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Abstract. Over the past decade, computer vision algorithms have tran-
sitioned from relying on the direct, pixel-based representation of images
to the use of superpixels, small regions whose boundaries agree with im-
age contours. This intermediate representation improves the tractability
of image understanding because it reduces the number of primitives to
be taken under consideration from several million to a few hundred. De-
spite the improvements yielded in the area of image segmentation, the
concept of an oversegmentation as an intermediate representation has
not been adopted in volumetric mesh processing. We take a first step
in this direction, adapting a fast and efficient superpixel algorithm to
the tetrahedral mesh case, present results which demonstrate the qual-
ity of the output oversegmentation, and illustrate its use in a semantic
segmentation application.

1 Introduction

Over the past decade, computer vision algorithms have gained many benefits
from the introduction of the concept of superpixels, which are obtained from an
oversegmentation of an image, comprising possibly millions of pixels, into just
a few hundred small regions that become the new primitives on which image
processing algorithms work. These regions are well aligned with the semantic
boundaries of the image, and their relatively low number greatly improves the
tractability of the segmentation problem while also allowing for the consideration
of mid-level elements such as texture information.

Some approaches have been introduced to extend the idea of superpixel over-
segmentation to surface meshes [26], but, to our knowledge, the extension to the
volumetric case has not yet been investigated. These models, often used in tasks
such as medical data analysis and simulation, usually consist of a very large
number of primitives, often in the tens of millions. For this reason, we believe
that an intermediate representation of these models obtained by means of an
oversegmentation could prove greatly beneficial to semantic segmentation.

We take a first step towards the application of an oversegmentation as a pre-
processing step for tetrahedral meshes, extending a state of-the-art superpixel
algorithm [1]. The k-means based approach is efficient in time and memory
making it suitable for tetrahedral meshes with several million elements for which
graph-based methods would not be suitable.



Fig. 1. Field value f(x, y, z) = sin(x) + sin(y) + sin(z), with x, y, z ∈ [−π, π] (left),
and supertetrahedral segmentation with w = 0.5 (center) and w = 1.5 (right). Note
how the lower w results in regions more aligned with field features, while higher w
results in a more regular distribution.

2 Related Work

2.1 Superpixels in Image Processing

Superpixels are often used in Computer Vision as a representation to lower the
number of primitives under consideration, thus improving the tractability of
the segmentation task [24, 12, 17, 16, 14]. Supervoxels are the 3D equivalent of
superpixels, and have been applied to the segmentation of medical images [19,
32] and video sequences [23, 36].

Superpixel algorithms use various strategies, including graph-cuts [25, 10],
watershed [31], mean and medoid shift [7, 30], hill-climbing [3], geodesic k-means
[33], and reciprocal nearest neighbors [20].

The approach most relevant to our method is the Simple Linear Iterative
Clustering (SLIC) algorithm [1]. It is a k-means based approach which limits the
expansion of each centroid by a constant proportional to the desired superpixel
size. This limited expansion results in a complexity which is linear in the image
size and is independent of the number of superpixels. The distance metric used
is a weighted sum of a Euclidean term to account for the position of a pixel in
the image and an intensity term. This formulation yields compact superpixels
which adhere well to image contours while being significantly faster than other
state-of-the-art methods. The method’s low time and space complexity make it
an ideal candidate to scale to high-resolution tetrahedral models.

The idea of limited region expansion has been adopted also in the approach
of Papon et al. [22], which is an extension of the superpixel concept to point
clouds: after initializing the segmentation superimposing a regular grid to the
cloud, they iteratively alternate between a classification step and a centroid
update step, until convergence is reached.



Fig. 2. Volumetric visualization and central x, y, and z slices of physical simulation of
a fuel jet (top), silicium material (center), and electron orbit (bottom) segmented into
2000 supertetrahedra with w = 1.5.

2.2 Tetrahedral Domain

Much of the work in the area of tetrahedral mesh research focuses on the quality
tetrahedralization of a given volume. This is a difficult task since the regular
tetrahedron does not tile 3D space, and state-of-the-art methods usually rely on
a Delaunay-based process to tetrahedralize the interior of an object. Tetrahedral
meshes are usually computed from point samples [9], regular volume data [8, 29],
from a set of calibrated images [27], or tetrahedralizing the interior of a triangle
mesh [13].

