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Abstract
In the field of computer vision, the introduction of a low-level preprocessing step to oversegment images into su-

perpixels – relatively small regions whose boundaries agree with those of the semantic entities in the scene – has
enabled advances in segmentation by reducing the number of elements to be labeled from hundreds of thousands,
or millions, to a just few hundred. While some recent works in mesh processing have used an analogous over-
segmentation, they were not intended to be general and have relied on graph cut techniques that do not scale to
current mesh sizes. Here, we present an iterative superfacet algorithm and introduce adaptations of underseg-
mentation error and compactness, which are well-motivated and principled metrics from the vision community.
We demonstrate that our approach produces results comparable to those of the normalized cuts algorithm when
evaluated on the Princeton Segmentation Benchmark, while requiring orders of magnitude less time and memory
and easily scaling to, and enabling the processing of, much larger meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

With the advent of higher-resolution geometry acquisition

technologies, mesh sizes are growing larger and larger, cre-

ating a need for techniques that can enable their process-

ing using available computing resources effectively and ef-

ficiently. Digital imaging has previously experienced such

a growth and continues to do so. In order to enable the se-

mantic processing of large images by computer vision appli-

cations, the concept of superpixels was proposed well over

a decade ago [RM03]. These comparatively small regions

are the result of an oversegmentation whose boundaries are

aimed to coincide with those of the semantic elements in the

scene. By relying on superpixels rather than directly on pix-

els, applications can reduce the number of elements under

consideration from hundreds of thousands, or even millions,

to just a few hundred [RM03, LSD10, FGYZ13].

Recent geometry processing works in the area of co-

segmentation have relied on a similar oversegmention con-

cept, which we may call superfacets. In particular, the de

facto standard has become normalized cuts [SM97, GF08].

While this technique is straightforward to use and produces

reliable results, its complexity in time and memory implies

that it does not scale to meshes larger than a few tens of

thousands of triangles.

Contributions: Inspired by recent advances in computer vi-

sion, we present a novel technique for computing superfacets

based on an iterative k-means-style approach, computed over

the face graph of the mesh. We introduce an especially-

tailored edge weighting for the face graph that is scale-

invariant and robust to varying mesh resolution, while in-

corporating terms to favor regularly-shaped superfacets that

also adhere to mesh concavities. Our approach is straight-

forward to implement, yet requires orders of magnitude less

memory and running time compared to the normalized cuts

approach, enabling the processing of meshes with several

million triangles. For an objective, numerical evaluation of

our approach, we adapt standard metrics used for the evalu-

ation of superpixels and evaluate our approach on the Prin-

centon Mesh Segmentation Benchmark [CGF09], showing

it to produce results which are comparable and often better

than those resulting from the normalized cuts approach. In

order to demonstrate the advantages of our proposed edge

weighting, we compare our results to those obtained using

an existing weighting [STK02] and show the error to be sub-

stantially lower. Finally, we compare our results with those

of Variational Shape Approximation [CSAD04], a very well

established variational approach, and show our concavity-

favoring heuristic to be well warranted.
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Figure 1: Our superfacet method scales to very large, high-resolution meshes. To process such meshes, normalized cuts would
require between 9GB (in the smallest case) and 90TB (in the largest case) of storage for all-pairs distances alone (see Section 5)
and a running time which would make it inapplicable in practice (see Figure 5). In contrast, our approach has a modest memory
footprint, which is linear on the input mesh size. These results were obtained using 150 superfacets and α = 200, which controls
the tradeoff between compactness and boundary adherence (see Figure 2). For details on mesh sizes and running times of our
approach, please refer to Table 1.

2. Related work

Image segmentation Within computer vision and image

processing, the use of superpixels has gained wide adop-

tion over the last decade. The technique consists of an

oversegmetation of the image into relatively small regions

whose boundaries agree with those of the semantic entities

in the scene. This is motivated by two main reasons: first,

as pointed out by Ren et al. [RM03], pixels are not natural

image entities. Moreover, low-level cues may not be appro-

priate for feature tracking since they are subject to occlusion

and clutter. By reducing the number of elements to be la-

beled from hundreds of thousands, or millions, to a just few

hundred the semantic segmentation problem becomes much

more tractable.

