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Curvature is a key feature in shape analysis and its estimation on discrete simplicial complexes benefits
many geometry processing applications. However, its study has mostly remained focused on 2D
manifolds and computationally practical extensions to higher dimensions remain an active area of
computer science research. We examine the existing notions of distortion, an analog of curvature in the
discrete setting, and classify them into two categories: intrinsic and extrinsic, depending on whether they
use the interior or the dihedral angles of the tessellation. We then propose a generalization of extrinsic
distortion to ce:italic> D /ce:italic> D and derive a weighting that can be used to compute mean
curvature on tessellated hypersurfaces. We analyze the behavior of the operator on 3-manifolds in 4D
and compare it to the well-known Laplace–Beltrami operator using ground truth hypersurfaces defined
by functions of three variables, and a segmentation application, showing it to behave as well or better
while being intuitively simple and easy to implement.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The local curvature of a surface is very descriptive and an
important tool in geometry processing. The applications of its
estimation to the analysis of discrete surfaces have been exten-
sively studied, including mesh simplification [1,2], alignment [3],
ridge-valley line detection [4], non-photorealistic rendering [5],
segmentation [6,7], partial shape matching [8], symmetry detec-
tion [9], denoising [10,11], and remeshing [12].

Curvature estimation methods can be broadly classified into
two categories: fitting methods and discrete methods. The former
use local regression to estimate the parameters of continuous
models and evaluate curvature using its continuous definition. The
latter find discrete analogues to the continuous elements involved
in defining curvature so that the notion can be evaluated directly
in the discrete domain.

This work will focus on discrete methods. While fitting meth-
ods are more tolerant to noise and tessellation artifacts, they can
be more computationally intensive. This is a drawback in applica-
tions that require curvature to be estimated in real time, e.g.,
physical simulation, non-photorealistic rendering, or real-time
shape analysis for robotics applications. Discrete methods are
simple to implement, require fewer computations, and are trivially
parallelizable.
ll rights reserved.
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A volume dataset can be seen as a 3-manifold hypersurface
embedded in 4D and, as such, is amenable to 3D curvature
analysis. Similarly, such analysis can be conceived for hypersur-
faces in 4D space which are not the graph of a 3D scalar field, such
as isosurfaces of time-varying scalar fields or tetrahedral meshes
defined by animation sequences [13]. However, the application of
curvature and its discrete variants to volumetric shape analysis
remains comparatively unexplored. One exception is the concept
of discrete distortion.

We will discuss the existing definitions of distortion for discrete
surfaces, classify them into two categories, intrinsic and extrinsic,
and present a generalization of extrinsic distortion to n D, deriving
a weighting that can be used to compute mean curvature. We will
analyze the behavior of the operator on 3-manifolds in 4D and
compare it to the well known Laplace–Beltrami operator in two
ways. First, we examine the behavior on a suite of analytic surfaces
sampled under varying conditions of resolution, distribution of
samples, and noise. Second, we examine using the distortion field
to obtain volumetric segmentations and evaluate their stability
under increasing image noise. We will show, in each case, that
extrinsic distortion behaves similarly or better than the Laplace–
Beltrami operator while being intuitively simple and easy to
implement.
2. Related work

We will assume familiarity with the fundamental notions of
curvature in the continuum and refer the reader to the relevant
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background [14]. In the context of discrete representations of 2D
surfaces such as meshes and point clouds, curvature is a
well-studied area due to its numerous applications [15,16]. There
are a plethora of methods for curvature evaluation, each with
advantages and disadvantages. These methods can be broadly
classified into fitting methods and discrete methods.

Fitting methods use local regression to fit a continuous func-
tion, such as a polynomial, to the surface data near a point of
interest. Once the parameters of such a function are determined, a
curvature estimate can be computed analytically or using finite
element methods [15–20]. Other approaches, rather than fitting a
model to surface points, fit the curvature tensor to normal
variations in a local neighborhood [5,11]. In contrast, discrete
approaches [18,21,10,22–24] compute quantities that approximate
curvature values directly on the discrete surface without explicitly
fitting a continuous model.

Within the context of 3-manifolds in 4D, there is much less
work within the geometry processing community. Hamann intro-
duces a generalization of the polynomial fitting approach to
extend to such data [25], but this is based on a continuous method
rather than a discrete one. Within the discrete setting, the notion
of discrete distortion arises as a purely discrete analog to con-
tinuous curvature [26]. It has been successfully used in several
applications, including morphological analysis [27], guiding multi-
resolution simplification [28], and medical visualization [29].

