
Efficient topology-aware simplification of large triangulated
terrains

Yunting Song

University of Maryland

College Park, Maryland, USA

ytsong@umd.edu

Riccardo Fellegara

German Aerospace Center (DLR)

Braunschweig, Germany

riccardo.fellegara@dlr.de

Federico Iuricich

Clemson University

Clemson, South Carolina, USA

fiurici@clemson.edu

Leila De Floriani

University of Maryland

College Park, Maryland, USA

deflo@umd.edu

ABSTRACT
A common first step in the terrain processing pipeline of large

Triangulated Irregular Networks (TINs) is simplifying the TIN to

make it manageable for further processing. The major problemwith

TIN simplification algorithms is that they create or remove critical

points in an uncontrolled way. Topology-aware operators have been

defined to solve this issue by coarsening a TIN without affecting the

topology of its underlying terrain, i.e., without modifying critical

simplices describing pits, saddles, peaks, and their connectivity.

While effective, existing algorithms are sequential in nature and

are not scalable enough to perform well with large terrains on

multicore systems. Here, we consider the problem of topology-

aware simplification of very large meshes. We define a topology-

aware simplification algorithm on a compact and distributed data

structure for trianglemeshes, namely the Terrain trees. Terrain trees

reduce both thememory and time requirements of the simplification

procedure by adopting a batched processing strategy of the mesh

elements. Furthermore, we define a new parallel topology-aware

simplification algorithm that takes advantage of the spatial domain

decomposition at the basis of Terrain trees. Scalability and efficiency

are experimentally demonstrated on real-world TINs originated

from topographic and bathymetric LiDAR data. Our experiments

show that topology-aware simplification on Terrain trees uses 40%

less memory and half the time than the same approach implemented

on the most compact and efficient connectivity-based data structure

for TINs. Beyond that, our parallel algorithm on the Terrain trees

reaches a 12x speedup when using 20 threads.

CCS CONCEPTS
• Computing methodologies→Mesh geometry models; Shape
analysis; • Information systems→ Data structures; Geographic
information systems.

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8664-7/21/11. . . $15.00

https://doi.org/10.1145/3474717.3484261

KEYWORDS
terrain simplification, edge contraction, spatial indexes, topological

methods, shared memory processing

ACM Reference Format:
Yunting Song, Riccardo Fellegara, Federico Iuricich, and Leila De Floriani.

2021. Efficient topology-aware simplification of large triangulated terrains.

In 29th International Conference on Advances in Geographic Information
Systems (SIGSPATIAL ’21), November 2–5, 2021, Beijing, China. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3474717.3484261

1 INTRODUCTION
Morse theory is a powerful mathematical framework that allows for

segmenting a scalar field according to the regions of influence of its

critical points. This general task has revealed fundamental in many

application domains, including material science [30], chemistry

[41], environmental science [50], forest monitoring [52], and urban

analysis [16], to mention a few. In terrain analysis, in particular,

the segmentation of a terrain according to its critical points (i.e.,

peaks and pits) provides information regarding terrain morphology,

which are fundamental for assessing the risk of landslides or floods.

Terrain surfaces are usually described by either Triangulated Ir-

regular Networks (TINs), or raster-based Digital Elevation Models

(DEMs). Although TINs can better adapt to irregularly distributed

data, their usage is limited by their large storage costs compared to

DEMs. At the same time, the increasing availability of large point

clouds [42] intensifies the need for scalable data representations

for TINs.

Spurious critical points, naturally affecting noisy data, can se-

verely affect the analysis of a terrain. For this reason, several sim-

plification approaches capable of removing spurious features while

maintaining important critical points have been defined in the lit-

erature [2, 8, 36, 38]. These approaches reduce the morphological

complexity of the dataset, leaving the underlying digital terrain

model unchanged. This represents still an issue when working with

large terrain datasets since the complexity of extracting, represent-

ing, and visualizing topological features and structures is directly

related to the resolution of a terrain model. At the same time, re-

ducing the terrain model’s resolution may affect its topology in an

uncontrolled way.

In [33], we recently addressed this problem by defining a lo-

cal simplification operator, called gradient-aware edge contraction,
capable of reducing the resolution of a TIN while preserving the

https://orcid.org/0000-0002-3053-1748
https://orcid.org/0000-0002-8758-2802
https://orcid.org/0000-0002-6605-9131
https://orcid.org/0000-0002-1361-2888
https://doi.org/10.1145/3474717.3484261
https://doi.org/10.1145/3474717.3484261

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Yunting Song, Riccardo Fellegara, Federico Iuricich, and Leila De Floriani

topology of the underlying terrain. By combining such an opera-

tor with a topological simplification operator, the user is enabled

to simplify the resolution of both the topology and the geome-

try of a terrain in a completely controlled way. However, when

processing large terrains, multiple issues arise. First, encoding the

original TIN is memory-demanding, and, thus, there is the need

to use efficient representations to reduce memory requirements.

Second, performing a large number of simplifications sequentially

is time-consuming [33]. This latter directly affects user interactions

during data exploration, thus there is a need to develop a parallel

simplification strategy.

In this work, we address both issues by designing and implement-

ing a new simplification approach for triangulated terrains. The

algorithm performs topology-aware simplification, by extending

gradient-aware edge contraction on a highly efficient data struc-

ture, the Terrain trees [18], which has been shown to be the most

compact representation for triangulated terrains (see Section 6).

Moreover, the distributed nature of Terrain trees is used to define a

new parallel simplification algorithm (see Section 7). Our approach

reduces the geometric complexity of a large triangulated terrain

without affecting its morphology and without incurring into lim-

itations due to processing time or space constraints. In Section 8,

we experimentally evaluate both the sequential and the parallel

topology-aware simplification on Terrain trees.

2 BACKGROUND
In this section, we review some fundamental elements of discrete

Morse theory, which is the basis for 2D scalar field topology, but

just restricting to triangle meshes. The interested reader is referred

to [11, 22] for a complete view of the theory, and its application in

shape analysis and visualization.

Morse theory [37] is a mathematical tool studying the relation-

ships between the topology of a manifold shape M and the critical

points of a smooth scalar function f defined over M. Based on

Morse theory, we can define segmentations of the shape based on

the regions of influence and the connectivity of its critical points.

Discrete Morse Theory (DMT) [22] is a combinatorial counterpart of

Morse theory which nicely extends the results of Morse theory to

discrete data, and thus it has been used for analysis of 2D and 3D

scalar fields [18, 30, 45, 51].

Given a triangle mesh Σ and an elevation function 𝑓 : Σ → R
defined on the vertices of Σ, a (discrete) vector is defined as a pair

of cells of the complex (𝜎, 𝜏) such that 𝜎 is a face of 𝜏 . A gradient
pair can be viewed as an arrow formed by a head (𝑘-simplex) and

a tail ((𝑘 − 1)-simplex). Recall that a 𝑘-simplex is the convex hull

of 𝑘 + 1 points that are affinely independent in R, and 𝑘 is called

the dimension of the simplex. In a triangle mesh, a vertex is a 0-

simplex, an edge a 1-simplex, and a triangle a 2-simplex, and we

have arrows formed by a triangle and an edge (triangle-edge pair),
and by an edge and a vertex (edge-vertex pair). A simplex that is

not a head or a tail of any arrow is a critical simplex. In a triangle

mesh, there are three types of critical simplices: critical triangles

indicating maxima, critical edges indicating saddles, and critical

vertices indicating minima. It has been proved that critical simplices

appear in correspondence of critical points of the terrain [25].

(a) (b) (c) (d)

Figure 1: (a) Forman gradient, (b)𝑉 -paths connecting pairs of
critical simplices. Regions of influence of critical simplices
are computed visiting the𝑉 -paths (c) at the critical simplices,
and (d) until the whole region of influence is visited.

A discrete vector field 𝑉 is any collection of vectors such that

each cell of 𝑉 is a component of at most one vector in 𝑉 . A 𝑉 -path
is a sequence of vectors (𝜎𝑖 , 𝜏𝑖) belonging to 𝑉 , for 𝑖 = 0, . . . , 𝑟 ,

such that, for all indexes 0 ≤ 𝑖 ≤ 𝑟 − 1, 𝜎𝑖+1 is a facet of 𝜏𝑖 and

𝜎𝑖 ≠ 𝜎𝑖+1. A𝑉 -path is said to be closed if 𝜎0 = 𝜎𝑟 , and trivial, if 𝑟 = 0.

Discrete vector field 𝑉 is a Forman gradient if all of its closed 𝑉 -
paths are trivial. Figure 1(a) shows an example of a discrete gradient

computed on a triangle mesh. Red, green, and blue dots indicate

critical triangles, edges, and vertices, respectively. Arrows indicate

gradient vectors.

For terrain analysis, the Forman gradient can be seen as the com-

binatorial counterpart of the gradient of the elevation function 𝑓

[45, 51] and directly allows the computation of different topological

structures [11]. Figure 1(b) shows the gradient paths connecting

pairs of critical cells (i.e., critical net). Moreover, the Forman gra-

dient is also used to segment a dataset based on the regions of

influence of its critical cells. Figure 1(c) shows the regions of influ-

ence for two critical triangles (maxima). Each region of influence

is computed by starting from the gradient vectors outgoing the

critical triangle and expanding the region recursively until no more

gradient vector can be visited (see Figure 1(d)).

3 RELATEDWORK
Topology-aware simplification combines the need for reducing the

size of a mesh with the need to maintain its topological properties.

The task of mesh simplification has been extensively studied in the

literature, and, thus, we refer the reader to comprehensive surveys

on the topic [6, 31, 49].

Popular techniques for mesh simplifications include edge col-

lapse [32], vertex decimation [48], and vertex clustering [46]. Edge
collapse, also called edge contraction, consists of the contraction

of one edge to a single vertex. When the edge is contracted to one

of its endpoints, this operation is called half-edge collapse. In this

paper, we adopt the half-edge collapse operator as it is the most

commonly used one, and does not introduce a new vertex when

contracting an edge.