Superpixels have been used to improve the speed and

quality of the results of image segmentation algorithms

[RM03, HZR06, MPW∗09, KNKY11, ZSL∗13], and have

been applied to mode searching [Mor05], contour clo-

sure [LSD10], image labeling [VFB11], object localiza-

tion [FVS09, LFWZ13], and saliency detection [FGYZ13].

Superpixels have also provided benefits in the field of

video segmentation [RAPM10] and feature tracking [RM07,

WLYY11].

Since their introduction, myriad techniques have been

investigated for the generation of superpixels, including

watershed [VS91], normalized cuts [SM97], mean shift

[CMM02], minimum spanning trees [FH04], medoid shift

[VS08], level sets [LSK∗09], lattice constraints [MPW10],

gradient variations [VBM10, ZHMB11], random walks

[LTRC11], hill climbing [dBBR∗12], geodesic k-means

[WZG∗12], and reciprocal nearest neighbors [LV13].

Of particular importance to our method is the Simple

Linear Iterative Clustering (SLIC) approach introduced by

Achanta et al. [ASS∗12]. This fast and memory-efficient su-

perpixel algorithm is based on k-means. However, for each

centroid, the radius within which distances are evaluated is

limited by a constant proportional to the desired superpixel

size. This results in the complexity of the algorithm being

linear on the image size and not dependent on the number

of desired superpixels. Achanta et al. show that the SLIC

approach compares favorably to the state of the art while

being the fastest and most memory efficient of the methods

compared. Our contribution is to adapt the SLIC technique
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for use on polygonal meshes, thus maintaining the speed

and memory efficiency which allow our technique to scale

to much larger mesh sizes compared to current graph-based

methods whose complexity and storage costs limit them to

mesh sizes of a few tens of thousands of triangles.

Mesh segmentation A full discussion of the vast area of

mesh segmentation algorithms is out of the scope of this pa-

per. We refer the interested reader to available in-depth sur-

veys [Sha08, Sim09, Liu09]. Instead, we focus on the mesh

segmentation approaches most relevant to the method pre-

sented in this paper.

Of the mesh segmentation algorithms, perhaps the most

related to our approach is that of Shlafman et al. [STK02],

who also use a k-means style iterative approach. However, in

contrast to our approach, their metric is not scale invariant,

and they compute distances to all vertices from each centroid

at every iteration.

Cohen-Steiner et al. also present a related k-means-style

algorithm called Variational Shape Approximation (VSA)

[CSAD04] designed to approximate a given mesh using a

number of planar proxies. Errors are measured using one of

two metrics. The L2 measures the orthogonal distances from

faces in the region to their best-fit plane, while the L2,1 only

factors normal deviations from the region’s mean normal. In

order to avoid computing errors from every proxy to every

face, this method employs a single priority queue. However,

once elements are taken from the queue in the classification

stage, they are not revisited by other proxies. This is in con-

trast to our approach which makes use of overlapping re-

gions. It should be noted that in the context of VSA-based

remeshing, the segmentation regions are heuristically subdi-

vided using anchor vertices, edge extraction, and triangula-

tion stages. However, this post-process is for remeshing pur-

poses only, and is decoupled from the segmentation stage.

In geometry processing [XZT∗], and particularly within

the sub-area of co-segmentation, several methods have re-

cently arisen that take the approach of using an overseg-

mentation preprocessing step, motivated by the success of

superpixels for image segmentation. Sidi et al. [SvKK∗11]

use an application-specific mean-shift clustering of shape

descriptors defined on faces. However, all other methods

we have encountered [HKG11,HFL12,WWS∗13,MXLH13,

WSWL14] use normalized cuts [SM97, GF08]. This pro-

duces good results on benchmark meshes where the number

of vertices is relatively low. However, this type of approach

requires quadratic memory and log-quadratic time (to com-

pute all-pairs graph distances) and does not scale to larger

mesh sizes, thus motivating an approach that can produce

results of similar quality with much more modest time and

memory requirements.

Figure 2: Visual illustration of the effect of the α parame-
ter. Top: A value of α = 0 produces highly regular and com-
pact superfacets, but they do not adhere well to concavities.
Center: A value α = 200 strikes a good balance between
compactness and boundary adherence. Bottom: A value of
α = 1000 produces superfacets with very good adherence
to concavities but which are highly irregular. A setting of
k = 150 superfacets was used for all cases. For mesh sizes
and running times, please refer to Table 1.