In the above cases, this particular notion of discrete distortion
is an intrinsic measure based on a generalization of concentrated
curvature [30,31] and angle deficit [10]. In 2D, however, the
previously introduced notion of distortion is based on dihedral
angles and is related to mean curvature [32] and, as such, is an
extrinsic measure. While the distinction between intrinsic and
extrinsic measures is a well known one in the context of curvature,
this paper applies these notions to categorize the different
previously published notions of distortion and unify them. More-
over, we introduce here a generalization of extrinsic distortion to
n D.
3. Background

3.1. Intrinsic distortion in 3D

For tetrahedral meshes embedded in four-dimensional
Euclidean space a separate notion of distortion has been intro-
duced [26], in this case, as a generalization of Aleksandrovʼs
concentrated curvature [30] to higher dimensions, which can be
considered a discrete counterpart to the scalar Ricci curvature [33].
A similar approach has been independently proposed [34]. This is
an intrinsic measure based on angle deficits, which in the 2D case
constitutes a discrete counterpart to Gaussian curvature. In the 3D
case, given a tetrahedralized manifold embedded in 4D space, the
intrinsic distortion at an internal vertex p can be defined as

DðpÞ ¼ 4π− ∑
n

i ¼ 1
Si;

where Si is the solid angle at of the i-th tetrahedron incident on p
at said vertex.
3.2. Extrinsic distortion in 2D

In the 2D case, distortion has been previously defined at a
vertex [32] as follows. The idea is to compute the sum of the angle
deficits of the dihedral angles at the edges incident on p, with
respect to the flat angle. Vertex distortion at an internal vertex p of
the triangulation is defined as

DðpÞ ¼ ∑
N

i ¼ 1
ðπ−ΘiÞ;

where e1;…; eN are the edges incident on p, and Θi is the dihedral
angle formed between the two triangles incident at edge ei.

A weighted version of this formulation can be used to estimate
mean curvature. This weighted form coincides with the cylindrical
approximation method [35]. For each edge, the integral form is
obtained by weighting the angle by half of the edge length for each
vertex in the edge. Another factor of one half is introduced by the
fact that the one of the principal curvatures of a cylinder is null,
thus causing the mean curvature to be one half that of the non-
null principal curvature. The final punctual form of the mean
curvature estimate is obtained by dividing the area Ap associated
with the vertex p, computed as the sum of fractional areas of all
triangular faces incident on p. This fraction can be taken to be a
fixed 1/3, leading to the barycentric formulation, or the Voronoi
region can be used instead. The final expression of the punctual
form is thus

ĤðpÞ ¼ 1
4Ap

∑
N

i ¼ 1
∥ei∥ðπ−ΘiÞ:

3.3. The Laplace–Beltrami operator

One of the best known tools for the computation of mean
curvature on discrete surfaces is the Laplace–Beltrami operator
[10]. It can be readily generalized to 3D manifolds and, as a well-
known discrete operator and estimator of mean curvature, we will
use it as a basis for comparison of our operator in the experimental
section. Its value at a vertex p is given by

KðpÞ ¼ 1
VðpÞ ∑

i∈N1ðpÞ
wiðp−xiÞ

In 3-manifolds, the mean curvature value is given by 1
3 ∥K∥. Here, V

(p) denotes the tetrahedral volume assigned to vertex p and wi

denotes the weight associated with the edge ðp; xjÞ. In 3D, this
weight is given by

wi ¼
1
6
∑
j
ℓj
i cot α

j
i

where ℓji is the length of the edge opposite to edge ðp; xiÞ within the
j-th tetrahedron incident on ðp; xiÞ, and αji is the dihedral angle at
this opposite edge.

For the value of the volume V(p) we simply use barycentric
volumes, obtained as 1/4th of the sum volume of all tetrahedra
incident on p. Alternatively, it is possible to use Voronoi volumes,
though we have found that, in the 3D case, it does not reliably
improve the accuracy of the mean curvature estimate.

The scalar value of the operator as defined above would always
be a positive quantity, given that it is a fraction of the norm of the
K vector. However, we can set the sign of the scalar value by
setting it to match the sign of the dot product between K and the
manifold normal (positive when they are in agreement, negative
when opposite). In the case of graphs of scalar fields, as we will be
examining, we can simply use the sign of the last component of K
for efficiency and simplicity.