After selecting a simplification operator, one should define the

order in which simplifications are performed. When considering

edge contraction, several metrics have been defined for optimizing

the quality of output meshes, such as minimizing an energy func-

tion [32], setting a threshold on the Hausdorff distance between

the original and the simplified models [34], minimizing the error

quadrics [26], or setting a threshold on the error volume [28]. The

Efficient topology-aware simplification of large triangulated terrains SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

Quadric Error Metric (𝑄𝐸𝑀) [26] is one of the few approaches keep-

ing a good balance between the computational cost and the quality

of the mesh produced.

Besides the quality of the outputmesh, another issue addressed in

the literature is to efficiently simplify large meshes. A common and

well established method is to perform a simplification on the mesh

in parallel or on a cluster. One approach to achieve that is to define

heuristics to avoid contracting adjacent edges concurrently [27, 35,

40]. A different strategy is partitioning the mesh into submeshes

that can be then processed independently [3, 13, 23, 44].

In this work, we focus on topology-preserving simplifications,

i.e., a simplification combining the need to reduce the size of a

mesh with the need to maintain its topological properties, such

as peaks and valleys. In general, simplification operators are not

topology-preserving, which means they can modify the number of

critical points of terrain, or their connectivity, in an uncontrolled

way.

This problem has been first addressed in [1] by introducing a

simplification operator which preserves the critical points of the

terrain. The operator removes a vertex from the terrain and re-

triangulates the neighborhood such that the remaining vertices

maintain the same classification (i.e., minimum, saddle, maximum,

non-critical). The method preserves the topology of the terrain, but

it lacks an efficient implementation for re-triangulating the terrain.

In [10], the first efficient topology-aware operator based on edge

contraction has been introduced. The method preserves the critical

points connectivity by checking the separatrix lines incident at

the endpoints of a contracted edge. However, while the operator

prevents the removal of existing critical points, it does not avoid

the creation of new ones.

The first topology-aware simplification based on discrete Morse

theory is introduced in [33]. The operator, called gradient-aware
edge contraction, is able to preserve both the critical simplices and

their connectivity by using a Forman gradient as the underlying

descriptor of the terrain topology. Before contracting an edge 𝑒 ,

the operator checks the gradient pairs in the neighborhood of 𝑒 . If

these pairs are organized in a valid configuration (see Section 5 for

details), the contraction is guaranteed to preserve the terrain topol-

ogy. On top of that, a multiresolution model, called a Hierarchical
Forman Triangulation (HFT), is introduced. This model combines

geometric and topological operators to enable the mesh simplifica-

tion or refinement by varying the resolution of both topology and

geometry on-demand.

Starting from the gradient-aware simplification operators, the

original criteria have been relaxed in [15] to allow the removal of

critical simplices. While this operator does not lead to a multireso-

lution model like HFT, it increases the number of admissible edge

contractions, and thus, the compression factor. Recently, a new

approach based on vertex removal has been proposed in [24]. The

simplification operator is similar to the one introduced in [1], but in

this case the topology is preserved by checking a descriptor which

definition is rooted in algebraic topology, i.e., persistent homology

[17]. A vertex removal is valid only if the link of the removed vertex

can be re-triangulated preserving persistent homology.

In this work, we use the gradient-aware edge contraction from

[33]. Differently from the vertex removal [24], this operator comes

with several metrics for controlling and optimizing the quality of

the output meshes [26, 28, 32, 34]. Also, any simplification sequence

performed with this operator supports the construction of a HFT

multiresolution model which is fundamental if we want to enable a

user to explore a dataset interactively in real time.

4 TERRAIN TREES
In this section, we briefly introduce the data structure used in our

work. We refer the reader to the original paper for more details

[18]. A variety of data structures have been developed for triangle

meshes, and the most compact of them encode only the vertices and

the triangles of the mesh [12]. Within this class of data structures

we can find the Indexed data structure with Adjacencies (IA data

structure) [43], the Corner Table (CoT) [47] and the Sorted Opposite

Table (SOT) [29]. Recently, a new compact family of spatial data

structures designed for triangulated terrain meshes, called Terrain
Trees, has been developed [18]. Based on Terrain trees, we have

developed the Terrain Tree library (TTL), a library for terrain analy-

sis, which contains a kernel for connectivity and spatial queries, as

well as modules for morphological terrain analysis and for extract-

ing topological structures, based on the discrete Morse gradient.

Terrain trees are based on different nested subdivision strategies

of the TIN domain D, which led to three data structures, called PR,

PM and PMR Terrain trees, resepectively [18]. In our experiments,

the PR Terrain tree has been shown to be slightly more compact

and efficient than the other two. So, we will use here the PR Terrain

tree, that we will just call Terrain tree, for the sake of simplicity.

A Terrain tree on a triangle mesh Σ consists of: (1) a global vertex

array Σ𝑉 , encoding, for each vertex, its coordinates and elevation,

(2) a global triangle array Σ𝑇 , encoding, for each triangle, a triplet

of vertex indices in the global vertex array, (3) a bucketed quadtree

T describing the nested subdivision of D which acts as a bucketing

structure for themesh vertices, and (4) a list of leaf blocks𝐵 obtained

from the subdivision of D, in which each leaf block 𝑏 contains the

vertices of the mesh that fall in 𝑏 plus the triangles that intersect 𝑏.

Each leaf block contains the minimum amount of information

required for extracting all connectivity relations, encoded through

a compression method based on sequential range encoding (SRE),

introduced in [21]. This method combined with a reindexing of

the two global vertex and triangle arrays enables a Terrain tree to

encode a triangle mesh with low storage cost, with about 36% less

storage than the most compact state-of-the-art mesh data structure

(the IA data structure), while maintaining good performances in ex-

tracting connectivity relations. Moreover, the hierarchical domain

decomposition of Terrain trees makes them well-suited for parallel

computation since different leaf blocks can be processed at the same

time. These features make Terrain trees more scalable than other

triangle-based data structures, and desirable for representing large

triangle meshes.

5 TOPOLOGY-AWARE EDGE CONTRACTION
Edge contraction is a widely used operator for triangle mesh sim-

plification [32]. Given an edge 𝑒 = {𝑣1, 𝑣2} in a triangle mesh Σ,
it contracts e to one of its endpoints, and removes from Σ edge

𝑒 , one of its endpoints, and the triangles incident in 𝑒 . An edge

contraction operator can modify the shape of the TIN creating non-

valid meshes. To prevent this, we verify that contracting an edge 𝑒

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Yunting Song, Riccardo Fellegara, Federico Iuricich, and Leila De Floriani

Figure 2: Example of edge contraction not satisfying the link
condition. Given edge 𝑒 = {𝑣𝑎, 𝑣𝑏 }, we have 𝐿𝑘 (𝑣𝑎)

⋂
𝐿𝑘 (𝑣𝑏) =

{𝑣𝑑 , 𝑣𝑔, 𝑣 𝑓 , {𝑣 𝑓 , 𝑣𝑔}} and 𝐿𝑘 (𝑒) = {𝑣𝑔, 𝑣𝑑 }. The condition is not
verified since 𝐿𝑘 (𝑣𝑎) ∩ 𝐿𝑘 (𝑣𝑏) contains vertex 𝑣 𝑓 and edge
{𝑣 𝑓 , 𝑣𝑔} that are not in 𝐿𝑘 (𝑒).

satisfies two fundamental validity conditions, namely the link and

the fold conditions.

The link condition [14] ensures that the simplified mesh has the

same homological properties as the original one. The link 𝐿𝑘 (𝑣)
of a vertex 𝑣 consists of all vertices adjacent to 𝑣 in the mesh and

of all edges opposite to 𝑣 bounding the triangles incident in 𝑣 .

Similarly, the link 𝐿𝑘 (𝑒) of an edge 𝑒 consists of the two vertices of

the triangles incident in 𝑒 that are not endpoints of 𝑒 . An edge 𝑒 =

{𝑣1, 𝑣2} ∈ Σ is said to satisfy the link condition if and only if 𝐿𝑘 (𝑣1)∩
𝐿𝑘 (𝑣2) ⊆ 𝐿𝑘 (𝑒). Figure 2 shows an example of an edge contraction

that does not satisfy the link condition. If edge e is contracted, the
resulting mesh is invalid since more than two triangles would be

incident in the same edge (i.e., edge {𝑣 𝑓 , 𝑣𝑔}).
The fold condition [5, 26] ensures that, for every edge 𝑒 ′ in 𝐿𝑘 (𝑣2),

𝑣1 and 𝑣2 lie on the same side of the line 𝑙 extended from 𝑒 ′. If this
condition is not verified, then Σ will have at least a triangle folding

over itself after contracting 𝑒 to 𝑣1.

Our purpose is to preserve the topological features of the scalar

field defined on Σ, while simplifying the underlying mesh. This

translates into maintaining the Forman gradient, and thus the criti-

cal simplices. To this aim, we apply the gradient-aware condition
[33]. Given a mesh Σ endowed with a Forman gradient 𝑉 , an edge

𝑒 = {𝑣1, 𝑣2} can be contracted to vertex 𝑣1 if and only if: (1) all

simplices to be removed (𝑣2, 𝑒 , and two triangles incident in 𝑒) are

not critical; and (2) either 𝑣1 or 𝑣2 is paired with e in V.
A gradient-aware edge contraction requires, in addition to the

modification of the mesh, also the update of the Forman gradient𝑉 .

When contracting edge 𝑒 , two triangles 𝑡1 and 𝑡2 adjacent to 𝑒 are

removed. The updates of 𝑉 involve at most four triangles, which

share an edge different from 𝑒 with either 𝑡1 or 𝑡2.

Since the updates are symmetric with respect to 𝑒 , we only dis-

cuss the updates on the left part of 𝑒 , where edge 𝑒 is considered as

oriented from 𝑣1 to 𝑣2. We denote the other two triangles adjacent

to 𝑡1 as 𝑡3 and 𝑡5 and the vertex opposite to 𝑒 in 𝑡1 as 𝑣3. The updates

on the left part need to ensure that vertices 𝑣1, 𝑣3, edge {𝑣1, 𝑣3},
and triangles 𝑡3 and 𝑡5 are still paired after simplification. We know

that edge 𝑒 is paired with either 𝑣1 or 𝑣2. Thus, if 𝑒 is paired with 𝑣2,

after the contraction, the pairing of 𝑣1 does not change; otherwise,

𝑣1 will be paired with the simplex paired originally to 𝑣2.