Many techniques have been applied for segmenting a tetrahedral mesh, in-
cluding traditional unsupervised clustering techniques such as Gaussian mixture
models [21], max flow [4], region growing [15], and iterative merging [8], as well
as methods based on mathematical concepts such as stable manifolds [9, 2], sep-
aratrix persistence [11], topological-equivalence regions [6] and discrete Morse
theory [35]. Last but not least, many of the best-performing techniques from a
semantic point of view apply graph cut methods [27–29].

All of the above methods are designed to produce a segmentation of the input
model into a relatively low number of segments, each of relatively large size. To
obtain an oversegmentation, applying these techniques would be less than ideal.

Techniques such as watershed, region merging, and their mathematically-
related extensions allow for little control over the variance in size and shape of
the resulting segments, usually producing irregular and unevenly-sized regions



Fig. 3. Volumetric representation and central x, y, and z slices of medical data of a
human thorax (top) and brain (bottom) segmented into 2000 segments with w = 1.5.

that are less than ideal as intermediate representations in the style of super-
pixels. Graph-cut algorithms, on the other hand, require quadratic storage for
an all-pairs affinity matrix, and so do not scale well to the case of graphs with
millions of nodes. This makes them inappropriate since the size and resolution of
the tetrahedral datasets used in practical applications is increasing. In contrast,
as previously mentioned, our adaptation of the SLIC approach [1] produces se-
mantically accurate results while keeping the complexity linear in the number
of primitives.

It should be emphasized that our approach is not meant to replace the
previously-mentioned tetrahedral segmentation algorithms, but rather to be used
as a pre-processing step to enable their execution on a domain consisting of much
fewer, well-shaped primitives conforming to semantic boundaries.

3 Algorithm

Our aim is to develop an adaptation of the SLIC algorithm [1] from the im-
age domain to 3D scalar fields defined over the vertices of a tetrahedral mesh,
considering tetrahedra rather than pixels. The concept of oversegmentation has
already been extended to triangle meshes in [26], but the domain presents several
differences with respect to the tetrahedral one: first, only the surface of the ob-
ject is considered, and therefore every distance calculation has to be constrained
to lie on the surface. Second, triangle meshes do not have a scalar field defined
on them. Rather, information about the angle between adjacent faces is added
to the spatial information given by the vertices as a “curvature” term. Given
that in the case of the tetrahedral mesh the field is defined over vertices rather
than tetrahedra, we consider the centroids of the latter, assigning as a field value



the average field value at the tetrahedron’s vertices. While pixels lie on a regular
grid and adjacencies are implicitly given, in the tetrahedral mesh case we must
encode and use adjacency information explicitly during the clustering process.
To store the mesh, we use a structure that stores information about tetrahedra
and their vertices together with the adjacency relations between them [5]. The
segmentation process is based on the k-means algorithm, and thus consists of
an initialization step followed by centroid update and a classification steps, with
the latter two steps repeated until convergence. We describe each one of these
steps more in detail below.

Field Normalization Preprocess: To be robust across models with varying ranges
of field values, we normalize the scalar field defined over the vertices to have
unit variance, taking the field f̄i = fi/σf , where fi is the field value of the i-th
tetrahedron (taken as the mean field value of its vertices) and σf is the standard
deviation of the set of all field values of the model.

Initialization: We superimpose a virtual regular grid on the domain with cells of
width S = 3

√
v/k, where v is the total volume of the mesh’s 3D domain and k is

the number of desired regions. Each tetrahedron is assigned to its corresponding
discrete cell taking the integer division of its 3D coordinates and cell width S.

Centroid Update: Each supertetrahedral region’s centroid is calculated as the
volume-weighted average of the barycenters of the tetrahedra belonging to said
region. This centroid need not fall exactly on any of the region’s barycenters,
and is free to lie within the continuous 3D domain.

Tetrahedral Re-Classification This step assigns each tetrahedron to the region
associated with the nearest region centroid using a breadth-first expansion that
starts from the tetrahedron closest to the centroid. The metric used to evaluate
the distance is described in Section 3.1. Limiting the expansion to 2S allows the
complexity of this step to remain linear in the number of tetrahedra regardless
of the number of regions.