3. Algorithm description

3.1. Overview

As is standard with k-means style algorithms, our algorithm

can be subdivided into three high-level steps: 1) initializa-

tion, 2) update of segment centers, and 3) classification of

triangles, where steps 2) and 3) are alternately repeated until

convergence.

Initialization For the initialization, we use an iterative far-
thest point strategy. We place our first region center at the tri-

angle whose centroid is closest to the centroid of the whole

mesh; then, each subsequent center is added at the triangle

with maximum Euclidean distance to the nearest already-

placed center. This is the initialization which we use in the

evaluations presented in this paper and is suited to the case

where the number of desired superfacets is known.

If, instead, a desired approximate radius r of the super-

facets is known, we allow for two alternative initializations,

both of which are supported in our implementation. It should

be noted that said radius is specified as a percentage of the

bounding box diagonal in order to produce scale-invariant

initialization results.
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• Flood initialization: we start from the triangle closest to

the mesh centroid and perform a uniform outward flood-

ing (see the classification step). When the triangle being

processed is at a distance from the initial seed greater than

2r, we use it to begin a new region.

• Regular grid: We subdivide the 3D space in which the

mesh is embedded into a regular 3D grid based on the

desired radius. This can be efficiently done by using in-

teger division by 2r on the mesh coordinates to form a

key which can then be used with a hash map to store and

lookup the corresponding segment ID.

Updating segment centers When all the triangles have

been assigned to some superfacet, the position of each su-

perfacet center is computed as follows. For each superfacet,

we compute the Euclidean area-weighted mean of all trian-

gle centroids belonging to that superfacet and then designate

the new center to be the triangle closest to said mean. Then,

we check if this new center is different from the previous

one. If no center has changed, we terminate; otherwise the

classification step is performed.

Classification For each triangle, we wish to compute its

shortest-path distance along the face graph of the mesh to

the nearest superfacet center as well as the superfacet label

corresponding to said center. Initially, we set these distances

to +∞ and the corresponding labels to be undefined. Then,

we take the superfacet centers resulting from the the previ-

ous update step and, using each as a source, run Dijkstra’s

algorithm in order to find the shortest paths to the nearby

faces. Every time a triangle is reached from a given center, if

the shortest-path distance from said center is lower than the

currently-stored value (obtained from an expansion from a

different centroid or from initialization), the face’s distance

and label are updated to that of the current center.

There are two key aspects to be noted. The first is the

edge-weights used between adjacent triangles, which will be

covered in detail in Subsection 3.2. The second is the termi-

nation criterion for the breadth-first expansion of Dijkstra’s

algorithm. Rather than continue until the shortest-path dis-

tances to all faces from the current source are computed, we

halt the expansion when all faces within a distance thresh-

old from said source have been visited. This threshold is ex-

pressed as a multiple of the desired approximate superfacet

radius r. Our default is 2r, which we use for all results pre-

sented in this paper. In the case where the number of desired

superfacets k is given, we set r :=
√

A/(k π), and then use

2r as our default multiple as well. As we will see in Subsec-

tion 3.3, this early halting strategy (also used by the SLIC

superpixel algorithm) is key in keeping the algorithm’s com-

plexity sub quadratic, allowing it to scale to meshes with

several million triangles. It is possible that, after all expan-

sions are complete, some triangles remain which were not

reached from any centroid. In such a case, we seed a new re-

gion on the first orphaned triangle found and expand it. This

is repeated until no such triangles remain. Typically, after the

first iteration, this no longer occurs as the regions cover the

entire mesh.

3.2. Face graph weights

As mentioned above, our approach is based on using a

shortest-path formulation on the face graph of the mesh. As

is standard, we consider two triangles to be adjacent if they

share a common mesh edge. The weight between two ad-

jacent triangles is determined by an approximate geodesic

term and an angular term, thus combining the notion of sur-

face distance with information about concavities. The first

term will favor well-shaped, compact superfacets while the

second will favor boundaries aligning with the shape’s con-

cavities in accordance with the minima rule [Hof84].

