v 2 and the cost of e 0 before error quadric of v 3 is updated on T h 2 , then T h 2

ill have a different updated cost of e 0 , since it calculates with two updated error quadrics.
But such a conflict will not affect the simplification on either thread, since this case can only

appen when e 0 , e 1 , and e 2 are all cross edges (see Figure 6 (b)). Otherwise, like the example in
igure 6 (c), leaf blocks encoding v 1 and v 4 must be conflict block of each other and so that e 1 and
 2 cannot be simplified at the same time. When all three edges are cross edges, neither endpoints
f e 0 is encoded in the same block as v 1 or v 4 , and, thus, it is not a candidate edge in b 1 or b 4 .
herefore, even if the cost of an edge is updated by different threads, such edge is not a candidate
dge of current active blocks (i.e., b 1 and b 4) and will not cause a conflict between these threads.
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:15

Fig. 6. (a) Example of a possible conflict occurring when two edges are contracted at the same time (triangles

are not displayed for clarity). Edge e 1 = {v 1 , v 2 } is contracted to v 2 and edge e 2 = {v 3 , v 4 } is contracted to

v 3 . (b) A case that blocks encoding v 1 and v 4 can be active at the same time under the leaf locking strategy

(c) An invalid case in which v 1 and v 4 cannot be removed at the same time.

b

e

T

8

A

o

r

t

n

p

b

b

d

S

(

t

b

u

n

u

s

i

f

a

a

The proof of the thread safety of the local caching strategy is straightforward. Given a leaf
lock b 1 , the local cache of b 1 only encodes the VT relations of its conflict blocks. If b 2 is one block
ncoded in the local cache of b 1 , then all conflict blocks of b 2 except for b 1 itself, cannot be active .
herefore, the information of b 2 is encoded only in the local cache of the thread that simplifies b 1 .

 TERRAIN TREE UPDATE AFTER SIMPLIFICATION

fter the simplification, the Terrain tree is no longer as compact or efficient. Since the number
f vertices within each leaf block is reduced, the original tree structure becomes too loose with
espect to the simplices encoded in the simplified mesh. Besides, while initially, each block b in
he Terrain tree encodes vertices that fall in b and triangles intersecting with b , this property is
ot guaranteed during the simplification.
As introduced in Section 6 , when an edge e = {v 1 , v 2 } is contracted to v 1 , the update_index

rocedure updates related blocks by removing v 2 and adding triangles that are incident to v 2 to the
lock in which v 1 falls. However, this procedure does not update the triangle lists of each leaf block
when the intersection relation between a triangle and b is changed after the contraction. This
esign decision is motivated by the fact that (i) removing an index from ranges encoded through
RE and performing the triangle-in-block intersection tests are time-consuming operations, and
ii) keeping this outdated information does not affect the correctness of the simplification opera-
ion. Additionally, when blocks are merged, duplicated triangles in the merged triangle list must
e removed. Therefore, after the simplification, the triangle list of each leaf block needs to be
pdated.
Last, after the simplification and merging, the vertex list and triangle list of each block may

ot be accurate, since they may contain vertices and triangles that have been removed. In the
pdate_index procedure, the removed vertices and triangles are flagged as deleted in the corre-
ponding global vertex and triangle arrays. Although one can check the global arrays to determine
f a vertex or a triangle in the local arrays of a block b is removed or not, additional time for per-
orming these checks and additional memory for storing this information are required, ultimately
ffecting the efficiency of a Terrain tree.
Considering the above factors, a post-processing step is performed to update the Terrain tree Σ

fter the simplification of the encoded mesh Σ. This post-processing involves the following steps:

(1) update the subdivision of T based on the remaining vertices;
(2) reindex the vertices in Σ and encode the vertex list within each leaf block through SRE;
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:16 Y. Song et al.

ALGORITHM 2 : update_triangle_lists (b , l b)

Input:

b: the current block, can be either leaf block or internal block. b t is its original triangle list
l b : label of the current block with respect to its parent

Output:

m: a hash table stores triangles that need to be checked against other blocks
1: if b is leaf block then // Leaf block case
2: h t ← { } // Create a hash set storing the triangles that should be kept in b t
3: for triangle t in b t do

4: if t ∈ h t or intersect (t, b) == False then // t is a duplicate or has no intersection with

b

5: continue

6: else

7: add t to h t // The current triangle should be kept
8: n ← vertex_in_block (t , b) // Count the number of vertices of t in block b
9: if n � 3 then // If t is not fully contained by b

10: add (t , l b) to m

11: end if

12: end if

13: end for

14: b t ← h t // Set the triangle list of current block to h t

15: else // Internal block case
16: m I ← { } // Create a hash table to store the triangles returned by its four sub-blocks
17: for i ← get_children (b) do

18: c ← get_child (b , i) // Get the i-th children of b
19: add update_triangle_lists(c , i) to m I // Merge the results to m I

20: end for

21: for t i in get_keys (m I) do

22: n ← vertex_in_block (t i , b)
23: if n � 3 then

24: add l b to m[t i]
25: end if

26: for i ← get_children (b) do

27: c ← get_child (b , i)
// If t i has not been checked against the sub-block c and it intersects with c

28: if i � m I [t i] and intersect (t i , c) == True then

29: insert_triangle (t i , c) // Insert t i to a tree in which c serves as the root block
30: end if

31: end for

32: end for

33: end if

34: return m

A

(3) check intersections between triangles and blocks and update the triangle list of each block
in the new subdivision;

(4) reindex the triangles in Σ and encode the triangle list within each leaf block through
SRE.
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:17

t

u

o

o

T

f

t

o

l

n

m

A

d

h

3

t

b

p

p

c

i

d

b

c

(

a
w

S
t

b

i

t

a

o

b

w

p

t

9

I

p
In step (2) and step (4), the vertex and triangle lists of each block are encoded through SRE again
o keep the Terrain tree compact. These steps are performed in the same way as the procedures
sed during the initial generation of the Terrain tree [27]. In the following, we describe the details
f step (1) and step (3).
Since the PR Terrain tree is used in our simplification, the nested subdivision of T depends solely

n the vertices in Σ. Let us assume the capacity of T is kv in step (1). To update the subdivision of
 , we visit T through a depth-first-traversal. During the traversal, if an internal block b I contains
ewer than kv vertices, then all of its sub-blocks are merged and b I becomes a leaf block. After this,
he resulting subdivision matches the one obtained when we generate a new PR-Terrain tree based
n the vertices of the simplified mesh. When merging blocks, both the triangle lists and the vertex
ists of these leaves are merged. Since one vertex can only be indexed by one leaf block, there is
eed to remove duplicates from the merged vertex list. After this step, duplicates may exist in the
erged triangle list, but they will be removed in step (3).
In step (3), function update_triangle_lists updates the triangle list of each leaf block.
ll blocks in T are visited again through a depth-first traversal. Given a block b , up-
ate_triangle_lists takes b and its label with respect to its parent block as inputs and returns a
ash table m storing triangles in b that intersect with other blocks. The value of l b can be 0, 1, 2, or
, indicating the position of b in the child list of its parent. The key in m is the index of a triangle
hat needs to be checked against other blocks and the corresponding value is the input l b .
When b is a leaf block, each triangle t in the triangle list of b is checked to understand if t should

e kept in the local list of b and if t is fully within b . If t is not entirely in b , then it is passed to the
arent block of b to be checked in the neighborhood of b . When b is an internal block, triangles
assed from each of its children are checked to understand if they intersect with the other three
hildren of b and if they are fully within b . Similarly to the leaf block case, a triangle partially
n b is passed to the parent block of b to be checked again. Algorithm 2 provides a pseudo-code
escription of the algorithm to update the triangle list of a block b .
When the current block b is a leaf block (rows 1–14), a hash set h t is used to store triangles to

e kept in b and to avoid duplicates. For each triangle t in the original triangle list b t of b , we first
heck if t is in h t to understand if it is a duplicate and then we check if t has an intersection with b

row 4, intersect procedure). t is added to the new triangle list of b , i.e., h t (row 7), only if it is not
lready in h t and it intersects b . vertex_in_block procedure counts the number of vertices of t
ithin block b , which is denoted as n (row 8). Since the vertex index range of b is encoded through
RE [30], checking if a vertex v is in b can be done in constant time by comparing the index of v
o the pair of numbers representing the vertex range of b . If n equals 3, then t is fully contained by
 . Otherwise, t is partially within b and it should be checked against other blocks. The pair (t , l b)
s then added to m (rows 9–11). The triangle list of b is updated to h t (row 14).
When the current block b is an internal block (rows 15–32), for each child b i of b , the triangles

o be checked against other children are collected through function update_triangle_lists and
dded to a local hash table m I (rows 17–20). Given a triangle t in m I , the value of m I [t] is a list
f sub-blocks of b that have t in their hash tables. The intersection relations between these sub-
locks and t are known, and, thus, they are not checked against t again. For each triangle t in m I ,
e check first if t partially overlaps b and, if so, then the pair (t , l b) is added to m and passed to the
arent of b (rows 22–25). Besides, if t intersects with a sub-block c of b and c is not in m I [t], then
 is inserted into the sub-tree rooted in c (rows 28–30, insert_triangle procedure).