3.1 Distance Metric

The distance metric we use is an adaptation of the formula presented in SLIC
[1] to the case of scalar field defined over the vertices of a tetrahedral mesh. As
a consequence, it consists of the weighted sum of a term which carries spatial
information and a term for the field value. The spatial term is the Euclidean
distance between the 3D barycenters of tetrahedra i and j: ||ci − cj ||. Since the
fields we consider are scalar, we define the field term as |f̄i − f̄j |. So that these
terms are robust to variations in mesh scale and scalar field intensity across
models, they are normalized and combined as follows:

di,j = (f̄i − f̄j)2 +
(
w
||ci − cj ||

S

)2

(1)



Fig. 4. Volumetric representation and central x, y, and z slices of meshes with non-
regular domains segmented into 2000 segments with w = 1.5.

where S is the previously-defined supertetrahedral diameter, and w is a user-
specified weight. Lower values of w will give more importance to the field values,
and will favor more irregular regions that better adapt to the field’s features. In
contrast, higher values of w will result in more regularly-shaped regions. This
effect can be observed in Figure 1. We have found experimentally that a good
range of values for w is [0.5, 2.0].

3.2 Notes on Time and Space Complexity

Analogously to the original SLIC algorithm, the complexity of the expansion
step is linear in the number of tetrahedra, because the expansion of each region
is limited by a constant proportional to the region size. Achieving this complex-
ity in the tetrahedral case requires a regular spatial grid to which all tetrahedral
elements register, resulting in a constant number of tetrahedra in each grid cell.
With such a spatial index, the tetrahedron closest to each supertetrahedral re-
gion’s centroid can be found in constant time during the reclassification step. A
k-d tree or octree can be used instead, with a very modest reduction in perfor-
mance with respect to the previous alternative.



Model #V #T #ST #Arcs IA (MB) ST (MB) ST (s) Ncut (s)

Silicium 113K 634K 2.1K 12.2K 22.80 13.22 21.76 245.43
Neghip 129K 728K 2.2K 11.3K 26.14 15.12 47.22 284.93

Fuel 262K 1.5M 2.2K 9K 53.78 30.96 40.49 332.15
Thorax 768K 4.1M 2.7K 14.7K 149.08 86.37 137.80 712.81
Brain 860K 5M 2K 12.4K 178.54 102.49 451.40 480.15

Trigonom. 1M 5.8M 2.1K 13.6K 208.18 119.45 193.18 591.52
Bonsai 4.5M 25.8M 2.2K 13.2K 926.18 531.92 4613.90 1774.81

VisMale 4.9M 28M 1.6K 8.8K 1,007.11 578.70 6,529.66 1,712.95
Foot 5.3M 31.2M 2.1K 12.5K 1,115.44 638.90 5,788.87 2,054.03

Table 1. IA and supertetra comparison and running times for the latter.

The supertetrahedral representation is effective for compactly encoding sim-
plicial meshes. In our experiments we compare the latter with another compact
encoding for simplicial meshes: the IA data structure [5]. For the sake of clarity,
we distinguish among the three types of entities encoded in the IA data structure:
the geometry, which is represented by the vertex coordinates, the connectivity,
which encodes the relations between tetrahedra and vertices, and the dual graph.
Considering a tetrahedral mesh Σ, its dual graph is the graph G = (N,A) where
the nodes N are in one-to-one correspondence with the tetrahedra in Σ. An
arc in A connects two nodes if and only if the corresponding tetrahedra are
face-adjacent (i.e. they share a triangle).

In our IA implementation, vertices are indexed in a single array containing,
for each of them, their coordinates and an additional scalar value, thus storing
4v float values, where v is the number of vertices in Σ. Tetrahedra are also
indexed in a single array. Connectivity information is encoded by storing, for
each tetrahedron, the four indices of its boundary vertices, thus encoding 4t
indexes in total, where t is the number of tetrahedra in Σ. Lastly, the dual
graph can be efficiently represented exploiting the regularity of the tetrahedra
adjacencies. Since each tetrahedron has at most four adjacent tetrahedra, we
can use a constant-size array of length 4t storing, for each tetrahedron, the four
indices of the adjacent tetrahedra. The resulting overall storage cost of the IA
structure is then 4v + 8t.

