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Abstract

We consider the problem of analyzing the topology of scalar fields defined on a triangulated shape by using a multi-scale approach,
which allows reducing storage costs and computation times, and supports interactive inspection and classification of topological
features. We define and implement a multi-scale model that we call a Hierarchical Forman Triangulation (HFT), where a 3D shape
or a terrain is discretized as a triangle mesh, and its topology is described by defining a discrete Morse gradient field based on
function values given at the vertices of the mesh. We introduce a new edge contraction operator, which does not change the behavior
of the gradient flow and does not create new critical points, and we apply it in combination with a topological simplification operator
which eliminates critical elements in pair. By combining the two operators in a sequence, we generate the HFT . We discuss and
implement a compact encoding for the HFT that has a lower storage cost with respect to the triangle mesh at full resolution. We
show the effectiveness of this new hierarchical model by extracting representations of terrains and shapes endowed with a scalar
field at different, uniform and variable, scales and by efficiently computing topological features and segmentations.

Keywords: Topological data analysis, Simplification, Multi-scale models, Discrete Morse theory

1. Introduction

Computational topology is a rapidly developing field in data
and shape analysis. It is used to support classification and under-
standing combined with machine learning techniques [1] and as
the basis for interactive analysis and inspection through visual-
ization [2]. Topological tools are rooted in Morse theory and
persistent homology. This latter has produced shape signatures,
like the barcode or the persistent diagram, while the former
has been the basis for extracting topological features, like the
Reeb graph, which describes the evolution of the level sets of a
scalar function defined on a manifold shape, or the Morse and
Morse-Smale complexes, which provide a segmentation of a
shape induced by the regions of influence of the critical points
of a scalar function defined on it [3]. These latter have been
extensively used for terrain analysis [4], shape analysis [5, 6] or
remeshing [7].

The purpose of our work is extracting Morse features, like the
ascending and descending manifolds forming the Morse com-
plexes, efficiently and effectively. We consider a terrain or a 3D
shape discretized through a triangle mesh, with a scalar value
associated with its vertices. Because of the large size of the
meshes, most of the recent approaches to extract topological
features from data are based on a discrete version of Morse
theory for cell and simplicial complexes [8], which allows an
entirely combinatorial and derivative-free approach to Morse
feature computation.

Since data are affected by noise, many spurious critical points
and cells can be generated. Simplification approaches have
been defined for dealing with both noise and data redundancy
[9, 10]. Simplifying a scalar field using topological simplifi-
cations means canceling critical points in pairs, thus reducing

the number of cells in the Morse complexes. Simplification ap-
proaches have been recognized as effective but not efficient, es-
pecially to support data inspection and understanding through vi-
sualization. Multi-resolution approaches have been introduced
for providing faster interactions and more degrees of freedom on
the extracted representations [11, 12, 13]. Most of these models
interact with the morphology but leave the underlying mesh un-
touched. This is a serious issue when working with big datasets
since the complexity of extracting, representing and visualizing
Morse features is mainly affected by the resolution of the mesh
and not by the size of the Morse complexes.

Our work is inspired by [14] where the authors introduce the
first edge contraction operator for a triangle mesh endowed with
a scalar field which maintains the Forman gradient. The operator
is used to create a progressive model, consisting of a sequence
of simplifications of the mesh and of the Forman gradient. On
the other hand, we define a multi-scale model for a triangulated
shape endowed with a scalar field, that we call a Hierarchical
Forman Triangulation (HFT). The HFT allows extracting both
a mesh and a topological representation at different levels of
topological and geometric resolutions. The model is generated
based on two simplification operators: the edge contraction op-
erator, which simplifies the mesh, and the cancellation operator,
which simplifies the morphology. The edge contraction opera-
tor that we will introduce in Section 5 is an improvement over
the one defined in [14] since it imposes conditions on the For-
man gradient V only. Given a triangle mesh Σ endowed with a
scalar function given at its vertices, we build a discrete Morse
gradient V on Σ compatible with the scalar field; then, through
edge contractions and cancellations, we simplify both Σ and V .
The HFT is built from the resulting sequence of simplifications.
The inverse of the atomic simplifications used to generate the
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HFT together with a partial order dependency relation between
pairs of simplifications form the structure of the HFT , from
which representations at different scales, also variable across
the mesh, can be efficiently extracted. The major contributions
of this work are the definition and implementation of:

• a simplification operator for triangle meshes endowed with
a Forman gradient, which does not eliminate or generate
critical elements, and generalizes the operator presented in
[14];

• a new refinement operator, inverse of the latter, that op-
erates on the mesh and on the Forman gradient without
creating or eliminating critical elements;

• a new multi-scale model, the Hierarchical Forman Trian-
gulation (HFT ), which combines mesh and topological
updates, based on discrete Morse theory;

• a dependency relation between topological updates, which
is minimal in the number of dependencies required, thus
greatly enhancing the expressive power of the multi-scale
model.