Now consider edges {𝑣1, 𝑣3} and {𝑣2, 𝑣3}. Before the contraction,
𝑡1 should have been paired with either {𝑣1, 𝑣3} or {𝑣2, 𝑣3}, since
edge 𝑒 was paired and 𝑡1 was not a critical triangle. If 𝑡1 was paired

(a) (b)

Figure 3: Two possible gradient configurations and corre-
sponding updates after contracting edge {𝑣1, 𝑣2} (in red) to 𝑣1.
Black arrows represent gradient pairs.

with {𝑣1, 𝑣3}, then {𝑣2, 𝑣3} should have been paired either with one

of its endpoints (see Figure 3(a)), or with another triangle, 𝑡5 (see

Figure 3(b)). In both cases, 𝑡3 and 𝑡5 are paired with the same sim-

plexes after the contraction. After the removal of 𝑡1 because of the

edge contraction, edge {𝑣1, 𝑣3} is paired with the simplex originally

paired with edge {𝑣2, 𝑣3}, i.e., either with one of its endpoints (see

Figure 3(a)), or with another triangle 𝑡5 (see Figure 3(b)). The same

reasoning applies when 𝑡1 was paired with {𝑣2, 𝑣3}. The same up-

date strategy is applied to the simplices on the right of the edge 𝑒

to maintain the topology of the discrete gradient [33].

6 TOPOLOGY-AWARE SIMPLIFICATION ON
TERRAIN TREES

In this section, we describe a new topology-aware simplification

algorithm we developed on a Terrain tree 𝑇 to simplify a triangle

mesh Σ. To preserve the topology of the scalar field (elevation for

terrains), the algorithm uses a Forman gradient 𝑉 computed on Σ
inside the Terrain tree and encoded as a bit vector using the same

indexing of Σ𝑇 , resulting in a cost of one byte per triangle [51].

As an error metric for edge contraction we use the Quadric Error
Metric (𝑄𝐸𝑀) [26]. For brevity, we describe in Appendix A.1 how

to compute the initial error quadrics associated with each vertex 𝑣 ,

which represent a set of planes incident in 𝑣 .

All leaf blocks in Terrain tree 𝑇 are visited through a depth-first

traversal. Algorithm 1 provides a pseudo-code description of the

simplification procedure within a leaf block b. The cost of each edge
𝑒 , which is the error introduced if 𝑒 is contracted, is computed from

the initial error quadrics of its endpoints. In our implementation,

edge 𝑒 = {𝑣1, 𝑣2} is contracted to either 𝑣1 or 𝑣2 depending on

which vertex leads to the smallest cost for edge 𝑒 . We consider 𝑒 as

a candidate edge for leaf block b only if the vertex to be removed

is contained in b, and the cost of 𝑒 is lower than a user-defined

threshold 𝜔 . Edge 𝑒 is an internal edge for b if also the other vertex

of 𝑒 is in b, otherwise 𝑒 is a cross edge.
For each leaf block b, the algorithm performs the following steps:

(1) Extract the Vertex-Triangle (VT) relations for the vertices in b

(row 1): the Vertex-Triangle (VT) relation for a vertex 𝑣 in b
is defined as the set of triangles incident in 𝑣 .

(2) Build a priority queue Q of candidate edges (row 3): the edges

in the queue are ordered by their cost.

Efficient topology-aware simplification of large triangulated terrains SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

Algorithm 1 leaf_simplification(b, Σ, V, E, 𝜔 , 𝐶 , 𝑏𝑅)

Input
b: current leaf block
Σ: the TIN
V : the Forman gradient on Σ
E: the array of vertex error quadrics

𝜔 : the edge cost threshold

𝐶: LRU cache

𝑏𝑅 : root block of the hierarchy

// Extract the local 𝑉𝑇 relations for the vertices in b

1: 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 ← local_vt(b, Σ𝑇)
// Create an array for encoding the updated edges costs

2: updated_edges← []

// Create a priority queue of candidate edges
3: Q← candidate_edges(b, Σ𝑇 , E, 𝜔)
4: while Q ≠ ∅ do
5: e← deqeue(Q) // e = {𝜈1, 𝜈2}

// Check if e has been updated and if its cost is updated
6: if e ∈ updated_edges and not same_cost(e, updated_edges)
7: then
8: skip e // If its cost is not updated, then skip this edge
9: end if
10: 𝑉𝑇 (𝜈1) ← get_vt(𝜈1, 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 , 𝐶 , 𝑏𝑅 , Σ)
11: 𝑉𝑇 (𝜈2) ← get_vt(𝜈2, 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 , 𝐶 , 𝑏𝑅 , Σ)
12: 𝐸𝑇 (e) ← get_et(e, 𝑉𝑇 (𝜈1)

// Check three conditions introduced in Section 5 for e
13: if link_condition(e, 𝑉𝑇 (𝜈1), 𝑉𝑇 (𝜈2), 𝐸𝑇 (e))
14: and fold_condition(e, 𝑉𝑇 (𝜈2), 𝐸𝑇 (e))
15: and gradient_condition(e, 𝑉𝑇 (𝜈2), 𝐸𝑇 (e), V)
16: then
17: contract(e, 𝑉𝑇 (𝜈2), 𝐸𝑇 (e), E, Σ)
18: update_gradient(e, 𝑉𝑇 (𝜈1), 𝑉𝑇 (𝜈2), 𝐸𝑇 (e), V)
19: update_index(e, 𝑉𝑇 (𝜈2), b, 𝑏𝑅)

// Update the VT relation of 𝜈1
20: VT(𝜈1)← 𝑉𝑇 (𝜈1) ∪𝑉𝑇 (𝜈2) - 𝐸𝑇 (e)

// Update the cost of edges, and add these edges to Q
21: updated_edges← update_costs(𝜈1, 𝑉𝑇 (𝜈1), E, Q)
22: end if
23: end while
24: 𝐶 ← 𝐶 ∪ 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 // Add 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 to the LRU-cache

(3) Simplify candidate edges (rows 4-23): for each candidate edge

𝑒 , the three validity conditions (introduced in Section 5) are

checked. If these conditions are satisfied, edge 𝑒 is contracted,

and the Forman gradient updated together with the Terrain

tree. This step is described in details below.

The link, fold and gradient-aware conditions are checked for

each edge 𝑒 = {𝑣1, 𝑣2} extracted from Q (row 5). To check these

conditions we need the VT relations for 𝑣1 and 𝑣2 and the Edge-
Triangle (ET) relation of 𝑒 (rows 10-12). 𝐸𝑇 (𝑒) consists of the two
triangles sharing edge 𝑒 . If 𝑒 is an internal edge,𝑉𝑇 (𝜈1) and𝑉𝑇 (𝜈2)
in function get_vt are encoded in array local_vts. Conversely, if 𝑒
is a cross edge, and 𝑣1 is contained by another leaf block 𝑏1, get_vt

must extract the VT relations of 𝑏1. To optimize this latter step, we

use an auxiliary Least Recent Used (LRU) cache 𝐶 for encoding a

subset of the extracted VT relations. When 𝑣1 is in block 𝑏1, get_vt

looks first if the VT relations of block 𝑏1 are in 𝐶 . If such relations

are not in 𝐶 , then we extract them and save them in 𝐶 .

The ET relation of a candidate edge 𝑒 is extracted by traversing

𝑉𝑇 (𝑣1) and finding triangles incident to 𝑒 (get_et procedure at

row 12). To check the link condition (row 13), the set of vertices

adjacent to 𝜈1 or 𝜈2 are extracted on-the-fly in Link_condition by

traversing the VT relations of 𝜈1 and 𝜈2.

If 𝑒 satisfies all three conditions, then it is contracted to its opti-

mized position (i.e., 𝑣1) by function contract (row 17). This proce-

dure takes as input edge e, the VT relation of 𝜈2, the ET relation of

e, the array of vertex error quadrics E, and TIN Σ. It removes vertex

𝜈2 as well as the two triangles adjacent to e. In each remaining

triangle in𝑉𝑇 (𝜈2), it replaces 𝜈2 with 𝜈1. After the contraction, the
error quadric of 𝑣1 is updated by adding the quadric of 𝜈2 to it. The

pseudo-code of function contract is in Algorithm 2 (see Appendix

A.2).

After the contraction, both the Forman gradient V and the Ter-

rain tree T are updated (rows 18-20). The update of gradient V
(update_gradient procedure at row 18) follows the method intro-

duced in Section 5. This involves up to four triangles adjacent to

triangles in 𝐸𝑇 (e) (see Figure 3 for an example). Such triangles are

retrieved by using the corresponding VT and ET relations.

The update of T is performed by function update_index (row

19). If 𝑒 is an internal edge, the current leaf block b is updated by

removing the index of 𝑣2 and the indexes of the triangles incident

in 𝑒 . If 𝑒 is a cross edge and 𝑣1 is indexed in leaf block 𝑏1, then both b
and 𝑏1 are updated in a similar way. In this latter case, the indexes

of those triangles that were incident in 𝑣2 but not encoded in 𝑏1 are

also added to 𝑏1. The VT relation of vertex 𝜈1 is updated by adding

the triangles in the VT relation of 𝜈2 and by removing the triangles

adjacent to e (row 20).

Since the error quadric of 𝑣1 is updated after the contraction of

𝑒 , the costs of all edges currently incident in 𝑣1 need to be updated

accordingly (row 21). A local auxiliary array updated_edges which

is initialized in row 4, is used to keep track of the updated edge

costs. All updated edges are added to Q again. Note that we do not

update the costs of edges in Q directly, and, therefore, each time

we process an edge e from Q, we check if 𝑒 has been updated in

previous contractions (row 6). If 𝑒 has been updated and the cost

stored with e is not the one stored in updated_edges then we discard
e and process the next edge in Q.

Finally, after the simplification of leaf block b, the 𝑙𝑜𝑐𝑎𝑙_𝑣𝑡𝑠 array
is inserted to 𝐶 (row 24).