 TERRAIN MESH EVALUATION

n this section, we discuss how we evaluate the quality of meshes obtained from the simplification
rocess. A simplified mesh is an approximation of the original mesh, and therefore it is usually
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:18 Y. Song et al.

e

e

d

t

s

a

p

a
d

b

d

m

C

i

a

t

m

m

t

t

a

i

a

e

t

s

i

p

s

p

w

s

o

i

t

b

g

a

t

a

d

A

valuated based on the approximation error with respect to the original mesh. The approximation

rror can be measured by perceptually based metrics [48], which evaluate the visual appearance
ifference between two meshes or by geometric-based metrics [64]. Visual metrics are usually used
o evaluate meshes for visualization and rendering purposes instead of terrain analysis. Such mea-
ures are computationally complex, since rendering methods and lighting environments should
lso be considered. Therefore, in most non-rendering applications, geometric measures are often
referred for evaluating approximation error as they are more computationally efficient [64].
One straightforward geometric measure of error is the distance between the simplified mesh

nd the original mesh. Many common geometric measures rely on the concept of the Hausdorff

istance [1 , 12], which evaluates the distance between two surfaces when no distance direction has
een set. When assessing simplified TINs, measures based on vertical distances, i.e., the elevation
ifference, between meshes are also widely used [10 , 73 , 74]. Two commonly used measures are the
aximum vertical distance and the Root Mean Squared Error (RMSE) of the vertical distance.
ompared to the Hausdorff distance, the vertical distance is easier to calculate and more significant
n evaluating terrain models. Since it is computationally intensive to obtain vertical distances of
ll points on the two meshes, we calculate the vertical distances of all vertices in the original mesh
o the simplified mesh. The maximum distance and RMSE of such vertical distances are used to
easure the approximation error of the simplified meshes.
In addition to the approximation error, another important metric to evaluate a simplified terrain
esh is the shape of triangles. Triangle meshes representing terrain surfaces are usually generated

hrough Delaunay triangulation [39]. A triangle t in a mesh Σ satisfies the circumcircle property if
he circumcircle of t does not contain other vertices of Σ in its interior. A triangulation where
ll triangles satisfy the circumcircle property is a Delaunay triangulation. Delaunay triangulation
s favored when generating terrain meshes, because it avoids creating triangles with very small
ngles, which deteriorate the interpolation result on the terrain mesh. A terrain mesh is consid-
red to have good triangle shape quality when its projection on the horizontal plane is a Delaunay
riangulation. But evaluation metrics based on the Delaunay triangulation definition are very sen-
itive to mesh modification, since contracting a single edge in a Delaunay triangulation may make
t invalid. Moreover, these metrics evaluate the global triangle shape quality of a mesh and do not
rovide a quantitative evaluation of a single triangle. Therefore, quantitative triangle shape mea-
ures are more widely used in mesh evaluation. In this article, we use the triangle shape measure
roposed by Guéziec [38],

γ =
4
√

3 δ

l 2 1 + l
2
2 + l

2
3

, (1)

here δ is the area of the triangle and l 1 , l 2 , and l 3 are the lengths of three edges, respectively. The
hape quality of a triangle t ranges from 1 (for an equilateral triangle) to 0 (when all three vertices
f t are collinear).
Rather than solely focusing on geometric information, some applications, such as nautical chart-

ng [66] and tree segmentation [72], find it more beneficial to preserve high-level information about
errain structure. One example is topographic information such as a terrain’s peaks, passes, and
asins, which correspond to maxima, saddles, and minima. However, standard simplification al-
orithms can disrupt topological information in an uncontrolled manner. That is, a simplification
lgorithm can remove critical simplices, introduce new critical simplices, or change the connec-
ivity of critical simplices. Therefore, it is important to evaluate not only the geometric quality of
 simplified mesh but also how much a simplification process affects the mesh topology.
To effectively and efficiently compare the topological information of two terrains, a topological

escriptor and a distance function are required. As introduced in Section 2 , one of the most popular
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:19

t

c

c

m

o

d

s

t

w

m

i

s

t

i

l

b

n

p

1

I

r

m

t

e

t

p

A

A

f

f

t

l

m

c

M

g

a

T
opological descriptors is the persistence diagram [26]. Numerous algorithms have been defined to
ompute the persistence diagram by efficiently pairing points on an input scalar function [45].
For the sake of this work, it is important to notice that any change in the topology of a terrain

orresponds to a change in the persistence diagram in the form of disappearing, appearing, or
oving points. The major advantage provided by this descriptor is that it enables the measurement
f differences between two persistence diagrams by means of distances such as the bottleneck
istance [14], the Wasserstein distance [15], or the sliced Wasserstein distance [5].
In this work, we use the sliced Wasserstein distance to measure the distance between two per-

istence diagrams, because faster to compute [5]. Formally, the qth Wasserstein distance between
wo persistence diagrams X and Y [15] is defined as

W q (X , Y) =
[

inf
f : X→ Y

∑
x ∈X

‖ x − f (x)‖ q
] 1 /q
, (2)

here f ranges over all bijections from X to Y . This distance measures the minimum total cost to
atch one persistence diagram X with another diagram Y . As computing all possible matchings

n a 2D space is computationally expensive, the sliced Wasserstein distance approach [5] involves
ampling this space by projecting all points onto a line passing through the origin. Subsequently,
he Wasserstein distance is calculated in one dimension. In practice, the sliced Wasserstein distance
s obtained by computing the one-dimensional Wasserstein distances with respect to a group of
ines and then getting the average of these distances.
We expect that using the topology-aware simplification method, the sliced Wasserstein distance

etween the simplified and the original mesh is zero. This is because the simplification process does
ot remove, add, or move critical simplices, thereby resulting in no change in the corresponding
ersistence diagram.

0 EXPERIMENTAL RESULTS

n this section, we evaluate the sequential and parallel topology-aware terrain simplification algo-
ithms from three aspects: computing performance, compression rate, and the quality of simplified
eshes. We evaluate both algorithms by comparing them to the topology-aware simplification on

he most compact triangle-based data structure for meshes.
In Section 10.1 , we evaluate the computing performance of both algorithms. In Section 10.2 , we

valuate the compression rate, defined as the ratio between the number of removed vertices and
he number of vertices in the original mesh. In Section 10.3 , we evaluate the quality of the sim-
lified meshes by considering triangle shape quality, approximation error, and topological quality.
n optimization strategy to improve output mesh quality is raised and evaluated in Section 10.4 .
dditionally, we discuss how the selection of leaf block capacity for Terrain tree generation af-
ects the output mesh quality in Section 10.5 . Note that the time measurements reported in the
ollowing experiments represent the elapsed time.
All experiments are performed on a dual Intel Xeon E5-2630 v4 @2.20 GHz CPU (20 cores in

otal) and 64 GB of RAM. A total of six TINs, generated from raw point clouds using the CGAL

ibrary [8], are used in our comparisons. The number of vertices per TIN varies from 25 to 113
illion (see Table 1). Molokai is a dataset consisting of both hydrographic and topographic point
loud data provided by NOAA National Centers for Environmental Information [55]. Great Smokey

ountains , Canyon Lake , Yosemite Rim Fire , Dragons Back Ridge , and Moscow Mountain , are topo-
raphic LiDAR point clouds from the OpenTopography repository [57]. All six datasets are publicly
vailable and can be accessed either from the NOAA data portal or the OpenTopography website.
he source code of the Terrain trees-based simplification algorithm is available in Reference [67].
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:20 Y. Song et al.

Table 1. Overview of Experimental Datasets

Molokai
Great Smokey
Mountains

Canyon

Lake
Yosemite
Rim Fire

Dragons
Back Ridge

Moscow

Mountain

| ΣV | 25M 34M 49M 78M 91M 113M

| ΣT | 50M 68M 98M 155M 182M 226M

For each terrain, the number of vertices | ΣV | and triangles | ΣT | are listed.

Table 2. Time T (in Minutes) and Peak Memory Usage M (in Gigabytes) of the Simplification on the IA

Data Structure and the Terrain Tree (TT) when using Different Cost Threshold ω

Molokai Great Smokey Mountain Canyon Lake

ω Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

IA TT IA TT IA TT IA TT IA TT IA TT IA TT IA TT IA TT

T 13.6 10.5 21.6 13.2 31.8 17.4 15.0 15.0 26.7 20.5 44.3 23 39.4 28.5 79.2 36.1 96.8 39.3

M 17.5 12.7 18.7 12.7 20.0 12.7 23.7 17.2 25.5 17.2 27.2 17.2 34.2 24.6 36.9 24.6 39.2 24.6

Q1 , Q2 , and Q3 represent the first, second, and third quartile edge costs of each dataset, respectively. The best performance
value is denoted in bold and blue.

1

I

a

p

p

[

s

t

l

e

w

p
b

d

t

p

m

t

t

t

B

v

c

e

t

a

A

0.1 Performance Evaluation

n this subsection, we evaluate the performances of both the sequential and parallel topology-
ware terrain mesh simplification algorithms on the Terrain tree. In Section 10.1.1 , we compare the
erformance of the sequential topology-aware simplification on the Terrain trees against our im-
lementation on the most compact triangle-based data structure for meshes, the IA data structure
 58]. In Section 10.1.2 , we compare the performance of the sequential and parallel simplification
trategies implemented on the Terrain trees.
The generation of the Terrain tree we use in this article relies on a single parameter that defines

he maximum number of vertices allowed in each leaf block of the decomposition, known as the
eaf block capacity . Reference [27] introduced a strategy to select the suitable block capacity for
ach dataset. With the same strategy, we evaluate the computing performance of the simplification
hen different capacity values are used for each dataset. This process is elaborated upon in Ap-
endix A.3 . In the following, for each dataset, we use the capacity value showing the best tradeoff
etween simplification time and memory requirements.