The HFT has a low storage cost, lower than that of the mesh
at full resolution, and provides a high flexibility in adjusting the
resolution of the mesh to comply with the scale of the topolog-
ical representation. This allows extracting variable-scale rep-
resentations of the mesh endowed with the gradient as well as
multi-scale Morse features efficiently.

2. Background notions

Morse theory [15, 16] is a mathematical tool studying the
relationships between the topology of a manifold shape M and
the critical points of a smooth scalar function f defined over
M. Piecewise-linear Morse theory transposes some results from
Morse theory to piece-wise linear functions [17]. Here, we
focus on a combinatorial counterpart of Morse theory for cell
complexes due to Forman and called Discrete Morse Theory
(DMT) [8]. Since simplicial complexes are common discretiza-
tion structures [18] for shapes in low and high dimensions, we
review DMT focusing only on these latter. Recall that a k-
dimensional simplex, or simply a k-simplex, σ is the convex
hull of k + 1 geometrically independent points in Rn. 0-, 1- and
2-simplices are also called vertices, edges, and triangles, respec-
tively. A triangle mesh is a special case of a simplicial complex:
it is formed by vertices, edges and triangles and has a manifold
domain.

We consider a pair (Σ, F), where Σ is a triangle mesh and
F : Σ → R is a scalar function defined on all the simplices
of Σ. Function F is a discrete Morse function (also called a
Forman function) if and only if, for every k-simplex σ ∈ Σ, all
the (k−1)-simplices on the boundary of σ have a lower function
value than σ, and all the (k + 1)-simplices bounded by σ have
a higher function value than σ, with at most one exception. If
there is such an exception, it defines a pairing of cells, called
a gradient pair. A gradient pair can be viewed as an arrow in

which the head is a k-simplex and the tail a (k − 1)-simplex. A
simplex that is not a head or a tail of any arrow is a critical
simplex. A V-path is a sequence of simplices [σ0, τ0, σ1, τ1,-
..., σi, τi, ..., σq, τq] such that σi and σi+1 are on the boundary of
τi and (σi, τi) are paired simplices, where i = 0, ..., q.

The collection of all paired and critical simplices of Σ forms a
discrete Morse gradient (also called a Forman gradient) if there
are no closed V-paths, i.e., if all V-paths are acyclic. In Figure
1(a)) a Forman gradient is shown: it has two critical triangles
(t and t1), one critical edge e, and one critical vertex v. Given
a triangle mesh Σ endowed with a scalar function f defined
on its vertices, we can always compute a Forman gradient V
without computing the Forman function F explicitly. In our
work we compute the Forman gradient through the algorithm in
[19]. In the following, we denote a triangle mesh Σ endowed
with a Forman gradient V as a pair (Σ,V). We call a separatrix
V j-path any V-path of the following form: [τ, σ0, τ0, σ1, τ1, ...-
, σi, τi, ..., σq, τq, σ], where τ and σ are two critical simplices of
dimension j + 1 and j, respectively. Thus, in a triangle mesh
Σ we will have separatrix V0-paths connecting a critical edge
to a critical vertex and separatrix V1-paths connecting a critical
triangle to a critical edge (see Figure 1).

Topological features are defined in the discrete case in terms
of the Forman gradient and its paths. The critical net con-
sists of the critical vertices, edges, and triangles plus the sep-
aratrix V0- and V1-paths connecting them. Any descending k-
manifold (which is a k-cell of the descending Morse complex),
is the collection of the k-simplices of Σ reached by the gradi-
ent paths starting from critical k-simplex. Dually, an ascending
k-manifold (a k-cell of the ascending Morse complex) is the col-
lection of the (2 − k)-simplices reached by the gradient paths
(visited backward) starting from a critical (2 − k)-simplex. Fig-
ure 1(e) illustrates the descending 2-manifold associated with
triangle t. A description of the algorithms used for extracting the
ascending and descending manifolds from a Forman gradient
can be found in Section 8.