7 PARALLEL TOPOLOGY-AWARE EDGE
CONTRACTION ON TERRAIN TREES

In this section, we propose a parallel algorithm that extends and

enhances the algorithm described in Section 6. The hierarchical

domain decomposition of Terrain trees makes them well-suited for

parallel computation since different leaf blocks can be processed at

the same time. Thus, the key idea behind our parallel simplification

strategy is to assign each leaf block to a single thread from a set of

available threads. The main challenge here is to prevent conflicts

that may occur if two threads modify the same vertex, or the same

triangle concurrently.

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Yunting Song, Riccardo Fellegara, Federico Iuricich, and Leila De Floriani

Figure 4: An example of 1-neighborhood (vertices in green)
and 2-neighborhood (vertices in green and vertices in blue)
of vertex v.

To avoid conflicts between two different threads, we have de-

veloped a leaf locking strategy, which is based on the definition

of conflict block. We say that a leaf block 𝑏0 is a conflict block for

another leaf block 𝑏1, if there exists a cross edge 𝑒 = {𝑣1, 𝑣2}, with
𝑣1 in 𝑏0 and with 𝑣2 in 𝑏1. Clearly, in this case, 𝑏1 is a conflict block

for 𝑏0 as well.

There are four possible statuses a leaf block b can have: (1) de-
fault; (2) active; (3) conflict; and (4) finished. A leaf block b is active
when it is being processed. A leaf block b is in the default status
if b is not currently processed and b is not a conflict block of any

active block. A conflict block of an active block is set to the conflict
status. When the simplification process is completed, block b has
status finished. A leaf block b can be processed only if its status is

default and none of its conflict blocks has conflict status.
We prove here that this leaf locking strategy ensures that no

conflict will occur between threads during a parallel simplifica-

tion process. Given a vertex 𝑣 in Σ, we define the set of vertices
adjacent to 𝑣 in Σ, as the 1-neighborhood of 𝑣 . We then define the

2-neighborhood of 𝑣 as the set of vertices that share an edge with

any vertex in the 1-neighborhood of 𝑣 excluding 𝑣 itself. Note that

in such a definition, the 1-neighborhood of 𝑣 is a subset of its 2-

neighborhood. An example of 1-neighborhood and 2-neighborhood

of 𝑣 in Σ is shown in Figure 4.

Let us consider an edge 𝑒 = {𝑣1, 𝑣2} being contracted to 𝑣1 on Σ.
We need to ensure that: (1) the check on 𝑒 is not affected by other

threads, and (2) the update of Σ, the Forman gradient V, and the

vertex error quadrics after contracting 𝑒 , do not conflict with any

update operations started by other threads.

From the definitions of 2-neighborhood and of the leaf locking

strategy, we have the following:

Proposition 7.1. Any vertex belonging to the 2-neighborhood of
𝑣2 cannot be removed by any thread while edge 𝑒 = {𝑣1, 𝑣2} is being
processed, and 𝑣2 is the vertex to be removed.

From Proposition 7.1, we have that no triangle in the VT relations

of 𝑣1 or 𝑣2 can bemodified by other threads. Therefore the validation

of link and fold conditions, and the update of Σ after contracting 𝑒

cannot be affected by other threads. Similarly, the error quadric of

vertex 𝑣1 can only be updated by a single thread, otherwise the other

vertex being removed is in the 2-neighborhood of 𝑣2. Although it

is possible that the cost of an edge incident in 𝑣1 is updated by a

different edge contraction operation, with the other vertex of the

edge not being modified, it is easy to prove that such edge is not a

candidate edge of current active blocks. We refer to Appendix A.3

for the proof.

Figure 5: An example of edge contraction on edge 𝑒 = {𝑣1, 𝑣2}
(in red), where 𝑣2, 𝑡1, and 𝑡2 are removed by the contraction.
Gradient pairing information of cyan triangles can be modi-
fied due to the contraction of 𝑒. Red vertices are redirected
from 𝑣2 to 𝑣1 after the contraction.

We discuss now how to check and update the Forman gradient V
during parallel simplification. From the description of the gradient-

aware edge contraction in Section 5, we have that:

Proposition 7.2. The gradient pairing information associated
with triangle 𝑡 can be modified during the contraction of edge 𝑒 only
if 𝑡 is adjacent to a triangle incident in 𝑒 , i.e., adjacent to a triangle to
be removed during the contraction of 𝑒 .

The validation of the gradient condition involves only the trian-

gles in VT(𝑣2). It is straightforward to prove that if another edge

contraction operation is modifying the gradient pairing informa-

tion of a triangle in VT(𝑣2), then the vertex to be removed by that

operation is in the 2-neighborhood of 𝑣2 and, thus, breaks the leaf

locking strategy condition.

We prove that the gradient pairing information associated with

a triangle cannot be modified by two threads at the same time.

Suppose triangle 𝑡3 in Figure 5 is modified by two threads 𝑇ℎ1
and 𝑇ℎ2 at the same time and edge 𝑒 is being removed by 𝑇ℎ1.

From Proposition 7.2, we know that 𝑡3 should be adjacent to two

triangles being removed by𝑇ℎ1 and𝑇ℎ2, respectively. Without loss

of generality, we assume that 𝑡5 (purple triangle in Figure 5) is a

triangle to be removed by𝑇ℎ2. Then, either {𝑣4, 𝑣5} or {𝑣3, 𝑣5} is the

edge to be removed by𝑇ℎ2. In both cases, the vertex to be removed

is in the 2-neighborhood of 𝑣2, which violates Proposition 7.1.

The parallel simplification strategy performs the following steps:

(1) Generating auxiliary data structures: The list of all conflict
blocks of a leaf block b, denoted as 𝐶𝑙 (b), is computed by

traversing all triangles encoded in b. Given a triangle 𝑡 with

at least one vertex in b, we check if the other two vertices of

𝑡 are also in b. If a vertex 𝑣 of 𝑡 is not in b, then, we locate
the block 𝑏𝑖 containing 𝑣 , and add 𝑏𝑖 to 𝐶𝑙 (b).

(2) Computing the initial error quadrics: The initial error quadric
of each vertex is computed using a parallel version of the

algorithm introduced in Appendix A.1.

(3) Simplification: each leaf block is simplified by a thread follow-

ing the steps described in Algorithm 1 with one difference.

Each thread needs to update the list of conflict blocks which

changes due to the undergoing simplifications, as described

below.

Assume a cross edge 𝑒 = {𝑣1, 𝑣2} is contracted to vertex 𝑣1, with

𝑣1 in block 𝑏1 and 𝑣2 in block 𝑏2. Note that 𝑒 is simplified only when

Efficient topology-aware simplification of large triangulated terrains SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

𝑏2 is a block with active status. Vertices adjacent to 𝑣2, but not to
𝑣1 (for instance, red vertices in Figure 5), are connected to 𝑣1 after

contracting edge 𝑒 to 𝑣1. For example, if vertex 𝑣6 is not encoded in

either 𝑏1 or 𝑏2, the edge connecting 𝑣6 and 𝑣1 is a cross edge and

may create a new conflict block for 𝑏1.

To update the list of conflict blocks after the contraction of a

cross edge, we modify the Link_condition procedure (row 13

of Algorithm 1) to extract also an auxiliary array 𝑣𝑣𝑜𝑢𝑡𝑒𝑟 , which

encodes the vertices adjacent to 𝑣2 that are not contained in either

𝑏1 or 𝑏2. After the contract procedure (row 17 of Algorithm 1), we

add a step for updating the conflict block list. To update𝐶𝑙 (𝑏1) after
the contraction of 𝑒 , we find, for each 𝑣 ′ in 𝑣𝑣𝑜𝑢𝑡𝑒𝑟 , the leaf block
b′ that contains 𝑣 ′, and add it to𝐶𝑙 (𝑏1) if it has not been added yet.

Similarly, 𝑏1 is added to 𝐶𝑙 (b′) when b′ is added to 𝐶𝑙 (𝑏1).
The update of 𝐶𝑙 (𝑏1) and 𝐶𝑙 (b′), when processing 𝑏2, does not

affect the concurrent simplification of other blocks. Thanks to the

definition of conflict block, both b′ and 𝑏1 are conflict blocks of 𝑏2
and, thus, they cannot be active when 𝑏2 is active. Also, being b′

and 𝑏1 in a conflict state, none of leaf blocks in their conflict lists

can have an active state.
In contrast to the sequential algorithm, the parallel one does not

use a global LRU cache 𝐶 for storing VT relations, since it could

raise resource conflicts when multiple threads access𝐶 at the same

time. Instead, a local cache at a thread level provides a safe way to

encode just the VT relations of blocks in 𝐶𝑙 (b) when processing

b. Similar to the sequential case, the local cache is accessed and

updated only when simplifying a cross edge. Once the simplification

of b is finished, the local cache is discarded.
We use OpenMP [9] to process multiple leaf blocks in parallel

in a Terrain tree. Notice that, while each step makes use of multi-

threading internally, the three steps are organized sequentially, i.e.,

each step of the pipeline is executed only when the previous one is

completed. Since the computations performed in steps 1 and 2 are

entirely local to a leaf block, they can be processed in a perfectly

parallel manner. In step 3, conflicts among threads can prevent the

simplification of a leaf block, and thus, the list of the blocks could

be traversed multiple times until all blocks are simplified.

8 EXPERIMENTAL RESULTS
In this section, we evaluate the performances of both the sequential

and parallel topology-aware terrain mesh simplification algorithms

on the Terrain tree. In subsection 8.1, we compare the performance

of the sequential topology-aware simplification on the Terrain trees

against our implementation of themost compact triangle-based data

structure for meshes, the Indexed data structure with Adjacencies

(IA data structure) [43]. In subsection 8.2, we compare the sequential

and parallel simplification strategies implemented on the Terrain

trees. The source code of the simplification algorithm based on

Terrain trees is available at [19].

All the experiments are performed on a dual Intel Xeon E5-2630

v4@2.20Ghz CPU (20 cores in total), and 64GB of RAM. A total of six

TINs, generated from raw point clouds using the CGAL library [4],

are used in our comparisons. The number of vertices per TIN varies

from 25 to 113 million (see Table 1). Molokai is a dataset consisting
of both hydrographic and topographic point cloud data provided

by NOAA National Centers for Environmental Information [39].

Table 1: Overview of experimental datasets. For each terrain,
we list the number of vertices |Σ𝑉 | and trangles |Σ𝑇 |.