10.1.1 Topology-aware Mesh Simplification on the Terrain Tree and IA Data Structure. The IA
ata structure encodes a vertex array, containing the coordinates of the vertices of the TIN plus
he elevation, and a triangle array that encodes, for each triangle t , the indexes to its three vertices
lus the indexes in the triangle array of the three triangles sharing an edge with t . In our imple-
entation [28], we use an enhanced version that also encodes for each vertex v , the index of one

riangle incident in v . Such an optimization allows extracting all vertex-based relations in optimal
ime, i.e, in time linear in the size of the output, thereby significantly enhancing the efficiency of
he IA data structure during edge contractions.
Given a user-defined threshold ω, we simplify all contractible edges with a cost lower than ω.
ased on the initial error quadrics, we compute the costs for all edges in Σ and use the quartile
alues as three different thresholds for the simplification. Table 2 compares the time and memory
ost of the two methods when the cost threshold is set to the first, the second, and the third quartile
dge costs, referred to as Q1, Q2, and Q3, respectively. The result shows that the simplification on
he Terrain tree is always faster. When using a larger value of ω, the Terrain tree is at least twice
s fast as the IA data structure. Moreover, as ω increases, the memory requirements on the IA
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:21

Table 3. Time T (in Minutes) and Peak Memory Usage M (in Gigabytes) of Topology-aware Mesh

Simplification on the IA Data Structure, and on Sequential (seq.) and Parallel (para.) Versions

on Terrain Trees

Molokai
Great Smokey
Mountain

Canyon
Lake

Yosemite
Rim

Dragons Back
Ridge

Moscow
Mountain

IA
TT

IA
TT

IA
TT

IA
TT

IA
TT

IA
TT

seq. para. seq. para. seq. para. seq. para. seq. para. seq. para.

T 58.0 29.0 2.38 71.0 39.1 3.31 144.1 65.1 5.34 — 100.1 8.12 — 99.8 7.85 — 170.9 13.7

M

21.3 12.7 12.8 29.0 17.2 17.4 41.8 24.6 25.0 O.O.M. 39.0 39.6 O.O.M. 45.9 46.5 O.O.M. 57.4 58.0

The best performance value is denoted in bold and blue.

Fig. 7. (a) Speedup and (b) efficiency achieved by the parallel simplification algorithm when different num-

bers of threads are used.

d

t

w

i

a

T

p

m

p

t

a

s

i
ata structure also increase, whereas they remain stable on the Terrain tree. The difference in
he timings and memory requirements is even more relevant when edges are simplified in bulk
ithout setting a specific threshold for the edge cost.
Table 3 summarizes the results obtained when simplifying all contractible edges. The results

nclude the timings required for computing initial error quadrics and performing the topology-
ware simplification, as well as the memory footprint required by the simplification. On average,
errain trees use from 45% to 56% less time than the IA data structure. Additionally, the memory
eak on Terrain trees is approximately 41% less than that of the IA data structure. Due to the higher
emory requirements, only three of the test datasets can be simplified using the IA data structure.

10.1.2 Parallel Topology-aware Mesh Simplification on the Terrain Tree. We evaluate here the
erformance of the parallel topology-aware mesh simplification algorithm introduced in Sec-
ion 7.1 when using from 1 to 64 threads.
The speedup of a parallel algorithm is defined as S = T 1 /T N

, where T N

is the time for the parallel
lgorithm using N threads, T 1 is the time for the parallel algorithm using a single thread. Figure 7 (a)
hows the speedup achieved by the parallel simplification algorithm when the number of threads
ncreases. The approach scales well as long as the number of threads is lower than the number of
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:22 Y. Song et al.

Fig. 8. The time for updating Terrain trees when using two different methods: (1) new update algorithm and

(2) original reinsert method. Q1, Q2, and Q3 represent the result when the cost threshold is set to the first,

second, and third quartile edge costs of each dataset, respectively. All represents the result when contracting

all contractible edges without a cost threshold. The text labels on the boxes in figure indicate the time when

Q1 cost threshold is used and when All edges are contracted.

p

t

p

i

s

o

e

w

w

q

t

o

T

t

l

m

S

r

a

f

e

b

m

6

t

A

hysical cores (20 in our setup). Although the speedup continues to slightly increase with more
han 20 threads, it starts to decrease beyond 40.
The efficiency of the parallel algorithm is computed as E = S/N , where S is the speedup of the

arallel algorithm using N threads. Figure 7 (b) shows the efficiency results, revealing a reduction
n efficiency as the number of threads increases. This is common for parallel algorithms due to pos-
ible load imbalance and overheads during the computation. When using 20 threads, the efficiency
f the parallel simplification is 67% on all experimental datasets. With more than 20 threads, the
fficiency decreases faster. Considering these results, we observe that the best tradeoff is achieved
hen the thread number is equal to the number of available cores.
Comparing the parallel and sequential mesh simplifications using the same Terrain tree and
ith 20 threads, the parallel simplification strategy provides a 12 × speedup compared to the se-
uential strategy (see Table 3). Furthermore, despite processing multiple leaf blocks concurrently,
he parallel strategy maintains a stable memory footprint. On average, it uses only 1% more mem-
ry than the sequential algorithm. These results underscore the scalability and efficiency of the
errain tree representation, particularly when using shared-memory processing techniques.

10.1.3 Performance of Terrain Trees Update. In Section 8 , we introduced an algorithm to update
he triangle lists of leaf blocks after simplification. An alternative solution is to clear all triangle
ists and insert all triangles to the Terrain tree again. We call the former method as the update

ethod and the latter one the reinsert method.
In this subsection, we evaluate the update method by comparing it with the reinsert method.

ince the comparison shows the same result on all datasets, in this section, we show just the
esults from the Molokai dataset, the Great Smokey Mountains dataset, and the Canyon Lake dataset,
nd results on the other three datasets can be found in Appendix A.4 . Figure 8 shows the time
or updating the Terrain trees after simplifying the same mesh with different cost thresholds. As
xpected, the time for updating the Terrain tree decreases when more edges are contracted. This is
ecause both methods need to iterate through all triangles in the simplified mesh, thus requiring
ore time to update the tree if fewer triangles are removed.
We can see that the update method is always faster than the reinsert method, requiring

8–77% less time. When the cost threshold is set to the first, second, or third quartile edge costs,
he tree update time with the reinsert method is longer than the simplification time of the parallel
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:23

Fig. 9. The compression rates of three simplification methods IA, Seq-TT, and Para-TT when the cost thresh-

old is set to three edge cost quartiles (Q1, Q2, and Q3) and when all contractible edges are contracted (All).

s

w

m

b

b

1

B

d

e

t

F

T

t

q

a

m

c

t

i

t

b

t

w

s

o

t

t

1

I

i

t
implification, requiring 113–291% of the simplification time. Conversely, the tree update time
ith the update method ranges from 27–63% of the simplification time. Compared to the reinsert

ethod, the update method requires additional space to store triangles to be processed by other
locks. However, our experiments show that there is no significant difference in the memory costs
etween the two methods, and both require less memory than the simplification itself.

0.2 Compression Rate Evaluation

oth the Terrain tree and the IA data structure use a priority queue for sorting candidate edges, as
escribed in Algorithm 1 . The Terrain tree uses a local priority queue for candidate edges within
ach leaf block, while the IA data structure utilizes a global queue for storing all candidate edges of
he TIN. The use of different priority queues leads to different orders in which edges are contracted.
or clarity, we refer to the sequential topology-aware simplification on Terrain trees as the Seq-

T method, the parallel topology-aware simplification on Terrain trees as the Para-TT method,
he topology-aware simplification on the IA as the IA-based method. To assess the impact of local
ueues on the simplification process, we compare the compression rates of the Seq-TT, Para-TT,
nd IA-based methods while varying the quality control parameter.
Similarly to the experiments in Section 10.1 , we compute the compression rates of these three
ethods using different cost thresholds: the first quartile edge costs (Q1), the second quartile edge
osts (Q2), and the third quartile edge costs (Q3) in the original mesh. Additionally, we compute
he compression rate when we simplify all contractible edges, which we refer to as All . The results,
llustrated in Figure 9 , reveal that the difference in the compression rate between the Seq-TT and
he Para-TT methods is very small (less than 0.003%). When comparing the two methods to the IA-
ased method, the IA-based method always yields a slightly higher compression rate compared to
he two methods on the Terrain trees, ranging from 0.02 to 1.7%. This difference is almost negligible
hen the cost thresholds are small, while it becomes more evident when all contractible edges are
implified. The reason behind it is that the simplification process on the IA data structure relies
n a global queue to determine the contraction sequence, allowing it to always contract the edge
hat introduces the least error. However, the simplification process on the Terrain trees simplifies
he mesh block by block, so the sequence of contractions is not the global optimum.

0.3 Mesh Quality Evaluation After Simplification

n this subsection, we evaluate the quality of the simplified meshes by using the metrics introduced
n Section 9 . In Section 10.3.1 , we evaluate the triangle shape quality of the simplified mesh using
he triangle shape measure. In Section 10.3.2 , we evaluate the approximation error of a simplified
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:24 Y. Song et al.

Fig. 10. (a) The maximum vertical distance with respect to the elevation range of the original mesh and (b)

the RMSE of vertical distances between the original mesh and the simplified mesh obtained from Para-TT

and IA-based simplification.

m

u

t

m

i

t

p

f

p

t

t

T

t

d

w

p

q

t

q

o

h

t

g

m

s

b

v

A

esh by calculating the maximum and the RMSE of vertical distances. In Section 10.3.3 , we eval-
ate the topological quality of the simplified meshes by comparing the topology-aware method
o simplification algorithm does not take into account the gradient, which we refer to as the geo-

etric simplification method. The geometric simplification uses just the edge contraction operator
ntroduced in Section 5 . Specifically, we refer to the parallel geometric simplification on Terrain
rees as the Geometric-TT method.