3. Related work

Morse complexes can be simplified by applying an operator
defined in smooth Morse theory, called cancellation [16]. A
cancellation removes two critical points of consecutive index
which are connected by a separatrix line. This operator has
been investigated in 2D [20, 11, 21, 22] and 3D [10, 23], by
considering piecewise-linear shape approximations.

Given a sequence of cancellations, a hierarchical model is
built by organizing into a hierarchy the refinements which are
inverse of such cancellations, each refinement (also called anti-
cancellation) performing an undo of the corresponding cancel-
lation. Several hierarchical models exist for representing the
morphology of a triangle mesh endowed with a scalar field [3].
They can be classified as: progressive models, that just represent
the sequence of refinements reversing the cancellation sequence,
and multi-resolution models, that organize the refinements ac-
cording to a partial order relation of mutual dependencies among
the refinements. These latter have a much higher expressive
power, since they support the extraction of a large number of
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(a) (b) (c) (d) (e)

Figure 1: (a) Forman gradient with two critical triangles t and t1, one critical edge e and one critical vertex v. (b) The separatrix V1-path connecting e and t. (c) The
separatrix V1-path connecting e and t1 and the (d) separatrix V0-path connecting e and v. (e) Descending 2-cell corresponding to the critical triangle t.

representations not encountered during the cancellation process.
The first progressive morphological model has been developed
in the context of image analysis. The hierarchical approach de-
scribed in [24] defines a containment hierarchy for the regions
of the watershed segmentation computed on the image. In [20]
a progressive model is defined for the morphology of a terrain.
The hierarchy is created by applying cancellations on the critical
net. The hierarchy is encoded as the critical net at the coarsest
resolution plus the sequence of anti-cancellations, inverse to the
cancellations used in the construction phase.

In [11, 4] a dependency relation among anti-cancellations
is introduced for building a multi-resolution model. In [11],
the dependency relation between two refinements is defined
in terms of a diamond. The diamond associated with an anti-
cancellation(q, p) is a quadrangle bounded by the maximum
[minimum] p, the two (not necessarily distinct) minima [max-
ima] connected to saddle q and p′, the other maximum [mini-
mum] connected to q different from p. Two refinements are said
mutually dependent if the associated diamonds have at least one
vertex in common. Two refinements are said to be dependent in
[4] if they share a pair of critical points.

In [13], a dimension-independent multi-resolution model has
been defined and implemented for representing the morphology
of an n-dimensional scalar field. The model is generated from
the critical net computed on the scalar field at full resolution,
by iteratively applying the dimension-independent cancellation
operators defined in [23]. This produces a critical net describing
the topology of the field at the lowest level of detail. The model
organizes several representations of the critical net in a partial-
order hierarchy and is capable of supporting the extraction of
the net which best approximates the topology of the scalar field
under application-dependent requirements.

In all these models the underlying mesh is always kept at full
resolution. A first step towards combining mesh simplification
with morphological cancellation is in [25], where the multires-
olution model consists of three hierarchies, for the mesh Σ, for
the critical net and for a purely combinatorial representation of
the critical net. These three models are all generated by itera-
tively applying edge contraction on the triangle mesh. When a
simplification only modifies Σ it is encoded in the first hierarchy,
when it also modifies the critical net, it is encoded in the second
hierarchy. When it deletes a critical point, it is encoded in all
three of them. Besides the problems arising from encoding and

navigating three different hierarchies, the major drawback of
this approach is the fact that an edge contraction applied to Σ

may generate new critical points.

4. Overview of the approach

We consider a triangle mesh Σ endowed with a Forman gra-
dient V , denoted as (Σ,V). The gradient field V is computed
based on the values of a scalar field given at the vertices of Σ.
We apply a sequence of simplification operators S by starting
from (Σ,V) until reaching the coarsest representation, i.e., the
pair (ΣB,VB) on which no more simplifications can be applied.
We call ΣB the base mesh and VB the base Forman gradient. We
consider two simplification operators:

• a new simplification operator, that we call gradient-aware
edge contraction which operates on Σ by reducing the num-
ber of simplices and on V by modifying the gradient with-
out altering its number of critical simplices, as we prove in
Section 5.

• a cancellation operator on V , which removes a pair of criti-
cal simplices from V without modifying the simplices in Σ;
this is a classical gradient simplification operator defined
in discrete Morse theory [8] and it is performed by revers-
ing the gradient arrows in the V-path connecting the two
critical simplices, as discussed in Section 6.