Molokai Great

Smokey

Moun-

tains

Canyon

Lake

Yosemite

Rim

Fire

Dragons

Back

Ridge

Moscow

Moun-

tain

|Σ𝑉 | 25M 34M 49M 78M 91M 113M

|Σ𝑇 | 50M 68M 98M 155M 182M 226M

Great Smokey Mountains, Canyon Lake, Yosemite Rim Fire, Dragons
Back Ridge, and Moscow Mountain, are topographic LiDAR point

clouds from the OpenTopography repository [42].

The generation of the Terrain tree we use in this paper relies on

a single parameter which defines the maximum number of vertices

allowed in each leaf block of decomposition, i.e. the block capacity.
To select the block capacity for each dataset in connection with

the mesh simplification task, we establish an initial range for ca-

pacity values between 1/100000 and 1/30000 of the total number

of vertices in the data set, this is in order to have coarser hierar-

chical subdivisions, usually beneficial for tasks requiring intense

navigation of the hierarchy. Within this range, we have selected ten

different capacity values for each dataset, and we have compared

the performance in sequentially simplifying the meshes encoded

by resulting Terrain tree. Our comparisons have shown that the

memory footprint and the compression rate, defined as the ratio

between the number of vertices in the simplified mesh and in the

original one, do not change significantly when using different ca-

pacity values (up to 1.7%). Also, simplification times are highly

dataset-dependent, and the best performances are achieved with

values in the middle of the tested range. Further details of this

experimental evaluation can be found in Appendix A.4. In the fol-

lowing, for each dataset, we use the capacity value showing the best

trade-off between simplification time and memory requirements.

8.1 Topology-aware mesh simplification on the
Terrain tree and IA data structure

The IA data structure encodes a vertex array, containing the coor-

dinates of the vertices of the TIN plus the elevation, and a triangle

array encoding for each triangle 𝑡 the indexes to its three vertices

plus the indexes in the triangle array of the three triangles sharing

an edge with 𝑡 . In our implementation [20], we use an enhanced

version which also encodes for each vertex 𝑣 , the index of one

triangle incident in 𝑣 . Such an optimization allows extracting all

vertex-based relations in optimal time, i.e, in time linear in the size

of the output, and, thus, highly enhances the efficiency of the IA

data structure when performing edge contractions.

Both the Terrain tree and the IA data structure use a priority

queue for sorting candidate edges as described in Algorithm 1. The

Terrain trees use a local priority queue for candidate edges within

each leaf block, while the IA data structure uses a global queue for

storing all candidate edges of the TIN. The use of different priority

queues leads to a different order in which edges are contracted. To

estimate the impact on the simplification process, we first compare

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Yunting Song, Riccardo Fellegara, Federico Iuricich, and Leila De Floriani

the two approaches analyzing the size of the output TIN when vary-

ing the quality control parameter. Given a user-defined threshold

𝜔 , we simplify all contractible edges with cost lower than 𝜔 . Based

on the initial error quadrics, we compute the costs for all edges in

Σ, and use the quartile values to set three different thresholds.

Table 2 shows the results obtained. Using a global queue leads to

TINs that are about 1% smaller than the one obtained by the Terrain

tree. On the other hand, the simplification on the Terrain tree is

always faster. When using a larger 𝜔 , the Terrain tree is at least

twice as fast as the IA data structure. Also, when 𝜔 increases, the

memory requirements on the IA data structure also increase, while

on the Terrain tree they remain stable. While using local queues

show a slightly lower compression rate with respect to using a

global queue, timings and memory requirements are dramatically in

favor of the Terrain tree approach. This is even more relevant when

edges are simplified in bulk without setting a specific threshold for

the edge cost.

Table 3 summarizes the results obtained when simplifying all

contractible edges. Results include timings required for computing

initial error quadrics and performing the topology-aware simplifi-

cation, the memory footprint required by the simplification, and the

compression rate. On average, Terrain trees simplify 0.5% less edges

than the IA data structure, while they use from 45% to 56% less

time than the IA data structure. As shown in Table 3, the memory

peak on Terrain trees is approximately 41% less than that of the

IA data structure. Due to the higher memory requirements, only

three of the experiment datasets can be simplified using the IA data

structure.

8.2 Parallel topology-aware mesh simplification
on the Terrain tree

We evaluate here the performance of the parallel topology-aware

mesh simplification algorithm introduced in Section 7 when using

from 1 to 64 threads.

Figure 6 shows the speedup achieved by the parallel simpli-

fication algorithm when increasing the number of threads. The

approach scales well as long as the number of threads is lower than

the number of physical cores (20 in our case). The speedup still

slightly increases when using more than 20 threads, but it decreases

with more than 40.

The efficiency of the parallel algorithm can be computed as

𝐸 = 𝑇1/𝑁𝑇𝑁 , where 𝑇𝑁 is the time for the parallel algorithm us-

ing 𝑁 threads, 𝑇1 is the parallel algorithm using a single thread.

Figure 7 shows the results. Note that efficiency decreases with the

increasing of the number of threads. This is common for parallel

algorithms due to possible load imbalance and overheads during

the computation. When using 20 threads, the efficiency of the par-

allel simplification is 67% on all experimental datasets. With more

than 20 threads the efficiency decreases faster. Considering these

results, we observe that the best trade-off is achieved when the

thread number is equal to the number of available cores.

Finally, we compare the parallel and sequential mesh simpli-

fication algorithms using the same Terrain tree, and 20 threads

(see Table 3). The parallel simplification strategy provides a 12x

speedup compared to the sequential strategy, while still reaching

1 2 4 8 16 32 64

1

2

4

8

16

32

64

Number of threads

Linear

molokai

great smokey mountain

canyon lake

yosemite rim

dragons back ridge

moscow mountain

Figure 6: Speedup achieved by the parallel simplification
algorithm.

1 2 4 8 16 32 64

0

0.2

0.4

0.6

0.8

1

Number of threads

Linear

molokai

great smokey mountain

canyon lake

yosemite rim

dragons back ridge

moscow mountain

Figure 7: Efficiency achieved by the parallel simplification
algorithm.

the same compression rate. Also, even if the parallel strategy pro-

cesses multiple leaf blocks at the same time, its memory footprint

remains stable since, on average, it uses only 1% more memory than

that the sequential algorithm. These results show the scalability

and efficiency of the Terrain tree representation also when using

shared-memory processing techniques.

9 CONCLUDING REMARKS
We have presented a new method for simplifying very large trian-

gle meshes representing terrains on a compact data structure, the

Terrain tree. A Terrain tree [18] has been shown to be the most

compact data structure for triangulated terrains, which combines

a minimal connectivity-based encoding of the triangle mesh with

a spatial index as a clustering mechanism that enables an implicit

encoding of other connectivity relations.

The simplification method we presented extends the strategy

defined in [33] on a global topological data structure, which is

Efficient topology-aware simplification of large triangulated terrains SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

Table 2: Time T (in minutes), peak memory usage M (in Gigabytes), numbers of output vertices |Σ𝑉 | and triangles |Σ𝑇 | after
the simplification on the IA data structure and the Terrain tree (TT) when using different cost threshold 𝜔 . Q1, Q2, and Q3
represent the first, the second, and the third quartile edge costs of each dataset, respectively.

Molokai Great Smokey Mountain Canyon Lake

IA TT IA TT IA TT IA TT IA TT IA TT IA TT IA TT IA TT

𝜔 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

|Σ𝑉 | 21.5 21.5 17.7 17.7 13.9 13.9 29.1 29.1 24.4 24.4 19.4 19.6 40.9 41 32.8 32.8 26.4 26.4

|Σ𝑇 | 42.9 42.9 35.4 35.5 27.7 27.7 58.2 58.3 48.9 48.9 38.8 39.2 81.8 82.1 65.6 65.7 52.7 52.7

T 13.6 10.5 21.6 13.2 31.8 17.4 15.0 15.0 26.7 20.5 44.3 23 39.4 28.5 79.2 36.1 96.8 39.3

M 17.5 12.7 18.7 12.7 20.0 12.7 23.7 17.2 25.5 17.2 27.2 17.2 34.2 24.6 36.9 24.6 39.2 24.6

Table 3: Time T (in minutes), peak memory usage M (in Gigabytes), and reduction rate R (in %) of topology-aware mesh
simplification on the IA data structure, and on sequential (seq.) and parallel (para.) version on Terrain trees.

Molokai

Great Smokey Canyon Yosemite Dragons Back Moscow

Mountain Lake Rim Ridge Mountain

IA TT IA TT IA TT IA TT IA TT IA TT

seq. para. seq. para. seq. para. seq. para. seq. para. seq. para.

T 58.0 29.0 2.38 71.0 39.1 3.31 144.1 65.1 5.34 - 100.1 8.12 - 99.8 7.85 - 170.9 13.7

M 21.3 12.7 12.8 29.0 17.2 17.4 41.8 24.6 25.0 O.O.M. 39.0 39.6 O.O.M. 45.9 46.5 O.O.M. 57.4 58.0

R 73.8 73.3 73.4 75.4 75.0 75.0 75.0 74.7 74.7 - 70.6 70.6 - 80.5 80.5 - 77.7 77.7

based on a local simplification operator, called gradient-aware edge

contraction, capable of reducing the resolution of a TIN while pre-

serving the topology of the underlying terrain. This operator, paired

with a topological simplification operator, reduces the resolution

of both the topology and the geometry of a terrain in a completely

controlled way. Also, thanks to the distributed nature of Terrain

trees, we defined a parallel version of this simplification method.

The parallel strategy is based on a leaf locking strategy, that pre-

vents conflicts occurring when multiple threads try to update the

same vertex or the same triangle concurrently.

We have experimentally demonstrated how the method based

on the Terrain trees can effectively reduce the time and memory

requirements of a simplification procedure.

Compared to the IA data structure, which is the most widely

used data structure for triangle meshes, and the most compact at

the state of the art, Terrain trees require half the time and 40%

of the memory while still reaching similar simplification levels.

These results prove the scalability and efficiency of our method at

processing large-scale triangle meshes. Also, when comparing the

sequential and parallel strategies based on Terrain trees, we noticed

a further performance increase. Thanks to the local and distributed

nature of Terrain trees, the parallel strategy achieves a 12x speedup

when using 20 threads while having similar memory requirements.