Approximate geodesic weight The centroids of the ad-

jacent triangles are taken as points in the embedding 3D

Euclidean space and we use a discrete approximation of

geodesic distance between them. Given two adjacent trian-

gles fi and f j with centroids ci and c j and a shared edge ei j
with mid-point mi j , we calculate the approximate geodesic

weight as :

geo
(

fi, f j
)

= ‖ci −mi j‖+‖mi j − c j‖ (1)

Angular weight For the angular component, we consider

the unsigned dihedral angle at the shared edge êi j normal-

ized by π so as to lie in the [0,1] interval and multiplied

by the edge length ‖ei j‖ so that it is an integral measure,

making it tolerant to changes in mesh resolution. Then, we

check if êi j is convex or concave in order to determine the

value of a multiplicative factor η(ei j). If êi j is convex, then

η(ei j) is set to a small positive value (in our case, 0.2 for all

results); otherwise η(ei j) = 1. This makes it such that cross-

ing a concavity represents a greater distance than crossing a

convexity, as suggested by Katz and Tal [KT03]. Thus, the

final formulation of the angular weight is:

ang
(

fi, f j
)

= η(ei j)‖ei j‖
êi j

π
(2)

Combined weight Finally, we combine the approximate

geodesic and angular terms using a weighted sum in order

to obtain the final weight w between triangles fi and f j.

w( fi, f j) =
geo( fi, f j)+α ang( fi, f j)

d
(3)

where d is the bounding box diagonal of the mesh. Since

both the geo and ang terms are in distance units, the latter

being an integral measure of a unitless angular ratio along

the length of the edge, this normalization makes the weight

invariant to global uniform scaling. The parameter α will

determine the importance of the angular term: the larger its

value, the more closely superfacet boundaries will follow

surface concavities, but also the less compact and uniform

in size the superfacets themselves will be.

c© 2014 The Author(s)

Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



P. Simari, G. Picciau & L. De Floriani / Fast and Scalable Mesh Superfacets

Figure 3: Illustration of typical results obtained on models from the Princeton Segmentation Benchmark. All cases shown here
were obtained with a setting of α = 200 and k = 150 superfacets. Top: Results obtained using normalized cuts. Bottom: Results
obtained using our method. We observe comparable boundary adherence, while our approach produces more regularly-sized
regions and requires orders of magnitude less time and memory (see discussion in Section 5). For a numerical evaluation of
results, please see Figure 4. For a comparison of running times, please see Figure 5.

3.3. Complexity and running times

As mentioned in Subsection 3.1, a key factor in keeping the

complexity of our method sub-quadratic is the fact that the

Dijkstra expansion step is bounded by a constant multiple

of the expected superfacet radius. Similarly to the case of

SLIC superpixels [ASS∗12], each triangle will fall under the

expansion limit of a relatively small number of centroids, a

number which does not depend on the mesh scale or resolu-

tion. In our experiments this number is ≈ 3.5 on average.

The complexity of our algorithm is dominated by the clas-

sification (Dijsktra expansion) step. Let N be the number of

triangles of the input mesh and k the number of superfacets,

each of which will be approximately of size M = N
k . The

complexity of the classification step is then O(k M log(M))
due to the fact that we stop the Dijkstra expansion when it

reaches the threshold distance. Substituting M and exploit-

ing logarithm properties, we obtain

O
(

k
N
k

log
N
k

)
= O(N (log(N)− log(k)))⊆O(N log(N)) .

The furthest point initialization step, on the other hand,

must do k passes where, for each pass, it selects the trian-

gle with maximum Euclidean distance to its nearest centroid.

Our naive implementation is O(Nk2), which can be reduced

to O(Nk log(k)) using a kd tree. However, since this step is

computed only once and k � N, the Dijkstra expansion step

dominates the complexity.

When using flood initialization, the complexity of the ini-

tialization step becomes the same as that of an expansion

step, while the grid initialization would require O(N), since

it can determine the initial label of each triangle in constant

time using integer division and a hash table, for example.

The final complexity is also affected by the number of it-

erations. However, this number does not depend on the mesh

size and in our experiments the number of iterations is typ-

ically less than 20 even for the largest mesh sizes. In a few

instances, we observe non-convergence where a small num-

ber of triangle labels flip-flop between two regions. We ad-

dress this by setting a limit number of iterations (we use a

maximum of 50 in all experiments).

It bears emphasizing that our method’s complexity is

a considerable improvement over that of normalized cuts.