We then consider the inverse of the simplification operators,
which undo their effect. We define a gradient-aware vertex-
split, which is the inverse of the gradient-aware edge contrac-
tion: such operator modifies triangle mesh Σ and gradient field
V without deleting or introducing critical simplices (see Section
5) We define the insertion operator as the undo operator with
respect to a cancellation, and we define and prove the condi-
tions for its feasibility (see Section 6) . As it happens for a
cancellation, an insertion does not modify the triangle mesh
Σ, but in order for it to be feasible, some requirements on the
triangle mesh to which it can be applied need to be imposed, as
discussed in Section 6.

From simplification sequence S , where the gradient-aware
edge contraction and the cancellation are interleaved, we obtain
a set R of refinement operators (the gradient-aware vertex-split
and insertion) which undo the operators in S . We define a depen-
dency relation between pairs of refinements that can be proven
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Figure 2: From left to right: we show the result of the contraction of edge e.
From right to left: effect of its dual vertex split operator.

to be a partial order, as discussed in Section 7.1. The base mesh
endowed with the base gradient (ΣB,VB), set R, and the depen-
dency relation define a partial-order hierarchy of refinements,
described by a Directed Acyclic Graph (DAG), the Hierarchi-
cal Forman Triangulation (HFT). The HFT is a combined geo-
metric/topological multi-scale model for supporting interactive
inspection and understanding. In Section 7 we present the data
structure for encoding an HFT , and we describe the algorithms
for extracting representations at variable scales in Section 8.

5. Mesh simplification and refinement

In this section, we introduce the operator used for simplifying
a mesh Σ endowed with a Forman Gradient V , (Σ,V), and its
undo (refinement) operator.

5.1. Gradient-aware edge contraction

Edge contraction is a well-known simplification operator for
triangle meshes and simplicial complexes in general [26, 27].
An edge contraction acts on a triangle mesh Σ by contracting
an edge e, with endpoints v1 and v2, to one of its endpoints
(i.e., v2). We consider edge e as directed from v1 to v2, and we
denote as t1 the triangle on the left of e and as t2 the one on
the right (see Figure 2). The effect of the contraction of edge
e on Σ is to remove edge e, vertex v1 and triangles t1 and t2
and to transform all the edges and triangles incident in v1 into
edges and triangles incident in v2. As discussed in [25], the edge
contraction operator can modify the morphology of the scalar
field in an uncontrolled way.

We define here a new operator called gradient-aware edge
contraction, denoted contract(v1, v2), on (Σ,V): the operator
modifies the simplices in Σ as the edge contraction, but also
removes the same simplices from the gradient pairs in V in
such a way that the critical simplices remain unchanged. This
operator is inspired by the one defined in [14]. As described
in the following, the gradient-aware edge contraction operator
presented here is an improvement over the latter since it imposes
condition on the Forman gradient V only. This is guaranteed by
the following feasibility requirement.

A gradient-aware edge contraction, contract(v1, v2), can be
considered as feasible on (Σ,V) if and only if the following
conditions are satisfied:

(i) all the simplices to be removed, i.e. edge e, vertex v1 and
triangles t1 and t2, are not critical;

(ii) edge e is paired in V with v1.

This latter condition guarantees that no simplices become
critical. Clearly, no critical simplex is removed during simplifi-
cation because of condition (i). Condition (ii) is required since
otherwise an edge contraction might force the introduction of a
new critical simplex, as shown in the example in Figure 3.

(a) (b) (c)

Figure 3: (a) Gradient configuration before edge contraction. After the edge
contraction we either (a) keep e paired with vertex v3, then introducing t as
critical or (b) we keep t paired with e and we introduce v3 as critical.

We now prove that if condition (ii) above holds, then no criti-
cal simplex is introduced. We always consider the contraction
of edge e as oriented in the same direction as the gradient de-
fined on e (so v1 is the vertex paired with e). Refer to Figure 2
for notations. We recall that edge e and triangles t1 and t2 are
removed by edge contraction. We know that e is paired with
v1 and, as effect of the contraction, pair (v1, e) is removed from
V . Because of condition (i), t1 is not critical. Also, it is not
paired with e because of condition (ii). Thus, t1 has to be paired
with either e1 or e2. As an effect of the contraction, we will
remove t1 and its paired edge from V . The same holds for t2.
No other simplex is removed from Σ and, since we have been
removing simplices in pairs from V , we can conclude that no
critical simplex is introduced.