10.3.1 Triangle Shape Measure. When evaluating the average triangle shape measure, our ex-
eriment shows that the average triangle shape measures of simplified meshes obtained from dif-
erent topology-aware simplification methods are quite similar. Therefore, the result is not dis-
layed here, and we refer interested readers to find the result in Appendix A.4 . When all con-
ractible edges are contracted, meshes simplified with the IA-based method have slightly better
riangle shape quality than those from the other two methods (around 0.35% better on average).
he Para-TT and the Seq-TT methods show comparable results. When the cost threshold is set
o Q2, meshes from three different methods have very similar shape quality, with less than 0.1%
ifference. These findings suggest that the local queues used by Terrain trees can lead to a slightly
orse triangle shape quality when the cost threshold is set to infinity or if it is very large. One
otential explanation for this is that the contraction of longer edges tends to deteriorate the shape
uality of a mesh, since adjacent edges are stretched more after updating the mesh. When the cost
hreshold is small, all three methods do not contract very long edges, so the difference in shape
uality is not evident. Conversely, when all contractible edges are contracted (i.e., the cost thresh-
ld is set to infinity), the simplification process on the Terrain trees may remove edges with very
igh costs in the early stage of the simplification if they are in the blocks that are visited early. On
he contrary, in the IA-based method, those edges are always contracted in the late stage, since a
lobal edge queue is used.

10.3.2 Approximation Error Evaluation. To evaluate the approximation error of the simplified
esh, we compute measures based on the vertical distances between the original mesh and the
implified mesh. We compare the Para-TT method and the IA-based method when the same num-
er of edges are contracted. The results from the sequential simplification on the Terrain trees are
ery similar to the parallel one. Figure 10 (a) and (b) show the maximum and the RMSE of vertical
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:25

Fig. 11. The sliced Wasserstein distance between the original mesh and the simplified mesh when the mesh

is simplified with the Geometric-TT method.

d

t

v

t

v

o

m

a

m

q

b

a

c

t

p

c

G

m

(

t

fi

b

s

p

s

c

t

t

t

fi

istances between the original mesh and the simplified mesh when 30% edges and 75% edges of
he original mesh are contracted. When 30% edges are contracted, the difference in the maximum
ertical distance between two methods is not evident. For the Great Smokey Mountains dataset,
he maximum distance on the Terrain trees is 6.5% more than that on the IA data structure. Con-
ersely, for the Canyon Lake dataset, we get the opposite result, where the maximum distance
f the Para-TT method is 12% less than that of the IA-based method. The RMSE of the Para-TT
ethod is around 1–2% less than that of the IA-based method, indicating a slightly better global
pproximation quality.
When 75% edges are contracted, the IA-based method produces meshes with 10–21% smaller
aximum distance and 3% smaller RMSE compared to the Terrain trees. The usage of the local
ueues in the Terrain trees changes the sequence of contractions, which leads to the difference in
oth the maximum vertical distance and the RMSE. However, this change is dataset dependent,
nd there is no significant quality difference between the two methods when fewer edges are
ontracted. Similarly to the change in the triangle shape measure, when more edges are contracted,
he Para-TT method is likely to contract high-cost edges in the earlier stage of the simplification
rocess, so the error increases faster than when using the IA-based method.

10.3.3 Topological Mesh Quality Evaluation. To evaluate how the topology of the mesh may
hange if the gradient condition is not considered, we remove all contractible edges with the
eometric-TT method. Then we evaluate the topological quality of the simplified meshes with two
etrics: (1) the sliced Wasserstein distance between the original mesh and the simplified mesh and

2) the change of critical simplices.
We use an open source program, Persim [60], for the calculation of the sliced Wasserstein dis-

ance. For each dataset, we extract the persistence diagrams of the original mesh and of the simpli-
ed mesh when all contractible edges are removed. Figure 11 shows the sliced Wasserstein distance
etween those two diagrams when the mesh is simplified with the geometric simplification. The
liced Wasserstein distance remains zero when meshes are simplified with topology-aware sim-
lification and is therefore not shown in the figure. This result aligns with our expectation, as
tated in Section 9 , that the critical simplices are preserved and the persistence diagram does not
hange during this process. As it can be noted with the sliced Wasserstein distance, the persis-
ence diagrams of different datasets have variable degrees of change when they are simplified by
he geometric method. This is because the geometric method does not consider the topology of
he terrain during the simplification, and such topology can drastically change during the simpli-
cation process.
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:26 Y. Song et al.

Fig. 12. The change in the number of critical simplices in two tested dataset when they are simplified with

the Geometric-TT method.

R

s

t

o

t

D

s

m

t

(

t

i

l

c

o

p

o

f

n

t

b

1

A

m

m

q

t

t

w

w

A

Among six datasets, it is noteworthy that the sliced Wasserstein distance of the Dragons Back

idge dataset is much smaller compared to the others. This happens since the percentage of critical
implices in this dataset is significantly lower, with only 0.05% of simplices being critical, compared
o other datasets, where 0.3–0.6% of simplices are critical. As a result, the change in the topology
f the Dragons Back Ridge dataset during geometric simplification is less evident.
We also evaluate how the number of critical simplices changes when the mesh is simplified by

he Geometric-TT method. In Figure 12 , we show the changes in the two larger datasets, i.e., the
ragons Back Ridge dataset and the Moscow Mountain dataset. The numbers of all types of critical
implices change significantly in both datasets. For the Dragons Back Ridge dataset, the numbers of
inima, saddles, and maxima increase around 33%. Conversely, for the Moscow Mountain dataset,

he numbers of minima, saddles, and maxima are reduced by 22%. The changes in other datasets
see figures in Appendix A.4) show a similar pattern as the Moscow Mountain dataset. Notably,
he Dragons Back Ridge dataset presents a unique case among the tested datasets, as it exhibits an
ncrease in the number of critical simplices after a Geometric-TT simplification. This deviation is
ikely caused by the same factor leading to its low sliced Wasserstein distance. The percentage of
ritical simplices in the original Dragons Back Ridge dataset was significantly lower compared to
ther datasets, indicating a relatively simple terrain topology. Consequently, the geometric sim-
lification introduces artificial irregularities or distortions to the terrain, resulting in an increase
f the number of critical simplices. In contrast, the geometric simplification removes significant
eatures from the terrain in other datasets.
These observations suggest that, when a mesh is simplified with the geometric method, the

umber of critical simplices in the terrain may either increase or decrease, depending on the terrain
opology. In contrast, the number of critical simplices remains constant when a mesh is simplified
y a topology-aware simplification.

0.4 Progressive Strategy for Improving Output Mesh Quality

s shown in the above experiments, the simplification on the Terrain trees sometimes produces
eshes with higher approximation errors and a lower compression rates compared to the IA-based
ethod, especially when the cost threshold is huge. This difference is mainly caused by the local
ueues used by the Terrain trees. To improve the geometric quality when the cost threshold is set
o a large value, we can use a progressive strategy to optimize the simplification on the Terrain
rees. Instead of simplifying the mesh with the cost threshold in one round, we can simplify it
ith several increasing cost thresholds. This optimization helps us to avoid contracting edges
ith high costs in the early stages of the simplification, which is the major cause of the quality
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:27

Fig. 13. The performance and quality evaluation of the parallel simplification on Terrain trees when a pro-

gressive optimization is applied to the Great Smokey Mountains dataset.

d

t

s

m

a

i

t

v

d

w

q

F

d

m

0

t

a

m

b

t

i

a

a
ifference between Terrain trees and IA-based methods. We employ a progressive strategy in both
he sequential (named Pro-TT) and parallel (named Pro-Para-TT) simplification methods. In this
ection, we use the Great Smokey Mountain dataset as an example to evaluate the Pro-Para-TT

ethod by comparing it with the parallel simplification on the Terrain trees (i.e., Para-TT method)
nd the IA-based method. The experiments on other datasets show similar results and are shown
n Appendix A.4 .
In the Pro-Para-TT method, we first simplify the mesh in four rounds using cost thresholds set

o the first quartile (Q1), second quartile (Q2), third quartile (Q3) of edges costs, and a very large
alue. In the fifth round, we remove all contractible edges remained in the mesh. Based on the
istribution of edge costs, we consider 1,000 to be sufficiently large to contract most normal edges
hile avoiding edges with abnormally high costs that could significantly deteriorate the mesh
uality. For the IA-based method and the Para-TT method, all contractible edges are contracted.
igure 13 shows the simplification time and quality of the simplified meshes using these three
ifferent methods.
The results show that the difference in compression rate between the Para-TT and the IA-based
ethods is reduced from 0.6% to 0.01% and the difference in average shape measure is reduced from
.37% to 0.18% when a progressive optimization is used. These results confirm our assumptions
hat the differences in the compression rate and average shape measure between the two methods
re caused by the use of local queues. One interesting finding is that the RMSE of the Para-TT
ethod is smaller than the one of the IA-based method, which indicates that the mesh simplified
y the Para-TT method has a better global approximation quality. A possible explanation is that
he compression rate of Para-TT method is slightly lower than that of the IA-based method and it
s somehow expected to have a better mesh quality when fewer edges are removed. Therefore, it is
lso expected that the Pro-Para-TT method has a higher RMSE compared to the Para-TT method
s it has a higher compression rate. The RMSE of the Pro-Para-TT method is 0.02% larger than the
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:28 Y. Song et al.

Fig. 14. The performance and quality evaluation of the simplification of the Great Smokey dataset when

it is simplified by the parallel simplification on Terrain trees with different leaf capacity values and by the

simplification on the IA data structure. The TT- refers to the Terrain trees method, and the number after it

corresponds to leaf capacity value used for the Terrain tree generation.