Given the latter’s quadratic memory requirement to store all-

pairs shortest path distances, and the super-quadratic time

needed to compute them, such an algorithm quickly becomes

intractable. In practice, our approach proves to be two or-

ders of magnitude faster than normalized cuts on the rela-

tively small meshes of the Princeton Segmentation Bench-

mark (Fig. 5), while still being able to easily handle much

larger meshes (Table 1), which, in the normalized cuts im-

plementation would require between 9GB (in the smallest

case) and 90TB (in the largest case) of storage for all-pairs

distances alone. This is further discussed in Section 5.

4. Evaluation metrics

All of the most common evaluation metrics for mesh seg-

mentation algorithms, such as those proposed in the Prince-

ton Mesh Segmentation Benchmark [CGF09], are designed

to evaluate the results of traditional segmentation algo-

rithms, which produce few segments of relatively large size.

To have an objective evaluation of the oversegmentations

produced by a superfacets algorithm, we adapt two metrics

from superpixel evaluation.

c© 2014 The Author(s)
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Mesh Triangles Time (sec)
Armadillo 345,944 153

Bunny 69,451 22

Dragon 7,219,045 3,125

Hand 105,860 39

Horse 96,966 34

Kitten 274,196 108

Lion Vase 400,000 137

Neptune 4,007,872 1,797

Ramesses 1,652,528 738

Table 1: Mesh sizes and corresponding running times of
our approach on several large meshes using k = 150 super-
facets. As shown, our approach enables superfacet segmen-
tations on large, high-resolution meshes, several with over a
million triangles. To process such meshes, a normalized cuts
implementation would theoretically require between 9GB (in
the smallest case) and 90TB (in the largest case) of stor-
age for all-pairs distances alone (see discussion in Section
5) and a running time which would make it inapplicable in
practice (see Figure 5). For visual results on these meshes,
please refer to Figures 1 and 2.

Undersegmentation error This error is intended to mea-

sure the fraction of regions of an automatic segmentation

which overlap with more than one ground-truth segment.

In image segmentation, this metric measures the number

of pixels that leak across the boundary of the ground-truth.

Since mesh triangles are non-uniform in size, we calculate

the area of the portion of segment that crosses the ground

truth boundary rather than the number of triangles, making

it robust to variations in sampling. The formula we use be-

comes:

UE(s) =
∑i ∑ j:A(s j∩gi)>τ A

(
s j \gi

)
∑i A(gi)

(4)

where gi is the i-th ground truth segment, s j is the j-th su-

perfacet segment, A(·) denotes the area of a given segment,

and τ is the tolerance threshold for the area overlap (in our

experiments, 5% of the segment area). Note that s j \ gi de-

notes the set-theoretic difference of the regions; i.e. the set

of triangles that are in s j but not in gi.

Compactness This is a measure of how well-shaped the re-

gions produced by an oversegmentation are. A straightfor-

ward measure is the average ratio between area and square of

the perimeter of the region [KT96]. For coherence with the

undersegmentation error, for which a lower value indicates a

better segmentation, we use the inverse formulation [MB09]

and take the square root:

compactness(s) = avgk

(
perimeter(sk)√

area(sk)

)
(5)

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Segments

U
nd

er
se

gm
en

ta
tio

n 
E

rr
or

Undersegmentation Error: All categories

50 100 150 200 250
0

1

2

3

4

5

6

Number of Segments

C
om

pa
ct

ne
ss

Compactness: All categories

Figure 4: Comparison of undersegmentation error and
compactness values obtained with our approach and nor-
malized cuts over all categories of the Princeton Segmen-
tation Benchmark. Note that for non-zero values of α and
higher number of segments our approach produces results
which are comparable to those offered by normalized cuts.

5. Experimental Results

In this section, we present the empirical validation of our

method. First, we offer a visual inspection of our results. Fig-

ure 1 visually illustrates the results of running our approach

on very large meshes (some with several million triangles).

The number of triangles and respective running times re-

quired by our implementation on these meshes is presented

in Table 1.