5.2. Gradient-aware vertex split
We define a gradient-aware vertex split, denoted split(v1, v2),

as the undo of contract(v1, v2) on (Σ,V). The operator reintro-
duces vertex v1 along with edge e = (v1, v2) and the two triangles
t1 and t2 incident in e (see Figure 2). By inserting triangles t1
and t2, two new edges are also created. The modification of the
gradient consists of first pairing edge e = (v1, v2) by looking at
the path through v2:

• if v2 is paired with an edge e1 which becomes incident into
v1 after the split, then v2 is paired with e and v1 is paired
with e1 (see Figure 4), otherwise e is paired with v1;

• triangle t1 is paired with the one edge between (v1, v3) or
(v2, v3) which is unpaired (see Figure 4);

• the same happens for triangle t2.

As a result of the above, we can easily prove that no critical
simplex is deleted or introduced by a gradient-aware vertex split.
We observe that:

• triangles t1 and t2 are paired with the newly introduced
edges,
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(a) (b)

Figure 4: (a) Gradient configuration before vertex split and (b) after, where
the gradient path passing for e1 is maintained by pairing v2 with the new edge
(v2, v1). Similarly, the new edge introduced is paired with the unpaired edge to
maintain the gradient paths consistent.

• edge (v1, v2) is paired with either v1 or v2,

• v1 is paired with either (v1, v2) or with the edge previously
paired with v2.

We conclude that no new simplex is unpaired after the vertex
split, and thus no critical simplex is introduced or removed.

Let contract(v1, v2) be the operator applied to a pair (Σ,V)
which produces a new pair (Σ′,V ′), as described in the previous
subsection. Let S 2 be the ordered sequence of vertices adja-
cent to v2 in Σ′ (green vertices in Figure 2). Intuitively, we
consider a gradient-aware vertex split split(v1, v2) applied to a
pair (Σ′′,V ′′) feasible if Σ′′ is ”locally equivalent” to Σ′. This
translates into the following two conditions:

• vertex v2 is in Σ′′;

• S 2, the ordered sequence of vertices of Σ′ adjacent to v2, is
in Σ′′.

This condition will be at the base of one of the dependency
relations of our multi-scale model (see Section 7.1).

6. Modifying the topological representation

In this Section, we describe the simplification operator used
for coarsening the Forman gradient by reducing the number of
its critical simplices, as well as its undo (refinement) operator.

6.1. i-cancellation
The simplification operator we use for modifying the Forman

gradient V is called cancellation and it has been introduced in
[8]. An i-cancellation deletes two critical simplices connected
by a critical Vi-path. In the case of a triangle mesh we distin-
guish between two types of cancellation:

• A 1-cancellation applied to V deletes a critical edge e and
a critical triangle t connected by a separatrix V1-path γ;
the V1-path connecting e to t is reversed by starting from e
and ending into t (see Figure 5). We denote the new path
γ−1. This produces a new Forman gradient V ′, which is the
same as V except for γ−1, and where edge e and triangle t
are no longer critical.

Figure 5: From left to right: the effect of 1-cancellation(e, t) on a Forman
gradient V; the separatrix V1-path connecting e and t is reversed by starting
from e and by defining new pairs depicted as red arrows. From right to left:
effect of its dual operator, 1-insertion(e, t).

• A 0-cancellation applied to V deletes a critical vertex v
and a critical edge e connected by a separatrix V0-path.
The effect of a 0-cancellation(e, v) on V is to delete v and
e from the set of critical simplices of V and to reverse the
gradient arrows on the one separatrix V0-path between v
and e.

6.2. i-insertion

An i-insertion is defined as the undo of an i-cancellation. A 1-
insertion(e, t) introduces a critical edge e and a critical triangle t
in a Forman gradient V ′, by inverting the V1-path between e and
t (see Figure 5). Symmetrically, a 0-insertion(e, v) introduces
a critical edge e and a critical vertex v in V ′ by reversing the
V0-path between e and v.

Algorithm 1 provides a description of the effect of a 1-
insertion. The algorithm starts from the triangle tri which will
become critical, and retrieves its paired edge edg from V (row
7). The corresponding pair (edg, tri) is then removed from V
(row 9). The other triangle adjacent to edg is retrieved (row 11)
as well as its paired edge (row 12). Pair (nextEdg, nextTri) is
removed from V and pair (edg, nextTri) is added (row 13-14).
Pairs are then inverted in sequence until the edge e, which will
become critical, is reached. A 0-insertion works in a completely
dual fashion by working on vertices and edges.