The parallel strategy developed here can be easily extended to

other topology-aware edge contraction operators, such as the one

introduced in [15], since the range of simplices involved in those

topology-preserving conditions is the same as for our gradient-

aware simplification operator. Although the gradient-aware con-

traction operator is efficient and produces good-quality meshes,

some applications requires maintaining the Delaunay property

while simplifying the mesh. We plan to investigate how to preserve

Delaunay properties in the simplification process, also in connec-

tion to coastal ocean modeling for storm surge and tide simulation.

Our current parallel strategy is compatiblewith a shared-memory

processing based on OpenMP [9]. To increase its efficiency, we plan

to use specialized compilers, like ISPC
1
, and libraries, like TBB

2
.

We also plan to extend the simplification algorithm to support a

distributed-memory processing strategy based on MPI [7].

ACKNOWLEDGMENTS
This work has been partially supported by the US National Sci-

ence Foundation under grant number IIS-1910766. It has also been

performed under the auspices of the German Aerospace Center

(DLR) under Grant DLR-SC-2467209. The Great Smokey Mountains,

Canyon Lake, Yosemite Rim Fire, Dragons Back Ridge, and Moscow

Mountain point clouds are kindly provided by the OpenTopography

Facility with support from the National Science Foundation under

NSF Award Numbers 1948997, 1948994 & 1948857. The Molokai

point cloud is kindly provided by NOAA National Centers for Envi-

ronmental Information.

REFERENCES
[1] Chandrajit L. Bajaj and Daniel R. Schikore. 1998. Topology preserving data

simplification with error bounds. Computers & Graphics 22, 1 (1998), 3–12.

https://doi.org/10.1016/S0097-8493(97)00079-4

[2] Peer-Timo Bremer, Valerio Pascucci, and Bernd Hamann. 2009. Maximizing

Adaptivity in Hierarchical Topological Models Using Cancellation Trees. In

Mathematical Foundations of Scientific Visualization, Computer Graphics, and
Massive Data Exploration. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–18.

https://doi.org/10.1007/b106657_1

[3] Daniela Cabiddu and Marco Attene. 2015. Large mesh simplification for dis-

tributed environments. Computers & Graphics 51 (2015), 81–89. https://doi.org/

10.1016/j.cag.2015.05.015

1
https://ispc.github.io/

2
https://software.intel.com/en-us/oneapi/onetbb

https://doi.org/10.5069/G98050JG
https://doi.org/10.5069/G9MS3QNS
https://doi.org/10.5069/G9V69GJ4
https://doi.org/10.5069/G99Z92TC
https://doi.org/10.5069/G9G15XS0
https://doi.org/10.5069/G9G15XS0
https://www.fisheries.noaa.gov/inport/item/49753
https://doi.org/10.1016/S0097-8493(97)00079-4
https://doi.org/10.1007/b106657_1
https://doi.org/10.1016/j.cag.2015.05.015
https://doi.org/10.1016/j.cag.2015.05.015
https://ispc.github.io/
https://software.intel.com/en-us/oneapi/onetbb

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Yunting Song, Riccardo Fellegara, Federico Iuricich, and Leila De Floriani

[4] CGAL 2021. Computational Geometry Algorithms Library (CGAL). https:

//www.cgal.org/ [Online; accessed February-2021].

[5] P. Ciarlet and Françoise Lamour. 1996. Does contraction preserve triangular

meshes? Numerical Algorithms 13 (1996), 201–223.
[6] P. Cignoni, C. Montani, and R. Scopigno. 1998. A comparison of mesh sim-

plification algorithms. Computers & Graphics 22, 1 (1998), 37–54. https:

//doi.org/10.1016/S0097-8493(97)00082-4

[7] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. 1994. The MPI Message

Passing Interface Standard. In Programming Environments for Massively Parallel
Distributed Systems, Karsten M. Decker and René M. Rehmann (Eds.). Birkhäuser

Basel, Basel, 213–218.

[8] Lidija Čomić, Leila De Floriani, and Federico Iuricich. 2012. Dimension-

Independent Multi-Resolution Morse Complexes. Computers & Graphics 36,
5 (Aug. 2012), 541–547. https://doi.org/10.1016/j.cag.2012.03.010

[9] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry standard API

for shared-memory programming. Computational Science & Engineering 5, 1

(1998), 46–55.

[10] Emanuele Danovaro, Leila De Floriani, Paola Magillo, Mohammed Mostefa

Mesmoudi, and Enrico Puppo. 2003. Morphology-Driven Simplification and

Multiresolution Modeling of Terrains. In Proceedings of the 11th ACM Inter-
national Symposium on Advances in Geographic Information Systems (GIS ’03).
Association for Computing Machinery, New York, NY, USA, 63–70. https:

//doi.org/10.1145/956676.956685

[11] Leila De Floriani, Ulderico Fugacci, Federico Iuricich, and Paola Magillo. 2015.

Morse Complexes for Shape Segmentation and Homological Analysis: Discrete

Models and Algorithms. Computer Graphics Forum 34, 2 (2015), 761–785. https:

//doi.org/10.1111/cgf.12596

[12] Leila De Floriani and Annie Hui. 2005. Data structures for simplicial complexes:

An analysis and a comparison. In Proceedings of the third Eurographics symposium
on Geometry processing (SGP ’05). Eurographics Association, Goslar, Germany,

119–128.

[13] Frank Dehne, Chiristian Langis, and Gerhard Roth. 2000. Mesh simplification in

parallel. In Algorithms And Architectures For Parallel Processing (ICA3PP 2000).
World Scientific, 281–290.

[14] Tamal K. Dey, Herbert Edelsbrunner, Sumanta Guha, and Dmitry V. Nekhayev.

1998. Topology preserving edge contraction. Publications de l’Institut Mathéma-
tique 66 (1998), 23–45.

[15] Tamal K. Dey and Ryan Slechta. 2018. Edge contraction in persistence-generated

discrete Morse vector fields. Computers & Graphics 74 (2018), 33–43. https:

//doi.org/10.1016/j.cag.2018.05.002

[16] Tamal K. Dey, Jiayuan Wang, and Yusu Wang. 2017. Improved Road Network

Reconstruction Using Discrete Morse Theory. In Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems. ACM, 1–4. https://doi.org/10.1145/3139958.3140031

[17] Herbert Edelsbrunner and John Harer. 2008. Persistent homology-a survey.

Contemp. Math. 453 (2008), 257–282.
[18] Riccardo Fellegara, Federico Iuricich, and Leila De Floriani. 2017. Efficient repre-

sentation and analysis of triangulated terrains. In Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Sys-
tems. ACM, New York, NY, USA, 1–4. https://doi.org/10.1145/3139958.3140050

[19] Riccardo Fellegara and Yunting Song. 2021. Terrain trees library code repository.

https://github.com/FellegaraR/Terrain_Trees.

[20] Riccardo Fellegara and Yunting Song. 2021. Terrain_Analysis_on_IA. https:

//github.com/UMDGeoVis/Terrain_Analysis_on_IA [Online; accessed January-

2021].

[21] Riccardo Fellegara, Kenneth Weiss, and Leila De Floriani. 2021. The Stellar

decomposition: A compact representation for simplicial complexes and beyond.

Computers & Graphics (2021). https://doi.org/10.1016/j.cag.2021.05.002

[22] Robin Forman. 1998. Morse theory for cell complexes. Advances in Mathematics
134 (1998), 90–145.

[23] Martin Franc and Václav Skala. 2000. Parallel triangular mesh reduction. In

Proceedings of scientific computing (ALGORITMY 2000). 357–367.
[24] Ulderico Fugacci, Michael Kerber, and Hugo Manet. 2020. Topology-Preserving

Terrain Simplification. In Proceedings of the 28th International Conference on
Advances in Geographic Information Systems (SIGSPATIAL ’20). ACM, New York,

NY, USA, 36–47. https://doi.org/10.1145/3397536.3422237

[25] Ulderico Fugacci, Claudia Landi, and Hanife Varlı. 2020. Critical Sets of PL and

Discrete Morse Theory: A Correspondence. Computers & Graphics 90 (Aug. 2020),
43–50. https://doi.org/10.1016/j.cag.2020.05.020

[26] Michael Garland. 1999. Quadric-Based Polygonal Surface Simplification. Ph.D.
Dissertation. Carnegie-Mellon University, Pittsburgh, PA.

[27] Nico Grund, Evgenij Derzapf, and Michael Guthe. 2011. Instant Level-of-Detail.

In Vision, Modeling, and Visualization (2011), Peter Eisert, Joachim Hornegger,

and Konrad Polthier (Eds.). The Eurographics Association. https://doi.org/10.

2312/PE/VMV/VMV11/293-299

[28] André Guéziec. 1999. Locally toleranced surface simplification. IEEE Transactions
on Visualization and Computer Graphics 5, 2 (1999), 168–189.

[29] T. Gurung and J. Rossignac. 2009. SOT: A compact representation for tetrahedral

meshes. In Proceedings SIAM/ACM Geometric and Physical Modeling (SPM ’09).
ACM, New York, USA, 79–88. https://doi.org/10.1145/1629255.1629266

[30] Attila Gyulassy, Mark Duchaineau, Vijay Natarajan, Valerio Pascucci, Eduardo

Bringa, Andrew Higginbotham, and Bernd Hamann. 2007. Topologically Clean

Distance Fields. IEEE Transactions on Visualization and Computer Graphics 13, 6
(Nov. 2007), 1432–1439. https://doi.org/10.1109/TVCG.2007.70603

[31] Paul S. Heckbert and Michael Garland. 1997. Survey of polygonal surface simplifi-
cation algorithms. Carnegie Mellon University technical report. Carnegie-Mellon

Univ Pittsburgh PA School of Computer Science, Pittsburgh, PA.