We consider the Laplace–Beltrami operator because of how
well established it is in the literature as a discrete estimator of
mean curvature. A thorough comparison of a large set of curvature
operators is beyond the scope of this work and, for such a
comparison, we refer the reader to published works [11,36]. Our
main goal is to compare our approach to a well known one,
establishing it to behave as well as said approach with some
advantages, and thus placing it in context.
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4. Generalizing extrinsic distortion to n D

Here, we wish to generalize this extrinsic notion of distortion
from 2D to higher dimensions. We can naturally do so by
considering the dihedral angle at adjacent simplexes. On a discrete
n-dimensional manifold, embedded in (n+1)D, represented by a
simplicial complex Σ, pairs of adjacent n-simplexes form a
dihedral angle determined by the two hyperplanes containing
each of them. Assuming that the manifold is orientable, the signed
dihedral angle formed by these hyperplanes can be determined in
a straightforward manner, leading us to formulate the general
expression for extrinsic distortion:

DðpÞ ¼ ∑
τij∈St

2ðpÞ
ðπ−ΘijÞ;

where Θij represents the signed dihedral angle between the
simplexes si and sj, and τij∈St

2ðpÞ is defined as true if si; sj∈StðpÞ
and τij ¼ si∩sj, where τij is an (n−1)-simplex. This is to say si and sj
are adjacent and their union has disk topology.

4.1. Mean curvature in n D

The weighting that leads to a mean curvature approximation
can also be generalized, inferring it from Dynʼs cylindrical approx-
imation in 2D [35]. Two adjacent n-simplexes will meet at an (n
−1)-simplex τij, and the edge length used in the 2D case can be
generalized to the volume of τij. Just as in the 2D case one half of
the weighted angle went to each vertex on the edge, in the general
case 1/n goes to each of the vertices at the simplicial intersection.
Finally, the cylindrical generalization has n−1 null principal cur-
vatures and thus its mean curvature is given by 1/n-th of the non-
null value. These all lead to the final weighted expression:

ĤðpÞ ¼ 1
n2∥p∥

∑
τij∈St

2ðpÞ
ðπ−ΘijÞ∥τij∥;

where ∥p∥ is the n-dimensional barycentric volume associated
with vertex p and ∥τij∥ is the (n−1)-dimensional volume associated
with the simplex τij at the intersection of the adjacent simplexes si
and sj. In the particular case of a 3-manifold, n¼3, the simplexes
are tetrahedra, adjacent simplexes meet at triangles, and dihedral
angles are thus weighted by triangle area.

Derivation: In the following we provide a derivation of the
above weighting, which is not intended as a proof of convergence.
First, let us remark that when two hyperplanes in Rnþ1 intersect,
the intersection is an (n−1)-affine plane Pn−1. We can approximate
smoothly the PL-hypersurface through a cap of the curved nD
hypersurface CnðrÞ ¼ S1r � Pn−1, where r is a positive real number.
The cap is obtained from an arc of the circle S1r . The hypersurface
CnðrÞ is isometric to the hypersurface defined by

C′nðrÞ≔ ðx1;…; xnþ1Þ : x2n þ x2nþ1 ¼ r2
� �

;

which can be seen as the image of two functions f 7 :

f 7 ðx1;…; xnÞ ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−x2n

q
:

This hypersurface is also isometric to the graph C′′nðrÞ of the
translated functions r−f 7 . Let us define g as

gðx1;…; xnÞ≔r−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−x2n

q
:

We have gð0;…;0Þ ¼ 0 and ð∂g=∂xiÞð0;…;0Þ ¼ 0 for all i. Then, the
second fundamental form at the origin of C′′nðrÞ reduces to the
Hessian matrix of g at the origin whose coefficients are all 0 except
the last diagonal one, which is equal to 1/r. Consequently, the
mean curvature of C′′nðrÞ at the origin is simply 1=nr. Thus the
mean curvature of CnðrÞ at any of its points is equal to 1=nr.
The total curvature of the cap approximating the PL-
hypersurface is thus equal to the integral over the cap of 1=nr.
Since the cap is tangent to the PL-hypersurface, then, at the
contact point, the cap and the PL-hypersurface have the same
normal vectors. This means that the angle defining the arc of S1r of
the cap is equal to π minus the angle Θ between the two normal
vectors at the contact points, which are simply the normal vectors
of the hyperplanes whose intersection is approximated by the cap.
Thus the total mean curvature over the cap is

∥τij∩p∥rðπ−ΘijÞ
1
nr

where τij∩p represents the intersection of τij with the neighbor-
hood of p. Now if we suppose that in the neighborhood on the
hypersurface around the vertex p the mean curvature Hp is
constant, then the total mean curvature over the neighborhood
is equal to Hp∥p∥. Hence