I

P

t

m

e

a

p

T

1

I

s

o

e

o

T

q

T

r

w

i

A

A-based method, which is a very small difference. Comparing the timings, we notice that the Pro-
ara-TT method requires only 5.9% of the time used by the IA-based method, yet it is 30% slower
han the original Para-TT method. This happens since the Pro-Para-TT method has to traverse
ore times the tree compared to the Para-TT method. Consequently, this method extracts local
dge queues and local topological relations more frequently, resulting in slower processing times.
These experiments show that by performing a progressive simplification users can define

 tradeoff between simplification quality and time requirements. The progressive strategy has
roven to effectively narrow down the quality difference between the IA-based method and Para-
T method while requiring slightly more time than the Para-TT method.

0.5 Selection of Leaf Capacity on Mesh Quality

n Appendix A.3 , we evaluate how the leaf capacity affects the computing performance of the
implification on Terrain trees. In this subsection, we evaluate the influence of the leaf capacity
n the output mesh quality by using the Great Smokey Mountains dataset as an example. The
xperiments on other datasets show similar results and are displayed in Appendix A.4 . We compare
nly the Para-TT method with the IA-based method as the quality of meshes obtained from Seq-
T and Para- TT methods are similar. Our initial experiment in Appendix A.3 shows that the mesh
uality does not change significantly when the leaf capacity is changed within a small range.
herefore, in this experiment, we use several capacity values that are much larger than the optimal
ange for computing performance. We evaluate the simplification time and mesh quality measures
hen all contractible edges are contracted.
Figure 14 shows the simplification time and several quality measures when different leaf capac-

ty values are used for generating the Terrain trees. The numbers on X -axis denote leaf capacity
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:29

v

m

c

t

v

p

m

s

0

t

i

b

r

i

w

a

o

m

m

1

W

a

[

T

o

t

I

a

t

c

t

t

m

b

a

t

o

f

b

w

t

u

s

m

alues. The experiments show that when the capacity is 800, the compression rate of the Para-TT
ethod is 0.6% lower than the IA-based method, and this difference is reduced to 0.12% when the
apacity value is 16,000. Similarly, the difference in the average shape measure changes from 0.37%
o 0.1% when the capacity increases from 800 to 16,000. When comparing the RMSE based on the
ertical distances, the Para-TT method has a smaller error than the IA-based method when the ca-
acity value is 800. However, such a result is obtained with fewer edges contracted by the Para-TT
ethod. Therefore, when the capacity value increases to 4,000, the RMSE of the Para-TT method
urpasses that of the IA-based method. The difference between the two methods is reduced from
.08% to 0.02% when the capacity value continues to increase.
These findings suggest that using a larger leaf capacity enhances both the compression rate and

he quality of the output meshes. This happens since a coarser Terrain tree is generated, resulting
n simplification results closer to those obtained when using a global queue, such as in the IA-
ased method. Additionally, larger leaf capacities lead to increased sizes of local queues, thereby
educing the likelihood of contracting higher-cost edges during the early simplification stages. It
s noteworthy that very large leaf capacities lead to increased simplification times. For instance,
hen the capacity value is set to 16,000, the simplification requires 39% more time compared to
 capacity of 800. This increase is due to the higher costs of extracting auxiliary data structures
f cross edges in a leaf block. Nevertheless, even with larger leaf capacity values, the Para-TT
ethod remains significantly faster, consuming only 6.3% of the time required by the IA-based
ethod.

1 CONCLUDING REMARKS

e introduced a new method for simplifying very large triangle meshes representing terrains on
 compact data structure, the Terrain tree. Our method extends the strategy defined in Reference
 46], which is based on the gradient-aware edge contraction operator, to a global data structure.
he proposed method is capable of reducing the resolution of a TIN while preserving the topology
f the underlying terrain.
We have experimentally demonstrated how the method based on the Terrain trees can effec-

ively reduce the time and memory requirements of a simplification procedure. Compared to the
A data structure, which is the most widely used data structure for triangle meshes, Terrain trees
chieve similar simplification level in half the time and with only 40% of the memory. Our evalua-
ion also shows that the gradient-aware simplification on the Terrain trees produces meshes with
omparable geometric quality as the simplification on the IA data structure. These results prove
he scalability and efficiency of our method for processing large-scale triangle meshes. Thanks
o the distributed nature of Terrain trees, we also defined a parallel version of the simplification
ethod and implemented it with OpenMP [17]. Comparing the sequential and parallel strategies
ased on Terrain trees, we observed a further performance increase. The parallel strategy achieved
 12 × speedup when using 20 threads while maintaining similar memory requirements.
We discussed how the selection of the leaf capacity values for generating Terrain trees influences

he simplification time and quality. Our experiments in Appendix A.3 show that the simplification
n Terrain trees has the best time and memory performance when smaller leaf capacities are used
or generating the tree, while the simplified meshes have slightly lower quality compared to the IA-
ased method. In Section 10.5 , we show that larger leaf capacities lead to better mesh quality but
orse computing performances compared to smaller leaf capacities. One optimization strategy
o reduce the difference in quality between Terrain trees and the IA-based method is to avoid
sing a single large cost threshold for the simplification process. Instead, by using a progressive
implification strategy, i.e., a set of increasing cost thresholds, it is possible to improve the final
esh quality at the expense of slightly slower simplification times.
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:30 Y. Song et al.

b

f

a

d

i

p

t

i

fi

q

t

t

c

i

c

[

c

t

s

A

A

T

d

p

q

q

e

a

T

r

o

o

c

1

2

A

We also designed a new algorithm for updating the Terrain tree after the simplification. This
ottom-up method uses 68–77% less time compared to a naive solution that simply rebuilds the tree
rom scratch. The proposed update algorithm is independent of the gradient-aware simplification
lgorithm and can be applied to any case in which the mesh encoded in a Terrain tree is modified.
Topology-aware simplification keeps all critical simplices in a terrain. However, original TIN

atasets may be noisy or may contain too many insignificant terrain features. To address this
ssue, one can remove critical simplices originated from noise and insignificant features in a pre-
rocessing step using a persistence-based cancellation operator introduced in [46].
The parallel strategy developed here can be easily extended to other topology-aware edge con-

raction operators, such as the one introduced in Reference [24], since the range of simplices
nvolved in those topology-preserving conditions is the same as for our gradient-aware simpli-
cation operator. While the gradient-aware contraction operator is efficient and produces high-
uality meshes, some applications require maintaining the triangle shape quality while simplifying
he mesh. Especially in terrain analysis, a mesh with good triangle shape quality is required for
he following interpolation or simulation. Future work can explore incorporating a triangle shape
onstraint into the gradient-aware edge contraction operator to ensure good triangle shape qual-
ty after simplification. We also plan to investigate optimized parameters to simplify meshes for
oastal ocean modeling applications, especially in storm surge and tide simulation [4].
Our current parallel strategy is compatible with shared-memory processing based on OpenMP

 17]. In the future, we want to check if it is possible to increase its efficiency by using specialized
ompilers, such as ISPC, 1 and libraries, such as TBB. 2 Last, a natural extension of our simplifica-
ion method is to support large-scale data processing through the distributed-memory processing
trategy based on MPI [13].

 APPENDIX

.1 Computing the Quadric Error Matrix on Terrain Trees

he QEM [36] defines the error at one vertex v of a triangle mesh Σ is as the sum of the squared
istances to the planes of the triangles incident in v . Specifically, the error at v with respect to a
lane P is calculated as ΔP (v) = v

T K P v , where K P is a 4 × 4 matrix called the fundamental error

uadric . The overall error at v can be represented as Δ(v) = v

T Q v v . Q v is called the initial error

uadric at v , and it is the sum of the fundamental error quadric with respect to the plane defined by
ach triangle incident in v . The cost , or error, introduced by contracting edge e = {v 1 , v 2 } is defined
s Δ(v) = v

T (Q 1 +Q 2)v , where Q 1 and Q 2 are the initial error quadrics at v 1 and v 2 , respectively.
he quadric error of v 2 is accumulated to v 1 when e is contracted to v 1 . Therefore, the cost of e
eflects the change from the original mesh to the approximation after the contraction of e .
In each leaf block b , the quadric error matrices E of vertices in b are computed during traversal

f its triangle list. For each triangle t in b :

(1) Check if at least one vertex of t is contained in b . If not, then skip t ; otherwise, proceed to
step (2);

(2) Calculate the fundamental error quadric K P of the plane on which t lies;
(3) For each vertex v of t , if v is contained in b , then add K P to its initial error quadric E [v].

Note that the fundamental error quadric associated with a triangle may be computed more than
nce if its vertices are in different leaf blocks. This will slightly increase the computation time
ompared to traversing through the global triangle array ΣT of Σ and calculating the corresponding
 https://ispc.github.io/
 https://software.intel.com/en-us/oneapi/onetbb

CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

https://ispc.github.io/
https://software.intel.com/en-us/oneapi/onetbb

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:31

f

i

p

A

A

I

t

t

4

q

A

I

t

e

a

s

r

i

s

d

t

r

T

v

a

c

p

c
undamental error quadrics. However, the computation of the initial error quadrics at the vertices
n different leaf blocks are completely independent and fully local to each leaf block, making it
ossible to compute the quadric error matrices of Σ in parallel.

.2 Performing an Edge Contraction

LGORITHM 3 : contract (e , VT(νj), ET(e), E , Σ)

nput:

e = { νi , νj } : edge to be contracted to νi

V T (νj): the Vertex-Triangle relation of νj

ET (e): the Edge-Triangle relation of e
E: the array of vertex error quadrics
Σ: the triangulated terrain

1: for each t in ET (e) do

2: Σ← Σ − {t} // Remove t from Σ
3: end for

// For each triangle t incident in νj but not adjacent to e
4: for each t in (V T (νj) − ET (e)) do

5: t ← (t − νj) ∪ νi // Replace νj with νi in t
6: end for

7: E [i] ← E [i] + E [j] // Update the error quadric at vertex νi

8: Σ← Σ − {νj } // Remove νj from Σ

In this section, we describe how an edge contraction is performed. Algorithm 3 depicts the con-
raction operation at row 15 of Algorithm 1 . The algorithm removes the two triangles adjacent
o e and vertex νj (row 2 and row 8). In each remaining triangle in V T (νj), it replaces νj with νi (row
 to 6). After the contraction, the error quadric of the remaining vertex νi is updated by adding the
uadric of νj to it (row 7).