The main parameter that influences the output of our su-

perfacets algorithm is α, which is the weight that determines

the influence of the angular term in the distance formula,

allowing control over the trade-off between superfacet com-

pactness and boundary adherence to concavities. Figure 2

visually illustrates the effect of this parameter on two sam-

ple meshes. A value of α = 0 produces highly regular and
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Figure 5: Running times of our approach (blue) and nor-
malized cuts (red). Our approach is already two orders of
magnitude faster (note the log-scale y axis) than normalized
cuts even on relatively low-resolution meshes.

compact superfacets, but they do not adhere well to concavi-

ties. A value of α = 200 (our suggested default value) strikes

a good balance between compactness and boundary adher-

ence. A value of α = 1000 produces superfacets with very

good adherence to concavities but which are highly irregu-

lar. The sizes and running times for these meshes are also in

Table 1. The role of α is further explored in the numerical

comparison discussed below.

Next, we numerically evaluate our approach using the

metrics presented in Section 4. In particular, we compare

the results obtained by our iterative k-means style approach

and those obtained using normalized cuts [SM97] using the

implementation provided by the authors of the approach.

We precompute the NxN matrix of all-pairs shortest path

distances using our same metric and Dijkstra implementa-

tion and then pass this matrix to the normalized cuts imple-

mentation, which computes a corresponding segmentation.

It should be noted that, in this case, no bound can be placed

on the expansion in Dijkstra’s algorithm since all pairs dis-

tances are required by normalized cuts. It should also be

noted here that it was necessary for us to skip the larger

meshes in the benchmark for which the normalized cuts ap-

proach was not able to fit the necessary data in memory; 25

such meshes were skipped, all with approximately 50k faces.

In order to have a fair comparison, the same meshes were

skipped for both algorithms.

Figure 4 shows the result of this comparison on the

Princeton Segmentation Benchmark for a varying number of

superfacets and settings of α. In it, we can observe that the

best tradeoff between undersegmentation error and compact-

ness seems to lie approximately at α = 200 for our approach

and α = 100 for normalized cuts. A visual comparison of

sample segmentations obtained with our method and with

normalized cuts is shown in Figure 3.

Figure 5 shows a comparison of running times between

our approach and the normalized cuts implementation of-

fered by Shi and Malik [SM97]. It should be noted that,
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Figure 6: Results obtained using our metric compared
to those obtained using the weighting of Shlafman et al.

[STK02] over all categories of the Princeton Segmenta-
tion Benchmark. Our formulation is scale-invariant, robust
to varying resolution, and incorporates elements to favor
concavities over convexities, while Shlafman et al.’s lacks
these properties. As a result, our weights result in drastically
lower undersegmentation error and more compact regions.

while the interface of this code is in Matlab, the underlying

implementation is compiled C++ using Mex, so Matlab is

only providing the interface for the data. The running times

do not include the writing/loading of files to disk for com-

munication of data and include only the CPU time necessary

to compute the distances and the segmentation. As the figure

illustrates, our approach is two orders of magnitude faster

(note the log-scale y axis) even on modest mesh sizes. All

experiments were run on an Intel core i7-9390k at 3.20 GHz

with 64 GB of RAM under OS Debian 3.13.7-1.

From our experiments we observe that, for non-zero val-

ues of α, our approach produces results which are compara-
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Figure 7: Results obtained using our algorithm compared
to those obtained using the segmentation result of VSA
[CSAD04] with the L2,1 and L2 metrics over all categories
of the Princeton Segmentation Benchmark. Having not been
designed for semantic analysis, VSA produces results which
contain large, non-compact segments that fully straddle se-
mantic boundaries. For visual examples of the segmentations
produced, see Figure 8.

ble to those offered by normalized cuts. Our key contribu-

tion, however, is that we can offer such results while requir-

ing orders of magnitude less time and memory, thus enabling

superfacet segmentation on much larger meshes. Given the

quadratic memory required to store all-pairs shortest path

distances for the normalized cuts approach, and the super-

quadratic time needed to compute these, obtaining results

such as those illustrated in Figures 1 and 2 and listed in Ta-

ble 1 is simply not tractable using such an algorithm. Con-

sider the all-pairs distances storage cost assuming we use

32-bit single-precision floating point and only store the up-

per triangle of the symmetric distance matrix (something

L2
,1

(R
)

L2
(R

)
L2
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(I

)
L2

(I
)