Hp∥p∥¼ ∑
τij∈St

2ðpÞ
∥τij∩p∥

ðπ−ΘijÞ
n

From this we obtain

Hp ¼ 1
n∥p∥

∑
τij∈St

2ðpÞ
ðπ−ΘijÞ∥τij∩p∥

If we suppose that when computing the mean curvature at all
vertices p, the volume neighborhoods around p divide every
(n−1)-simplex into n subsimplexes of the same volume (e.g., as
in a barycentric configuration), then it holds that ∥τij∩p∥¼ ð1=nÞ∥τij∥
and thus:

ĤðpÞ ¼ 1
n2∥p∥

∑
τij∈St

2ðpÞ
ðπ−ΘijÞ∥τij∥:
5. Experimental evaluation and results

5.1. Analytic surfaces

We evaluate our proposed operator by running our implemen-
tation on analytic functions and comparing the result to the
corresponding known analytic mean curvature values. The func-
tions are those suggested by Hamann [25] as well as a second
trigonometric function. They are as follows:
1.
 Quadratic polynomial: 0:4ðx2 þ y2 þ z2Þ.

2.
 Quadratic polynomial: 0:4ðx2−y2−z2Þ.

3.
 Cubic polynomial: 0:15ðx3 þ 2x2y−xz2 þ 2y2Þ.

4.
 Exponential: expð−0:5ðx2 þ y2 þ z2ÞÞ.

5.
 Trigonometric: 0:1ð cos ðπxÞ þ cos ðπyÞ þ cos ðπzÞÞ.

6.
 Trigonometric: sin ðπxÞ þ sin ðπyÞ þ sin ðπzÞ.
The functions are sampled in the ½−1;1�3 real interval using three
different approaches. In the first, we use a uniform grid of samples
which is then tessellated using a stencil Voronoi approach. That is to
say, a cube is Voronoi-tessellated in the 3D domain and then
repeated over the entire grid. In the second approach, we create
irregular tessellations. For a given number of vertices, we randomly
sample the interior of the interval and Delaunay-tessellate said
samples. In order to discourage poorly shaped tetrahedra, we
uniformly sample the boundary, enforce a minimum distance
constraint during the sampling, and relax the final mesh with 100
iterations of Laplacian smoothing. Finally, we also use diamond
meshes [37], a multi-resolution approach that, given an approxima-
tion error, can generate a non-uniform mesh of well-shaped
tetrahedra that approximates the field. Fig. 1 illustrates these
approaches on a 2D slice of the sixth function above.



Fig. 1. A z¼0 slice of the different tessellations used (lowest resolution for each shown for illustrative purposes) illustrated on our sixth analytic function; (a) regular grid,
(b) irregularly sampled, (c) diamond mesh.
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Fig. 2. Average normalized RMS error of weighted distortion (blue) vs the Laplace–Beltrami operator (red) as a function of increasing resolution on (a) uniform grid,
(b) irregular, and (c) diamond meshes, and also (d) as a function of the number of tetrahedra incident per vertex on irregular tessellations. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 3. Average normalized RMS error of weighted distortion (blue) vs the Laplace–Beltrami operator (red) on regular grid tessellations of fixed resolution and increasing Gaussian
noise. (a) Noise is added in the vertical direction with standard deviation as a percentage of the field range. (b) Noise is added in the surface normal direction with standard
deviation as a percentage of the average edge length. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 4. Segmentations of fuel, neghip, and silicium volume datasets obtained using a hierarchical descending Morse complex on the Laplace–Beltrami, weighted and
unweighted distortion fields.
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Our first experiments show how the mean curvature error
changes with increasing resolution. We use the Root Mean Square
(RMS) error normalized by the range (maximum minus minimum)
of analytic values taken by each function within the interval and
averaged over the six functions. Fig. 2 illustrates these results.

In Fig. 2a, we see the result on uniform grids. While both
operators converge, the weighted distortion does so more quickly,
achieving an average reduction in error of 29% compared to the
Laplace–Beltrami operator. On the non-grid tessellations, both
operators are less well-behaved. We remedy this by smoothing
the estimates using 50 iterations of local averaging. Fig. 2b and c
show these results on the non-grid meshes.