.3 Experiments on Leaf Capacity Selection

n this section, we evaluate the performance of the simplification algorithm with different capacity
hresholds on Terrain trees. Recall that a capacity defines the maximum number of vertices that
ach leaf block can contain. We established an initial range for capacity values between 1 /100 , 000
nd 1 /30 , 000 of the total number of vertices in the data set. This is to have coarser hierarchical
ubdivisions, usually beneficial for tasks requiring intense navigation of the hierarchy. Within this
ange, we selected ten different capacity values for each dataset and compared the performance
n sequentially simplifying the meshes encoded by the resulting Terrain tree. Our comparisons
how that the memory footprint and the compression rate do not change significantly when using
ifferent capacity values (up to 1.7%). Also, simplification times are highly dataset-dependent, and
he best performances are achieved with values in the middle of the tested range.
Table 4 shows the performances of sequential topology-aware mesh simplification on the Ter-

ain tree. The memory footprint does not change significantly when using different leaf capacities.
he same holds for the percentage of edges contracted. Depending on the dataset, timings may
ary. For example, on the Molokai dataset, the simplification is 21% faster when a shallower hier-
rchy (larger capacity) is used, while on Dragons Back Ridge, using a deeper hierarchy (smaller
apacity) reduces the simplification time by 24%. The simplification time is stable when the ca-
acity value varies in a small range. Overall, the results show that even selecting a sub-optimal
apacity for generating a Terrain Tree, the algorithm’s performance is not severely affected, and it
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:32 Y. Song et al.

Table 4. Time (in Minutes) (Denoted as T), Peak Memory Usage (in Gigabytes) (Denoted as M),

and Compression Rate (in %) (Denoted as R) of Simplification When Using Different Capacity

Values (Denoted as C) in the Terrain Tree Generation

Molokai Great Smokey Mountains Canyon Lake Yosemite Rim Fire Dragons Back Ridge Moscow Mountain

C T M R C T M R C T M R C T M R C T M R C T M R

300 36.3 12.8 73.1 300 44.8 17.4 74.7 450 70.9 24.9 74.6 600 104.2 39.5 70.6 600 117.3 46.3 80.4 900 186.4 57.2 77.5

400 35.1 12.8 73.2 400 45.2 17.3 74.9 600 68.7 24.7 74.6 800 99.1 39.4 70.6 900 100.5 46.2 80.4 1,200 185.7 57.6 77.5

500 29.5 12.7 73.3 500 39.4 17.3 74.9 750 68.8 24.9 74.6 1,000 100.1 39.0 70.6 1,200 99.8 45.9 80.5 1,500 192.9 57.1 77.6

600 29.0 12.8 73.3 600 41.9 17.3 75.0 900 65.1 24.6 74.7 1,200 100.5 39.4 70.6 1,500 129.2 46.0 80.6 1,800 188.7 57.4 77.6

700 29.0 12.7 73.3 700 39.8 17.3 75.0 1,050 68.4 24.9 74.7 1,400 100.3 39.4 70.6 1,800 126.7 45.9 80.6 2,100 172.0 57.5 77.6

800 29.5 12.7 73.4 800 39.1 17.2 75.0 1,200 66.5 24.6 74.7 1,600 100.9 39.3 70.6 2,100 127.9 46.1 80.6 2,400 170.9 57.4 77.7

900 29.1 12.7 73.4 900 39.4 17.3 75.0 1,350 66.7 24.8 74.7 1,800 102.2 39.2 70.6 2,400 131.7 45.7 80.6 2,700 176.9 57.3 77.7

1,000 29.2 12.7 73.4 1,000 39.4 17.3 75.0 1,500 73.2 24.8 74.8 2,000 106.7 38.9 70.7 2,700 131.8 46.1 80.6 3,000 176.3 56.9 77.7

1,100 29.2 12.8 73.4 1,100 39.6 17.4 75.0 1,650 75.5 24.7 74.8 2,200 111.4 39.3 70.7 3,000 129.8 46.1 80.6 3,300 177.2 57.3 77.7

1,200 29.8 12.7 73.4 1,200 39.5 17.3 75.1 1,800 73.3 24.6 74.8 2,400 106.8 39.2 70.7 3,300 129.6 46.0 80.6 3,600 173.9 57.2 77.7

The capacity value in bold is the capacity value used to generate the Terrain tree of each dataset.

s

e

B

c

A

F

(

q

e

i

A

till performs well. For the experiments presented in the article, we use only one capacity value for
ach dataset. Generally, we use the capacity value that results in the shortest simplification time.
ut when the variation in time is small (less than 1%), we also consider the memory cost and the
ompression rate. The capacity value selected for each dataset is denoted in Table 4 in bold.

.4 Additional Experiment Results
ig. 15. The time for updating Terrain trees when using two different methods: (1) new update algorithm and

2) original Q1, Q2, and Q3 represent the result when the cost threshold is set to the first, second, and third

uartile edge costs of each dataset, respectively. All represents the result when contracting all contractible

dges without a cost threshold. The text labels on the boxes in figure indicate the time when Q1 cost threshold

s used and when All edges are contracted.

CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:33

Fig. 16. The average triangle shape measure of meshes obtained from three simplification methods IA, Seq-

TT, and Para- TT when the cost threshold is set to three edge cost quartiles (Q1, Q2, and Q3) and when all

contractible edges are contracted (All).

Fig. 17. The change in the number of critical simplices in each dataset when it is simplified with the

Geometric-TT method.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:34 Y. Song et al.

Fig. 18. The performance and quality evaluation of the parallel simplification when a progressive optimiza-

tion is applied to the Molokai dataset.

Fig. 19. The performance and quality evaluation of the parallel simplification when a progressive optimiza-

tion is applied to the Canyon Lake dataset.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:35

Fig. 20. The performance and quality evaluation of the simplification of the Molokai dataset when it is simpli-

fied by the parallel simplification on Terrain trees with different leaf capacity values and by the simplification

on the IA data structure. The TT- refers to the Terrain trees method, and the number after it corresponds leaf

capacity value used during the Terrain tree generation.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

7:36 Y. Song et al.

Fig. 21. The performance and quality evaluation of the simplification of the Canyon Lake dataset when it

is simplified by the parallel simplification on Terrain trees with different leaf capacity values and by the

simplification on the IA data structure. The TT- refers to the Terrain trees method, and the number after it

corresponds leaf capacity value used during the Terrain tree generation.

A

T

m

R

A

CKNOWLEDGMENTS

he Molokai point cloud is kindly provided by NOAA National Centers for Environmental Infor-
ation.

EFERENCES

[1] Nicolas Aspert, Diego Santa-Cruz, and Touradj Ebrahimi. 2002. MESH: Measuring errors between surfaces using the
Hausdorff distance. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME ’02) , Vol. 1.
705–708. DOI: https://doi.org/10.1109/ICME.2002.1035879

[2] Chandrajit L. Bajaj and Daniel R. Schikore. 1998. Topology preserving data simplification with error bounds. Comput.

Graph. 22, 1 (1998), 3–12. DOI: https://doi.org/10.1016/S0097- 8493(97)00079- 4
[3] Thomas F. Banchoff. 1970. Critical points and curvature for embedded polyhedral surfaces. Am. Math. Monthly 77,

5 (1970), 475–485.
[4] Matthew V. Bilskie, Scott C. Hagen, and Stephen C. Medeiros. 2020. Unstructured finite element mesh decimation for

real-time Hurricane storm surge forecasting. Coast. Eng. 156 (2020), 103622. DOI: https://doi.org/10.1016/j.coastaleng.
2019.103622

[5] Nicolas Bonneel, Julien Rabin, Gabriel Peyré, and Hanspeter Pfister. 2015. Sliced and radon wasserstein barycenters
of measures. J. Math. Imag. Vis. 51, 1 (2015), 22–45.

[6] Peer-Timo Bremer, Valerio Pascucci, and Bernd Hamann. 2009. Maximizing adaptivity in hierarchical topological
models using cancellation trees. In Mathematical Foundations of Scientific Visualization, Computer Graphics, and Mas-

sive Data Exploration . Springer, Berlin, 1–18. DOI: https://doi.org/10.1007/b106657 _ 1
[7] Daniela Cabiddu and Marco Attene. 2015. Large mesh simplification for distributed environments. Comput. Graph.

51, 1 (2015), 81–89. DOI: https://doi.org/10.1016/j.cag.2015.05.015
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

https://www.fisheries.noaa.gov/inport/item/49753
https://doi.org/10.1109/ICME.2002.1035879
https://doi.org/10.1016/S0097-8493(97)00079-4
https://doi.org/10.1016/j.coastaleng.2019.103622
https://doi.org/10.1016/j.coastaleng.2019.103622
https://doi.org/10.1007/b106657_1
https://doi.org/10.1016/j.cag.2015.05.015

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:37

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[
[

[
[

[
[8] CGAL 2021. Computational Geometry Algorithms Library (CGAL). Retrieved April 2021 from https://w w w.cgal.org/
[9] Patrick Ciarlet and Françoise Lamour. 1996. Does contraction preserve triangular meshes? Numer. Algor. 13, 2 (1996),

201–223.
10] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Federico Ponchio, and Roberto Scopigno. 2003. BDAM

– batched dynamic adaptive meshes for high performance terrain visualization. Comput. Graph. Forum 22, 3 (2003),
505–514.