O
u

rs

Figure 8: Results obtained using VSA [CSAD04] using the
L2,1 and L2 metrics and the random (R) and incremental
proxy addition (I) initialization strategies compared to those
obtained using our algorithm (bottom) on example meshes
from the Princeton Segmentation Benchmark. In all cases
we set k = 150 superfacets and, in our case, α = 200. Hav-
ing not been designed for semantic analysis, VSA produces
results which contain large, non-compact segments that fully
straddle semantic boundaries. In contrast, we produce com-
pact segments well aligned with semantic boundaries. For a
numerical evaluation of results, please see Figure 7.

which the implementation of Shi and Malik does not cur-

rently allow for). Such cost would range from approximately
1
2 (70K)2 ×4bytes ≈ 9GB for the smallest mesh, to approx-

imately 1
2 (7M)2 ×4bytes ≈ 90TB for the largest.

Next, we also validate our proposed graph weighting by

comparing our results to those obtained using the weighting

proposed by Shlafman et al. [STK02] whose formula differs

from ours as follows:

w′( fi, f j) = (1−α)geo( fi, f j)+α(1− (�ni · �n j)
2) (6)

where �ni and �n j represent the outward normals of triangles i
and j respectively. Here, we have reversed the α and (1−α)
terms so a higher α translates to higher importance placed

on concavity adherence, thus matching our own.

While we have taken care to make our formulation scale
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invariant, robust to varying resolution, and incorporated ele-

ments to favor concavities over convexities, the formulation

of Shlafman et al. lacks all of these properties. As a result,

as can be observed in Figure 6, our error is drastically lower.

Lastly, we compare our approach to Variational Shape

Approximation (VSA) [CSAD04], the results of which can

be observed in Figures 7 and 8. For this comparison, we

use the implementation of Lavoué et al. [LTD12], which we

modify to allow batch processing of the benchmark, export-

ing of the resulting segmentations over the original mesh,

and we incorporate the L2 metric (see Section 2). We then

evaluated VSA on the benchmark using both the L2,1 and L2

metrics as well as the random (R) and incremental (I) proxy

addition initialization strategies.

Unsurprisingly, VSA performs very well with respect to

undersegmentation error in the mechanical part category,

whose members are often composed of planar regions. In all

other categories, however, their error is dramatically higher

than ours with respect to both undersegmentation and com-

pactness. This is accounted for by two factors respectively.

First, by finding a segmentation composed of approximately

planar regions, this method does not emphasize concavities

above any other deviations from planarity, resulting in re-

gions which often fully straddle semantic boundaries. Sec-

ond, in contrast to our approach, neither VSA error explic-

itly accounts for each face’s distance to the region’s center,

resulting in highly non-compact regions. Note also that the

incremental proxy addition strategy results in higher under-

segmentation error, since it focuses most of the proxies in

curved regions, even when they are concave.

As a final note, while the results of Figures 4, 6, and 7

show the average results across all mesh categories of the

Mesh Segmentation Benchmark, and those of Figure 5 show

results for one setting of α and k, we observe similar results

across all mesh categories and for all other parameter set-

tings. Plots for all cases can be found in the supplemental

materials accompanying this paper.

6. Concluding remarks

We have presented a method for computing superfacet seg-

mentations of meshes based on a k-means style approach

using shortest-path distances over the face graph of the

mesh. By using a bounded expansion strategy in the re-

classification step, our approach obtains a log-linear com-

plexity, enabling the segmentation of large meshes (with

several million triangles) where applying normalized cuts

[SM97] or other such cut-based approaches would be in-

tractable. Furthermore, when compared with normalized

cuts using undersegmentation error and compactness met-

rics, our approach yields comparable, and in some cases fa-

vorable results.

It should be noted that we have not incorporated a post

processing technique in order to “clean up” the superfacet

boundaries. This does not hinder the conclusions yielded

through comparing our approach to normalized cuts, and the

weighting of Shlafman et al [STK02], and VSA segmenta-

tion [CSAD04]. However, it should be a priority next step in

order to make our approach a complete solution for an end-

user wishing to adopt it. That being said, a user with ready

access to such a clean-up method can readily employ it as a

post-process to our result.

Our formulation readily applies to quad and general

polygonal meshes, though we have not implemented this as-

pect. Our metric, along with the overall algorithm, should

also be adaptable to point clouds and tetrahedral meshes with

a careful reformulation of weights for adjacent elements.

Finally, our implementation is single-threaded. A parallel

implementation would further improve the ability to handle

very large meshes.
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