We also compared, in the irregular tessellations, the estimation
error as a function of the number of tetrahedra incident on each
vertex. For a fixed incidence number, we evaluate the normalized
RMS error over the vertices with this valence and average the
results over all irregular tessellations and all functions. While both
operators converge to the analytic values of mean curvature as
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Fig. 5. Comparison of the stability of the segmentations under increasing noise. Left: Hamming distance, right: region number. Red: Laplace–Beltrami, blue: weighted
distortion, green: unweighted distortion. Solid: fuel, dashed: neghip, dotted: silicium. Note that, since we are measuring similarity to the noiseless case, higher is better. Also
note the rate discontinuity in the x-axis. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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vertex valence increases, we found the weighted distortion error
to be much lower than that of the Laplace–Beltrami operator. This
is illustrated in Fig. 2d.

Finally, we compare the behavior of the operators under
increasing noise. For each uniformly sampled mesh, we add two
forms of noise. In the first case, to simulate image noise, we add
Gaussian noise to the field component of the vertex coordinates as
a proportion of the range of analytic values. In the second, we add
Gaussian noise in the normal direction as a proportion of the
average edge length. As Fig. 3 illustrates, the operators behave very
similarly under these conditions.

5.2. Application to segmentation

To further evaluate our proposed operator, we explore an
application to the segmentation of 3-manifolds in 4D space. We
extend to 3D the intuition that shape boundaries often percep-
tually align with concavities, which correspond to regions of
negative mean curvature. While this intuition is common and
we will use it here, it should be noted that if one scales the
function by a factor, the Euclidean curvature values may change in
a relatively complicated way. Pottmann and Opitz argue that it
may be more natural to use isotropic curvatures [38]. Based on the
concavity intuition, we apply a hierarchical Morse decomposition
of the mean curvature field defined at the vertices of the
tessellated 3-manifold [39]. We use the descending Morse com-
plex, which finds segment centers at locations of high (positive)
curvature and boundaries at areas of low (negative) curvature. To
counter over-segmentation, the algorithm applies hierarchical
region-merging based on the notion of persistence, which relates
to the “height” difference between adjacent segments.

In our experiments, we consider three datasets obtained from
the Volvis library [40]: fuel: a simulation of fuel injection into a
combustion chamber; neghip: a simulation of the spatial prob-
ability distribution of the electrons in a high potential protein
molecule; and silicium: a simulation of a silicium grid. They and
their segmentation results using Laplace–Beltrami, weighted and
unweighted distortion, are shown in Fig. 4.

For each dataset, we empirically chose a merging threshold
that results in a number of segments between 20 and 40. In each
case, we add increasing artificial noise to the field, recompute the
Laplace–Beltrami and distortion fields, re-obtain the segmenta-
tions using the originally chosen threshold for each set, and
measure the similarity to the original segmentation. For this last
step, we use the Hamming distance metric proposed by Huang
and Dom [41,42]. We also found it interesting to compare the ratio
of the number of segments in each segmentation n/m, where
m4n. While this “region number” metric is much less discrimi-
native, it gives an intuitive sense of how the number of segments
grows as a result of noise. Given that these images are originally
captured on a regular grid, we simulate image noise by adding
Gaussian noise to the field component of the data with standard
deviation set as a percentage of the field range. The results are
illustrated in Fig. 5, the distortion operator in both its weighted
and unweighted forms showing higher similarity to the noiseless
segmentation under increasing noise.
6. Concluding remarks

We have examined the previously existing notions of distortion
and note that they can be divided into intrinsic and extrinsic
categories depending on whether they are defined using the
interior angles or the dihedral angles of the tessellation. We then
presented a new discrete operator generalizing the notion of
extrinsic distortion to nD and derived a weighting that can be used
to compute mean curvature on such surfaces. We analyzed the
behavior of the operator on 3-manifolds in 4D, comparing it to the
well known Laplace–Beltrami operator, using ground-truth analy-
tic surfaces with varying conditions of resolution, sampling dis-
tribution, and noise. We also investigate it in the context of an
application that uses the mean curvature field to obtain a volu-
metric segmentation, examining the stability of the segmentations
under increasing image noise. In each case we showed that
extrinsic distortion behaves similarly or better than the Laplace–
Beltrami operator while being intuitively simple and easy to
implement.

Future work includes increasing the robustness of the operator
under conditions of irregular tessellation. Our method could also
be applied to the segmentation and analysis of 3-manifold
hypersurfaces that are not graphs of 3D scalar fields, as is fully
permitted by the current formulation and implementation. Lastly,
other applications of mean curvature in higher dimensions are
open to investigation, including visualization, registration,
matching, alignment, and simplification of volumetric datasets.
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