11] Paolo Cignoni, Claudio Montani, and Roberto Scopigno. 1998. A comparison of mesh simplification algorithms. Com-

put. Graph. 22, 1 (1998), 37–54. DOI: https://doi.org/10.1016/S0097- 8493(97)00082- 4
12] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. 1998. Metro: Measuring error on simplified surfaces. Comput.

Graph. Forum 17, 2 (1998), 167–174.
13] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. 1994. The MPI message passing interface standard. In Program-

ming Environments for Massively Parallel Distributed Systems . Birkhäuser Basel, Basel, 213–218.
14] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. 2005. Stability of persistence diagrams. In Proceedings

of the 21st Annual Symposium on Computational Geometry (SCG ’05) . Association for Computing Machinery, New
York, NY, 263–271. DOI: https://doi.org/10.1145/1064092.1064133

15] David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko. 2010. Lipschitz functions have L p-stable
persistence. Found. Comput. Math. 10, 2 (2010), 127–139.

16] Lidija Čomić, Leila De Floriani, and Federico Iuricich. 2012. Dimension-independent multi-resolution morse com-
plexes. Comput. Graph. 36, 5 (Aug. 2012), 541–547. DOI: https://doi.org/10.1016/j.cag.2012.03.010

17] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry standard API for shared-memory programming.
Comput. Sci. Eng. 5, 1 (1998), 46–55.

18] Emanuele Danovaro, Leila De Floriani, Paola Magillo, Mohammed Mostefa Mesmoudi, and Enrico Puppo. 2003.
Morphology-driven simplification and multiresolution modeling of terrains. In Proceedings of the 11th ACM Inter-

national Symposium on Advances in Geographic Information Systems (GIS ’03) . Association for Computing Machinery,
New York, NY, 63–70. DOI: https://doi.org/10.1145/956676.956685

19] Leila De Floriani, Ulderico Fugacci, Federico Iuricich, and Paola Magillo. 2015. Morse complexes for shape seg-
mentation and homological analysis: Discrete models and algorithms. Comput. Graph. Forum 34, 2 (2015), 761–785.
DOI: https://doi.org/10.1111/cgf.12596

20] Leila De Floriani and Annie Hui. 2005. Data structures for simplicial complexes: An analysis and a comparison. In Pro-

ceedings of the 3rd Eurographics Symposium on Geometry Processing (SGP ’05) . Eurographics Association, Eindhoven,
The Netherlands, 119–128.

21] Christopher DeCoro and Natalya Tatarchuk. 2007. Real-time mesh simplification using the GPU. In Proceedings of the

Symposium on Interactive 3D Graphics and Games . 161–166.
22] Frank Dehne, Chiristian Langis, and Gerhard Roth. 2000. Mesh simplification in parallel. In Algorithms and Architec-

tures for Parallel Processing (ICA3PP ’00) . World Scientific, Singapore, 281–290.
23] Tamal K. Dey, Herbert Edelsbrunner, Sumanta Guha, and Dmitry V. Nekhayev. 1998. Topology preserving edge

contraction. Publ. l’Inst. Math. 66, 80 (1998), 23–45.
24] Tamal K. Dey and Ryan Slechta. 2018. Edge contraction in persistence-generated discrete Morse vector fields. Comput.

Graph. 74, 1 (2018), 33–43. DOI: https://doi.org/10.1016/j.cag.2018.05.002
25] Tamal K. Dey, Jiayuan Wang, and Yusu Wang. 2017. Improved road network reconstruction using discrete morse

theory. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems . ACM, 1–4. DOI: https://doi.org/10.1145/3139958.3140031
26] Herbert Edelsbrunner and John Harer. 2008. Persistent homology-a survey. Contemp. Math. 453, 26 (2008), 257–282.
27] Riccardo Fellegara, Federico Iuricich, Yunting Song, and Leila De Floriani. 2023. Terrain trees: A framework for rep-

resenting, analyzing and visualizing triangulated terrains. GeoInformatica 27, 3 (2023), 525–564. DOI: https://doi.org/
10.1007/s10707- 022- 00472- 3

28] Riccardo Fellegara and Yunting Song. 2022. Terrain Analysis on the IA Data Structure. Retrieved February 2024 from
https://github.com/UMDGeoVis/Terrain _ Analysis _ on _ IA [Online; accessed February-2024].

29] Riccardo Fellegara and Yunting Song. 2023. Terrain Trees Library. https://zenodo.org/records/10714553
30] Riccardo Fellegara, Kenneth Weiss, and Leila De Floriani. 2021. The Stellar decomposition: A compact representation

for simplicial complexes and beyond. Comput. Graph. 98, 1 (2021), 322–343. DOI: https://doi.org/10.1016/j.cag.2021.
05.002

31] Robin Forman. 1998. Morse theory for cell complexes. Adv. Math. 134, 1 (1998), 90–145.
32] Martin Franc and Václav Skala. 2000. Parallel triangular mesh reduction. In Proceedings of Scientific Computing (AL-

GORITMY ’00) . 357–367.
33] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. 1980. On visible surface generation by a priori tree structures.

SIGGRAPH Comput. Graph. 14, 3 (July 1980), 124–133. DOI: https://doi.org/10.1145/965105.807481
ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

https://www.cgal.org/
https://doi.org/10.1016/S0097-8493(97)00082-4
https://doi.org/10.1145/1064092.1064133
https://doi.org/10.1016/j.cag.2012.03.010
https://doi.org/10.1145/956676.956685
https://doi.org/10.1111/cgf.12596
https://doi.org/10.1016/j.cag.2018.05.002
https://doi.org/10.1145/3139958.3140031
https://doi.org/10.1007/s10707-022-00472-3
https://doi.org/10.1007/s10707-022-00472-3
https://github.com/UMDGeoVis/Terrain_Analysis_on_IA
https://zenodo.org/records/10714553
https://doi.org/10.1016/j.cag.2021.05.002
https://doi.org/10.1016/j.cag.2021.05.002
https://doi.org/10.1145/965105.807481

7:38 Y. Song et al.

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

A

34] Ulderico Fugacci, Michael Kerber, and Hugo Manet. 2020. Topology-preserving terrain simplification. In Proceedings

of the 28th International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’20) . ACM, New
York, NY, 36–47. DOI: https://doi.org/10.1145/3397536.3422237

35] Ulderico Fugacci, Claudia Landi, and Hanife Varlı. 2020. Critical sets of PL and discrete morse theory: A correspon-
dence. Comput. Graph. 90, 1 (2020), 43–50. DOI: https://doi.org/10.1016/j.cag.2020.05.020

36] Michael Garland and Paul S. Heckbert. 1997. Surface simplification using quadric error metrics. In Proceedings of

the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’97) . ACM Press/Addison-
Wesley, 209–216. DOI: https://doi.org/10.1145/258734.258849

37] Nico Grund, Evgenij Derzapf, and Michael Guthe. 2011. Instant level-of-detail. In Vision, Modeling, and Visualiza-

tion (2011) . Peter Eisert, Joachim Hornegger, and Konrad Polthier (Eds.). The Eurographics Association, 293–299.
DOI: https://doi.org/10.2312/PE/VMV/VMV11/293-299

38] André Guéziec. 1999. Locally toleranced surface simplification. IEEE Trans. Vis. Comput. Graph. 5, 2 (1999), 168–189.
39] Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the manipulation of general subdivisions and the computation

of voronoi. ACM Trans. Graph. 4, 2 (Apri. 1985), 74–123. DOI: https://doi.org/10.1145/282918.282923
40] Topraj Gurung and Jarek Rossignac. 2009. SOT: A compact representation for tetrahedral meshes. In Proceedings

SIAM/ACM Geometric and Physical Modeling (SPM ’09) . ACM, New York, 79–88. DOI: https://doi.org/10.1145/1629255.
1629266

41] Attila Gyulassy, Mark Duchaineau, Vijay Natarajan, Valerio Pascucci, Eduardo Bringa, Andrew Higginbotham, and
Bernd Hamann. 2007. Topologically clean distance fields. IEEE Trans. Vis. Comput. Graph. 13, 6 (Nov. 2007), 1432–1439.
DOI: https://doi.org/10.1109/TVCG.2007.70603

42] Paul S. Heckbert and Michael Garland. 1997. Survey of Polygonal Surface Simplification Algorithms . Carnegie Mellon
University Technical Report. Carnegie-Mellon Univ Pittsburgh PA School of Computer Science, Pittsburgh, PA.

43] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. 1993. Mesh optimization. In
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’93) . ACM,
New York, NY, 19–26. DOI: https://doi.org/10.1145/166117.166119

44] Veysi İşler, Rynson W. H. Lau, and Mark Green. 1996. Real-time multi-resolution modeling for complex virtual envi-
ronments. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST ’96) . Association
for Computing Machinery, New York, NY, 11–19. DOI: https://doi.org/10.1145/3304181.3304186

45] Federico Iuricich. 2021. Persistence cycles for visual exploration of persistent homology. IEEE Trans. Vis. Comput.

Graph. 28, 12 (2021), 4966–4979.
46] Federico Iuricich and Leila De Floriani. 2017. Hierarchical forman triangulation: A multiscale model for scalar field

analysis. Comput. Graph. 66, 1 (2017), 113–123. DOI: https://doi.org/10.1016/j.cag.2017.05.015
47] Reinhard Klein, Gunther Liebich, and Wolfgang Straßer. 1996. Mesh reduction with error control. In Proceedings of

the 7th Conference on Visualization ’96 (VIS ’96) . IEEE Computer Society Press, Washington, DC, 311–318.
48] Guillaume Lavoue and Massimiliano Corsini. 2010. A comparison of perceptually-based metrics for objective evalu-

ation of geometry processing. IEEE Trans. Multimedia 12, 7 (2010), 636–649. DOI: https://doi.org/10.1109/TMM.2010.
2060475

49] Hyunho Lee and Min-Ho Kyung. 2016. Parallel mesh simplification using embedded tree collapsing. Vis. Comput. 32,
6 (2016), 967–976.