[32] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner

Stuetzle. 1993. Mesh Optimization. In Proceedings of the 20th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’93). ACM, New

York, NY, USA, 19–26. https://doi.org/10.1145/166117.166119

[33] Federico Iuricich and Leila De Floriani. 2017. Hierarchical Forman Triangulation:

A multiscale model for scalar field analysis. Computers & Graphics 66 (2017),

113–123. https://doi.org/10.1016/j.cag.2017.05.015

[34] Reinhard Klein, Gunther Liebich, and Wolfgang Straßer. 1996. Mesh Reduction

with Error Control. In Proceedings of the 7th Conference on Visualization ’96 (VIS
’96). IEEE Computer Society Press, Washington, DC, USA, 311–318.

[35] Hyunho Lee and Min-Ho Kyung. 2016. Parallel mesh simplification using em-

bedded tree collapsing. The Visual Computer 32, 6 (2016), 967–976.
[36] Jonas Lukasczyk, Christoph Garth, Ross Maciejewski, and Julien Tierny. 2021.

Localized Topological Simplification of Scalar Data. IEEE Transactions on Visu-
alization and Computer Graphics 27, 2 (Feb. 2021), 572–582. https://doi.org/10.

1109/TVCG.2020.3030353

[37] Yukio Matsumoto. 2002. An introduction to Morse theory. Vol. 208. American

Mathematical Soc.

[38] John Willard Milnor, Michael Spivak, and Robert Wells. 1969. Morse theory. Vol. 1.
Princeton University Press, New Jersey.

[39] OCM Partners. 2021. 2013 USACE NCMP Topobathy Lidar: Molokai (HI) . NOAA

National Centers for Environmental Information, https://www.fisheries.noaa.

gov/inport/item/49753.

[40] Thomas Odaker, Dieter Kranzlmueller, and Jens Volkert. 2016. GPU-Accelerated

Real-Time Mesh Simplification Using Parallel Half Edge Collapses. InMathemati-
cal and Engineering Methods in Computer Science (MEMICS 2015). Springer, Cham,

Berlin, Heidelberg, 107–118. https://doi.org/10.1007/978-3-319-29817-7_10

[41] Małgorzata Olejniczak, André Severo Pereira Gomes, and Julien Tierny. 2020. A

Topological Data Analysis Perspective on Noncovalent Interactions in Relativistic

Calculations. International Journal of Quantum Chemistry 120, 8 (April 2020).

https://doi.org/10.1002/qua.26133

[42] OpenTopography 2020. OpenTopography - High-Resolution Topography Data

and Tools. http://www.opentopography.org/ [Online; accessed January-2020].

[43] Alberto Paoluzzi, Fausto Bernardini, Carlo Cattani, and Vincenzo Ferrucci. 1993.

Dimension-independent modeling with simplicial complexes. ACM Transactions
on Graphics (TOG) 12, 1 (1993), 56–102.

[44] Alexandros Papageorgiou and Nikos Platis. 2015. Triangular mesh simplification

on the GPU. Visual Computer 31, 2 (2015), 235–244. https://doi.org/10.1007/

s00371-014-1039-x

[45] Vanessa Robins, Peter John Wood, and Adrian P. Sheppard. 2011. Theory and

algorithms for constructing discrete morse complexes from grayscale digital

images. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 8
(2011), 1646–1658. https://doi.org/10.1109/TPAMI.2011.95

[46] Jarek Rossignac and Paul Borrel. 1993. Multi-resolution 3D approximations for

rendering complex scenes. In Modeling in Computer Graphics. Springer, Berlin,
Heidelberg, 455–465.

[47] J. Rossignac, A. Safonova, and A. Szymczak. 2001. 3D compression Made Simple:

Edge-Breaker on a Corner Table. In Proceedings Shape Modeling International
2001. IEEE Computer Society, Genova, Italy.

[48] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. 1992. Dec-

imation of Triangle Meshes. In Proceedings of the 19th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’92). ACM, New York,

NY, USA, 65–70. https://doi.org/10.1145/133994.134010

[49] Jo Talton. 2004. A short survey of mesh simplification algorithms. Technical report.
University of Illinois at Urbana-Champaign. https://truesculpt.googlecode.com/

hg/Doc/mesh_simplification.pdf

[50] Akash Anil Valsangkar, Joy Merwin Monteiro, Vidya Narayanan, Ingrid Hotz,

and Vijay Natarajan. 2019. An Exploratory Framework for Cyclone Identification

and Tracking. IEEE Transactions on Visualization and Computer Graphics 25, 3
(March 2019), 1460–1473. https://doi.org/10.1109/TVCG.2018.2810068

[51] K. Weiss, F. Iuricich, R. Fellegara, and L. De Floriani. 2013. A primal/dual represen-

tation for discrete Morse complexes on tetrahedral meshes. Computer Graphics
Forum 32, 3 (2013), 361–370. https://doi.org/10.1111/cgf.12123

[52] Xin Xu, Federico Iuricich, and Leila De Floriani. 2020. A Persistence-Based

Approach for Individual Tree Mapping. In Proceedings of the 28th International
Conference on Advances in Geographic Information Systems. ACM, 191–194. https:

//doi.org/10.1145/3397536.3422231

https://www.cgal.org/
https://www.cgal.org/
https://doi.org/10.1016/S0097-8493(97)00082-4
https://doi.org/10.1016/S0097-8493(97)00082-4
https://doi.org/10.1016/j.cag.2012.03.010
https://doi.org/10.1145/956676.956685
https://doi.org/10.1145/956676.956685
https://doi.org/10.1111/cgf.12596
https://doi.org/10.1111/cgf.12596
https://doi.org/10.1016/j.cag.2018.05.002
https://doi.org/10.1016/j.cag.2018.05.002
https://doi.org/10.1145/3139958.3140031
https://doi.org/10.1145/3139958.3140050
https://github.com/FellegaraR/Terrain_Trees
https://github.com/UMDGeoVis/Terrain_Analysis_on_IA
https://github.com/UMDGeoVis/Terrain_Analysis_on_IA
https://doi.org/10.1016/j.cag.2021.05.002
https://doi.org/10.1145/3397536.3422237
https://doi.org/10.1016/j.cag.2020.05.020
https://doi.org/10.2312/PE/VMV/VMV11/293-299
https://doi.org/10.2312/PE/VMV/VMV11/293-299
https://doi.org/10.1145/1629255.1629266
https://doi.org/10.1109/TVCG.2007.70603
https://doi.org/10.1145/166117.166119
https://doi.org/10.1016/j.cag.2017.05.015
https://doi.org/10.1109/TVCG.2020.3030353
https://doi.org/10.1109/TVCG.2020.3030353
https://www.fisheries.noaa.gov/inport/item/49753
https://www.fisheries.noaa.gov/inport/item/49753
https://doi.org/10.1007/978-3-319-29817-7_10
https://doi.org/10.1002/qua.26133
http://www.opentopography.org/
https://doi.org/10.1007/s00371-014-1039-x
https://doi.org/10.1007/s00371-014-1039-x
https://doi.org/10.1109/TPAMI.2011.95
https://doi.org/10.1145/133994.134010
https://truesculpt.googlecode.com/hg/Doc/mesh_simplification.pdf
https://truesculpt.googlecode.com/hg/Doc/mesh_simplification.pdf
https://doi.org/10.1109/TVCG.2018.2810068
https://doi.org/10.1111/cgf.12123
https://doi.org/10.1145/3397536.3422231
https://doi.org/10.1145/3397536.3422231

Efficient topology-aware simplification of large triangulated terrains SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

A APPENDIX
A.1 Computing the quadric error matrix on

Terrain trees
In the Quadric Error Metric (QEM) [26], the error at one vertex 𝑣

of a triangle mesh Σ is defined as the sum of the squared distances

to the planes of the triangles incident in 𝑣 . The error at 𝑣 with

respect to a plane 𝑃 is calculated as Δ𝑃 (𝑣) = 𝑣𝑇𝐾𝑃𝑣 , where 𝐾𝑃 is

a 4 × 4 matrix called fundamental error quadric. The overall error
at 𝑣 can be represented as Δ(𝑣) = 𝑣𝑇𝑄𝑣𝑣 . 𝑄𝑣 is called initial error
quadric at 𝑣 , and is the sum of the fundamental error quadric with

respect to the plane defined by each triangle incident in 𝑣 . The cost,
or error, introduced by contracting edge 𝑒 = {𝑣1, 𝑣2} is defined as

Δ(𝑣) = 𝑣𝑇 (𝑄1+𝑄2)𝑣 , where𝑄1 and𝑄2 are the initial error quadrics

at 𝑣1 and 𝑣2, respectively. The quadric error of 𝑣2 is accumulated

to 𝑣1 when e is contracted to 𝑣1. Therefore the cost of e reflects
the change from the original mesh to the approximation after the

contraction of e.
In each leaf block b, the quadric error matrices E of vertices in b

are computed during a traversal of its triangle list. For each triangle

𝑡 in b:

(1) check if at least one vertex of 𝑡 contained in b. If not, skip 𝑡 ,
otherwise perform step (2);

(2) calculate the fundamental error quadric 𝐾𝑝 of the plane on

which 𝑡 lies;

(3) for each vertex 𝑣 of 𝑡 , if 𝑣 is contained in b, add 𝐾𝑝 to its

initial error quadric E[𝑣].
Note that the fundamental error quadric associated with a trian-

gle may be computed more than once if its vertices are in different

leaf blocks. This will slightly increase the computation time com-

pared to traversing through the global triangle array Σ𝑇 of Σ and

calculate the corresponding fundamental error quadrics. On the

other hand, the computation of the initial error quadrics at the

vertices in different leaf blocks are completely independent and

fully local to each leaf block. This is optimal for computing the

quadric error matrices of Σ in parallel.

A.2 Performing an edge contraction
In this section, we describe how an edge contraction is performed.

Algorithm 2 depicts the edge contraction operation at row 17 of

Algorithm 1. The algorithm removes the two triangles adjacent to

e and vertex 𝜈 𝑗 (row 2 and row 8). In each remaining triangle in

𝑉𝑇 (𝜈 𝑗), it replaces 𝜈 𝑗 with 𝜈𝑖 (row 4 to 6). After the contraction,

the error quadric of the remaining vertex 𝜈𝑖 is updated by adding

the quadric of 𝜈 𝑗 to it (row 7).

A.3 Correctness proof of the parallel
simplification algorithm

In this section, we provide the correctness proof of Proposition 7.1

and an explanation of why the possible edge cost conflicts cannot

affect the parallel simplification.