The information represented in the supertetra structure can be conceptually
subdivided as we have done for the IA representation. The geometric and com-
binatorial information still consists of three coordinates per vertex plus a scalar
field value and 4t indexes, which reference each tetrahedron’s vertices. However,
adjacency relations are now considered between supertetra regions rather than
tetrahedra. The dual graph G = (N,A) now encodes one node for each su-
pertetra region and one arc for each adjacency relation between two supertetra.
Thus, each supertetra encodes the list of adjacent regions as a list of pointers
to the latter. Since each adjacency relation is referred twice (i.e. a pointer is
encoded on both the adjacent regions) the total number of pointers is 2|A|. As
a consequence, the storage cost of this representation becomes 4v + 4t+ 2|A|.



We have estimated the spatial occupation of the two data structures encoding
real datasets and we show the obtained results in Table 3.2. We are assuming a
storage cost of 8 bytes for each coordinate and scalar value and a storage cost
of 4 bytes for each pointer or index over an array. We note that the supertetra
representation is approximately 40% more compact than the IA representation.

4 Results

In the following, we show the results of applying our oversegmentation algorithm
to sample datasets. Figure 1 illustrates the effect of the w parameter on the re-
sulting regularity, Figure 2 shows results on models of physical simulations, and
Figure 3 illustrates results on anatomical data. Lastly, Figure 5 demonstrates
the application of our supertetrahedral representation to a semantic segmenta-
tion. Since the objects are volumetric, we visualize the slices obtained by cutting
the mesh along its central axes. Please refer to figure captions for more details.
In each case, note how the “empty space” (marked by constant field values)
is divided into an approximately regular grid, while in detailed areas the su-
pertetrahedral boundaries follow the contours of the field’s features. Most of
the meshes we use are regular, but our approach also work on non-regular or
semi-regular meshes, as illustrated in Figure 4.

4.1 Enabling Normalized Cuts on Large Datasets

Usually, the results of an oversegmentation are computed as a preprocess, the
results of which are fed as input to some subsequent algorithm, improving its
results and/or efficiency. Here, we apply the Normalized Cuts algorithm of Shi
and Malik [25]. This graph cut method produces high quality results, but its
drawback are its O

(
n

3
2

)
complexity and quadratic storage costs. The latter, in

particular, would make the application of the normalized cuts approach to one
of these high resolution models completely intractable. Let us consider the all-
pairs distances storage cost assuming we use 32-bit single-precision floating point
and only store the upper triangle of the symmetric distance matrix (something
which the implementation of Shi and Malik does not currently allow for). The
brain dataset, comprising approximately five million tetrahedra, would require
1
2 (5M)2 × 4 bytes ≈ 50 terabytes to store the distance matrix alone.

The oversegmentations we produce, illustrated in Figure 5, are composed of
approximately 2000 regions, and therefore it is possible to perform a normalized
cut considering the regions as nodes of the graph. We use the same distance
metric defined in equation (1), computing it between the centroids of adjacent
supertetrahedral regions, and then find all-pairs shortest path distances over the
adjacency graph of these regions. Finally, we apply Normalized Cuts. Figure
5 illustrates the results of this procedure on regular and irregular tetrahedral
domains respectively. The supertetrahedral representation is what enables graph-
cut results such as these at this resolution.



Fig. 5. Results of applying Normalized Cuts on our supertetrahedral representation. A
direct application of such a graph-cut algorithm would be completely intractable due
to the prohibitive storage costs of the all-pairs distance matrix.



5 Future Work

We have introduced a tetrahedral mesh segmentation algorithm, which can be
regarded as an extension of a state-of-the-art superpixel algorithm to tetrahedral
mesh representations with scalar fields defined over their vertices. We illustrated
the results of our method by applying it to several models, including analytic,
physical simulation, and medical datasets.

Since oversegmentation is not a final aim in image and mesh processing,
but rather an intermediate step applied to improve the tractability of some
subsequent task, we demonstrated the utility of our approach by showing how it
could be used to enable the application of a graph cut approach to high resolution
models, a task which would have been intractable otherwise.

Future work will focus on exploring other uses of the supertetrahedral rep-
resentation, as well as extending the approach to higher-dimensional and time-
varying meshes, and augmenting the regions with feature vectors that encode
texture and other mid-level perceptual cues.
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