50] Peter Lindstrom. 2000. Out-of-core simplification of large polygonal models. In Proceedings of the 27th Annual Con-

ference on Computer Graphics and Interactive Techniques . 259–262.
51] Peter Lindstrom and Valerio Pascucci. 2002. Terrain simplification simplified: A general framework for view-

dependent out-of-core visualization. IEEE Trans. Vis. Comput. Graph. 8, 3 (2002), 239–254.
52] Jonas Lukasczyk, Christoph Garth, Ross Maciejewski, and Julien Tierny. 2021. Localized topological simplification

of scalar data. IEEE Trans. Vis. Comput. Graph. 27, 2 (Feb. 2021), 572–582. DOI: https://doi.org/10.1109/TVCG.2020.
3030353

53] Yukio Matsumoto. 2002. An Introduction to Morse Theory . Vol. 208. American Mathematical Soc.
54] Mohamed H. Mousa and Mohamed K. Hussein. 2021. High-performance simplification of triangular surfaces using a

GPU. PLos One 16, 8 (2021), e0255832.
55] OCM Partners. 2021. 2013 USACE NCMP Topobathy Lidar: Molokai (HI). (2021). NOAA National Centers for Envi-

ronmental Information. Retrieved April 2021 from https://w w w.fisheries.noaa.gov/inport/item/49753
56] Małgorzata Olejniczak, André Severo Pereira Gomes, and Julien Tierny. 2020. A topological data analysis perspective

on noncovalent interactions in relativistic calculations. Int. J. Quant. Chem. 120, 8 (Apr. 2020), e26133. DOI: https:
//doi.org/10.1002/qua.26133

57] OpenTopography 2020. OpenTopography—High-Resolution Topography Data and Tools. Retrieved Janauary 2020
from http://w w w.opentopography.org/
CM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

https://doi.org/10.1145/3397536.3422237
https://doi.org/10.1016/j.cag.2020.05.020
https://doi.org/10.1145/258734.258849
https://doi.org/10.2312/PE/VMV/VMV11/293-299
https://doi.org/10.1145/282918.282923
https://doi.org/10.1145/1629255.1629266
https://doi.org/10.1145/1629255.1629266
https://doi.org/10.1109/TVCG.2007.70603
https://doi.org/10.1145/166117.166119
https://doi.org/10.1145/3304181.3304186
https://doi.org/10.1016/j.cag.2017.05.015
https://doi.org/10.1109/TMM.2010.2060475
https://doi.org/10.1109/TMM.2010.2060475
https://doi.org/10.1109/TVCG.2020.3030353
https://doi.org/10.1109/TVCG.2020.3030353
https://www.fisheries.noaa.gov/inport/item/49753
https://doi.org/10.1002/qua.26133
https://doi.org/10.1002/qua.26133
http://www.opentopography.org/

Parallel Topology-aware Mesh Simplification on Terrain Trees 7:39

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

R

58] Alberto Paoluzzi, Fausto Bernardini, Carlo Cattani, and Vincenzo Ferrucci. 1993. Dimension-independent modeling
with simplicial complexes. ACM Trans. Graph. 12, 1 (1993), 56–102.

59] Alexandros Papageorgiou and Nikos Platis. 2015. Triangular mesh simplification on the GPU. Vis. Comput. 31,
2 (2015), 235–244. DOI: https://doi.org/10.1007/s00371- 014- 1039- x

60] Persim 2022. Persim 0.3.1 Documentation. Retrieved June 2022 from https://persim.scikit-tda.org/en/latest/index.html
61] Vanessa Robins, Peter John Wood, and Adrian P. Sheppard. 2011. Theory and algorithms for constructing discrete

Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33, 8 (2011), 1646–1658.
DOI: https://doi.org/10.1109/TPAMI.2011.95

62] Jarek Rossignac and Paul Borrel. 1993. Multi-resolution 3D approximations for rendering complex scenes. In Modeling

in Computer Graphics . Springer, Berlin, 455–465.
63] Jarek Rossignac, Alla Safonova, and Andrzej Szymczak. 2003. Edgebreaker on a corner table: A simple technique for

representing and compressing triangulated surfaces. In Hierarchical and Geometrical Methods in Scientific Visualiza-

tion . Springer, 41–50.
64] Hanan Samet. 2006. Foundations of Multidimensional and Metric Data Structures . Morgan Kaufmann.
65] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. 1992. Decimation of triangle meshes. In Proceedings

of the 19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’92) . ACM, New York, NY,
65–70. DOI: https://doi.org/10.1145/133994.134010

66] Andriani Skopeliti, Leda Stamou, Lysandros Tsoulos, and Shachak Pe’eri. 2020. Generalization of soundings across
scales: From DTM to harbour and approach nautical charts. ISPRS Int. J. Geo-Inf. 9, 11 (2020), 693.

67] Yunting Song and Riccardo Fellegara. 2023. Topology-aware Simplification on Terrain Trees. https://zenodo.org/
records/10723706

68] Yunting Song, Riccardo Fellegara, Federico Iuricich, and Leila De Floriani. 2021. Efficient topology-aware simplifi-
cation of large triangulated terrains. In Proceedings of the 29th International Conference on Advances in Geographic

Information Systems (SIGSPATIAL ’21) . 576–587. DOI: https://doi.org/10.1145/3474717.3484261
69] Akash Anil Valsangkar, Joy Merwin Monteiro, Vidya Narayanan, Ingrid Hotz, and Vijay Natarajan. 2019. An ex-

ploratory framework for cyclone identification and tracking. IEEE Trans. Vis. Comput. Graph. 25, 3 (Mar. 2019),
1460–1473. DOI: https://doi.org/10.1109/TVCG.2018.2810068

70] Kenneth Weiss, Federico Iuricich, Riccardo Fellegara, and Leila De Floriani. 2013. A primal/dual representation for
discrete Morse complexes on tetrahedral meshes. Comput. Graph. Forum 32, 3 (2013), 361–370. DOI: https://doi.org/
10.1111/cgf.12123

71] Julie C. Xia and Amitabh Varshney. 1996. Dynamic view-dependent simplification for polygonal models. In Proceed-

ings of the IEEE Visualization Conference , 327–334. DOI: https://doi.org/10.1109/visual.1996.568126
72] Xin Xu, Federico Iuricich, and Leila De Floriani. 2020. A persistence-based approach for individual tree mapping.

In Proceedings of the 28th International Conference on Advances in Geographic Information Systems . ACM, 191–194.
DOI: https://doi.org/10.1145/3397536.3422231

73] Bisheng Yang, Wenzhong Shi, and Qingquan Li. 2005. A dynamic method for generating multi-resolution TIN models.
Photogram. Eng. Remote Sens. 71, 8 (2005), 917–926.

74] Xianwei Zheng, Hanjiang Xiong, Jianya Gong, and Linwei Yue. 2017. A morphologically preserved multi-resolution
TIN surface modeling and visualization method for virtual globes. ISPRS J. Photogram. Remote Sens. 129 (2017), 41–54.
DOI: https://doi.org/10.1016/j.isprsjprs.2017.04.013
eceived 17 May 2023; revised 3 March 2024; accepted 8 March 2024

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 2, Article 7. Publication date: May 2024.

https://doi.org/10.1007/s00371-014-1039-x
https://persim.scikit-tda.org/en/latest/index.html
https://doi.org/10.1109/TPAMI.2011.95
https://doi.org/10.1145/133994.134010
https://zenodo.org/records/10723706
https://zenodo.org/records/10723706
https://doi.org/10.1145/3474717.3484261
https://doi.org/10.1109/TVCG.2018.2810068
https://doi.org/10.1111/cgf.12123
https://doi.org/10.1111/cgf.12123
https://doi.org/10.1109/visual.1996.568126
https://doi.org/10.1145/3397536.3422231
https://doi.org/10.1016/j.isprsjprs.2017.04.013

	1 INTRODUCTION
	2 BACKGROUND
	3 RELATED WORK
	3.1 Triangle Mesh Simplification
	3.2 Topology-based Mesh Simplification

	4 TERRAIN TREES
	5 TOPOLOGY-AWARE EDGE CONTRACTION
	6 TOPOLOGY-AWARE SIMPLIFICATION ON TERRAIN TREES
	7 PARALLEL TOPOLOGY-AWARE EDGE CONTRACTION ON TERRAIN TREES
	7.1 Parallel Edge Contraction Algorithm
	7.2 Discussion on the Leaf Locking Strategy

	8 TERRAIN TREE UPDATE AFTER SIMPLIFICATION
	9 TERRAIN MESH EVALUATION
	10 EXPERIMENTAL RESULTS
	10.1 Performance Evaluation
	10.2 Compression Rate Evaluation
	10.3 Mesh Quality Evaluation After Simplification
	10.4 Progressive Strategy for Improving Output Mesh Quality
	10.5 Selection of Leaf Capacity on Mesh Quality

	11 CONCLUDING REMARKS
	12 APPENDIX
	12.1 Computing the Quadric Error Matrix on Terrain Trees
	12.2 Performing an Edge Contraction
	12.3 Experiments on Leaf Capacity Selection
	12.4 Additional Experiment Results

	13 ACKNOWLEDGMENTS
	REFERENCESendgraf