We recall Proposition 7.1:

Proposition 7.1. Any vertex belonging to the 2-neighborhood of
𝑣2 cannot be removed by any thread while edge 𝑒 = {𝑣1, 𝑣2} is being
processed, and 𝑣2 is the vertex to be removed.

Algorithm 2 contract(e, VT(𝜈 𝑗), ET(e), E, Σ)

Input
e = {𝜈𝑖 , 𝜈 𝑗 }: edge to be contracted to 𝜈𝑖
𝑉𝑇 (𝜈 𝑗): the Vertex-Triangle relation of 𝜈 𝑗
𝐸𝑇 (e): the Edge-Triangle relation of e
E: the array of vertex error quadrics

Σ: the triangulated terrain

1: for each 𝑡 in 𝐸𝑇 (e) do
2: Σ← Σ − {𝑡} // Remove 𝑡 from Σ
3: end for

// For each triangle 𝑡 incident in 𝜈 𝑗 but not adjacent to e
4: for each 𝑡 in (𝑉𝑇 (𝜈 𝑗) − 𝐸𝑇 (e)) do
5: 𝑡 ← (𝑡 − 𝜈 𝑗) ∪ 𝜈𝑖 // Replace 𝜈 𝑗 with 𝜈𝑖 in 𝑡
6: end for
7: E[𝑖] ← E[𝑖] + E[𝑗] // Update the error quadric at vertex 𝜈𝑖
8: Σ← Σ − {𝜈 𝑗 } // Remove 𝜈 𝑗 from Σ

Figure 8: An example of a vertex 𝑣 and two vertices in its
2-neighborhood.

Consider a vertex 𝑣 in leaf block 𝑏1 to be removed in an edge con-

traction operation in the parallel simplification, from the definition

of 2-neighborhood, we know that a vertex 𝑣 ′ in the 2-neighborhood

either is adjacent to 𝑣 (e.g., 𝑣1 in Figure 8) or has a sharing adjacent

vertex with 𝑣 (e.g., 𝑣2 in Figure 8). We first consider the case that a

vertex 𝑣2 shares an adjacent vertex 𝑣1 with 𝑣 . There are two edges

𝑒1 = {𝑣, 𝑣1} and 𝑒2 = {𝑣1, 𝑣2} between 𝑣 and 𝑣2. There are three
possible cases for 𝑒1 and 𝑒2: (1) both of them are internal edges,

(2) one of them is an internal edge, the other one is a cross edge,

(3) both of them are cross edges. In case (1), 𝑣 and 𝑣2 belong to

the same block and cannot be removed at the same time. In case

(2), 𝑣2 belongs to a conflict block of 𝑏, while in case (3), 𝑣2 belongs

to a block 𝑏2 which shares a conflict block 𝑏1 with 𝑏 as shown in

Figure 8. In both cases, the block encoding 𝑣2 cannot be processed

when 𝑏 is in status active according to the definition of leaf locking

strategy. Recall that for a leaf block 𝑏, an edge is only considered

as candidate if the vertex to be removed is encoded in 𝑏. Therefore

𝑣2 cannot be removed when the block encoding it is not active.
Similarly, when 𝑣 ′ is adjacent to 𝑣 , 𝑣 ′ is either in 𝑏 or in a con-

flict block of 𝑏. In both cases, 𝑣 ′ cannot be considered in an edge

contraction operation.

In section 7, we proved that the leaf locking strategy ensures that

the validation of three conditions and most of the update within an

active block will not be affected by other threads. But it is possible

that the cost of one edge is updated by different threads at the same

time. Let us consider an edge 𝑒1 = {𝑣1, 𝑣2} being contracted to 𝑣2

SIGSPATIAL ’21, November 2–5, 2021, Beijing, China Yunting Song, Riccardo Fellegara, Federico Iuricich, and Leila De Floriani

Table 4: Time (in minutes) (denoted as T), peak memory usage (in Gigabytes) (denoted as M), and reduction rate (in %) (denoted
as R) of simplification when using different capacity values (denoted as C) for the subdivision of Terrain tree.

Molokai Great Smokey Mountains Canyon Lake Yosemite Rim Fire Dragons Back Ridge Moscow Mountain

C T M R C T M R C T M R C T M R C T M R C T M R

300 36.3 12.8 73.1 300 44.8 17.4 74.7 450 70.9 24.9 74.6 600 104.2 39.5 70.6 600 117.3 46.3 80.4 900 186.4 57.2 77.5

400 35.1 12.8 73.2 400 45.2 17.3 74.9 600 68.7 24.7 74.6 800 99.1 39.4 70.6 900 100.5 46.2 80.4 1200 185.7 57.6 77.5

500 29.5 12.7 73.3 500 39.4 17.3 74.9 750 68.8 24.9 74.6 1000 100.1 39.0 70.6 1200 99.8 45.9 80.5 1500 192.9 57.1 77.6

600 29.0 12.8 73.3 600 41.9 17.3 75.0 900 65.1 24.6 74.7 1200 100.5 39.4 70.6 1500 129.2 46.0 80.6 1800 188.7 57.4 77.6

700 29.0 12.7 73.3 700 39.8 17.3 75.0 1050 68.4 24.9 74.7 1400 100.3 39.4 70.6 1800 126.7 45.9 80.6 2100 172.0 57.5 77.6

800 29.5 12.7 73.4 800 39.1 17.2 75.0 1200 66.5 24.6 74.7 1600 100.9 39.3 70.6 2100 127.9 46.1 80.6 2400 170.9 57.4 77.7

900 29.1 12.7 73.4 900 39.4 17.3 75.0 1350 66.7 24.8 74.7 1800 102.2 39.2 70.6 2400 131.7 45.7 80.6 2700 176.9 57.3 77.7

1000 29.2 12.7 73.4 1000 39.4 17.3 75.0 1500 73.2 24.8 74.8 2000 106.7 38.9 70.7 2700 131.8 46.1 80.6 3000 176.3 56.9 77.7

1100 29.2 12.8 73.4 1100 39.6 17.4 75.0 1650 75.5 24.7 74.8 2200 111.4 39.3 70.7 3000 129.8 46.1 80.6 3300 177.2 57.3 77.7

1200 29.8 12.7 73.4 1200 39.5 17.3 75.1 1800 73.3 24.6 74.8 2400 106.8 39.2 70.7 3300 129.6 46.0 80.6 3600 173.9 57.2 77.7

Figure 9: (a) shows an example of a possible conflict occurring
when two edges are contracted at the same time (triangles
are not displayed for clarity). Edge 𝑒1 = {𝑣1, 𝑣2} is contracted
to 𝑣2 and edge 𝑒2 = {𝑣3, 𝑣4} is contracted to 𝑣3. (b) shows a case
that blocks encoding 𝑣1 and 𝑣4 can be active at the same time
under the leaf locking strategy, and (c) shows an invalid case
in which 𝑣1 and 𝑣4 cannot be removed at the same time.

and another edge 𝑒2 = {𝑣3, 𝑣4} being contracted to 𝑣3 on Σ. If 𝑣2
and 𝑣3 are connected by an edge 𝑒0, it is still possible that 𝑒1 and

𝑒2 are contracted by different threads at the same time since 𝑣1
and 𝑣4 are not in each other’s 2-neighborhood. Assume that 𝑒1 is

contracted on 𝑇ℎ1 and 𝑒2 is contracted on 𝑇ℎ2. If 𝑇ℎ1 updates the

error quadric of 𝑣2 and the cost of 𝑒0 before error quadric of 𝑣3
is updated on 𝑇ℎ2, then 𝑇ℎ2 will have a different updated cost of

𝑒0 since it calculates with two updated error quadrics. But such

a conflict will not affect the simplification on either thread, since,

this case can only happen when 𝑒0, 𝑒1, and 𝑒2 are all cross edges

(see Figure 9(b)). Otherwise, like the example in Figure 9(c), leaf

blocks encoding 𝑣1 and 𝑣4 must be conflict block of each other and

so that 𝑒1 and 𝑒2 cannot be simplified at the same time. When all

three edges are cross edges, neither endpoints of 𝑒0 is encoded in

the same block as 𝑣1 or 𝑣4, and thus, it is not a candidate edge in

these blocks. Therefore although it is possible that the cost of an

edge is updated by different threads, such edge is not a candidate

edge of current active blocks and will not affect the simplification

of those blocks.

A.4 Experiments on leaf capacity selection
In this section we present the results in which we evaluate the

performance of simplification algorithm when using different ca-

pacity thresholds on Terrain trees. Recall that a capacity defines

the maximum number of vertices that each leaf block can contain.

Table 4 shows the performances of sequential topology-aware

mesh simplification on the Terrain tree. The memory footprint does

not change significantly when using different leaf capacities. The

same holds for the percentage of edges contracted. Depending on

the dataset, timings may vary. For example, on the Molokai dataset,

the simplification is 21% faster when a shallower hierarchy (larger

capacity) is used, while on Dragons Back Ridge, using a deeper

hierarchy (smaller capacity) reduces the simplification time by 24%.

The simplification time is stable when the capacity value varies

in a small range. Overall, the results show that even selecting a

suboptimal capacity for generating a Terrain Tree, performances

are not severely affected and the algorithm still performs well. In

the paper, we keep only one capacity value for each dataset to

use in the experiments. In general, we use the capacity value that

leads to the shortest simplification time, but when the variation in

time is small (less than 1%), we consider also the memory cost and

the reduction rate. The capacity value selected for each dataset is

denoted in Table 4 in bold face.

	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 Terrain trees
	5 Topology-aware edge contraction
	6 topology-aware simplification on Terrain trees
	7 Parallel topology-aware edge contraction on Terrain trees
	8 Experimental results
	8.1 Topology-aware mesh simplification on the Terrain tree and IA data structure
	8.2 Parallel topology-aware mesh simplification on the Terrain tree

	9 Concluding remarks
	Acknowledgments
	References
	A Appendix
	A.1 Computing the quadric error matrix on Terrain trees
	A.2 Performing an edge contraction
	A.3 Correctness proof of the parallel simplification algorithm
	A.4 Experiments on leaf capacity selection