We consider a generic i-cancellation(σ, τ) applied on (Σ,V).
This produces a new pair (Σ,V ′). To apply its inverse i-
insertion(σ, τ), we do not need to work on (Σ,V ′), but on a ”lo-
cally equivalent” (Σ′,V ′′). Thus, we say that an i-insertion(σ, τ)
applied to the pair (Σ′,V ′′) is feasible if the following two con-
ditions are satisfied:

• σ and τ are in Σ′;

• critical simplex τ1, which is the other critical simplex, be-
sides τ. connected to σ through a separatrix in (Σ,V) is in
V ′′.

Generally speaking we should also guarantee that σ and τ are
connected by a separatrix path for the insertion to be valid. How-
ever, the presence of τ1 is a sufficient condition to guarantee this,
as explained below. Since we are working with triangle meshes
we know that:
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Algorithm 1 1-insertion(e,s,V ,Σ)
1: Input: e, future critical edge
2: Input: t, future critical triangle
3: Input: V , Forman gradient
4: Input: Σ, triangle mesh
5: Output: V , updated Forman gradient
6:
7: edg = getPair(t,V)
8: tri = t
9: removePair(edg, tri, V)

10: while edg , e do
11: nextTri = getAdjacent(edg,tri,Σ)
12: nextEdg = getPair(nextTri,V)
13: removePair(nextEdg, nextTri, V)
14: setPair(edg, nextTri, V)
15: edg = nextEdg
16: tri = nextTri
17: return V

(i) each edge σ is connected to, at most, two critical triangles
t and t1,

(ii) each edge σ is connected to, at most, two critical vertices
v and v1,

(iii) a V1-path cannot be modified by inverting a V0-path (and
vice-versa).

Let us consider a 1-cancellation(e,t). We denote as γ the sep-
aratrix V1-path connecting e and t and γ−1 the gradient path
obtained by inverting all the arrows of γ as the result of the can-
cellation. We know from (iii) that γ−1 can be further modified
by performing a 1-cancellation only and, because of (i), such
cancellation necessarily involves t1. Thus, we conclude that if
t1 ∈ V ,then also γ−1 ∈ V , and the 1-insertion(e, t) is feasible.
The same holds for a 0-insertion(e,v) by using (ii) instead of (i).

The feasibility condition above implicitly defines a depen-
dency relation among i-insertions, as discussed in Section 7.1.

7. The Hierarchical Forman Triangulation

In this Section, we define a multi-scale model for a triangu-
lated shape endowed with a Forman gradient (Σ,V), generated
on the basis of the combined simplification of Σ and V . We call
such a model a Hierarchical Forman Triangulation (HFT). An
HFT is built by applying an interleaved sequence of gradient-
aware edge contractions and cancellations to (Σ,V) until no
more simplifications can be performed. An HFT consists of:

- the triangle mesh ΣB (the base mesh) obtained by simpli-
fying Σ endowed with the Forman gradient VB (the base
Forman gradient) obtained by simplifying V;

- the set of all refinements which undo the simplifications
performed on (Σ,V);

- a direct dependency relation between pair of refinements,
defined below based on the feasibility conditions discussed
in Sections 5.2 and 6.2.

7.1. Direct dependency relation

Generally speaking, a refinement ri depends on another re-
finement r j if r j introduces new simplices or makes a simplex
critical, as required for ri to be feasible (see Sections 5.2 and
6.2 for the definitions of feasibility). Recall that vertex split
split(v1, v2) creates a new vertex v1 and a new edge (v1, v2),
while an i-insertion(e, σ) makes edge e and simplex σ critical.
We have three kinds of dependency:

• A vertex split split(v1, v2) directly depends on another ver-
tex split operator split(v′1, v

′
2) if and only if v′1 is required in

order that split(v1, v2) can be correctly applied. This means
that v′1 is either the same as v2 or is one of the vertices in
the sequence S 2, as defined by the feasibility condition in
Section 5.2;

• An i-insertion(e, σ) directly depends on a single i-
insertion(e1, σ1), which is the one making σ1 critical,
where σ1 is the critical simplex (vertex or triangle) con-
nected through a separatrix path to edge e, as required by
the feasibility condition in Section 6.2;

• An i-insertion(e, σ), directly depends on a vertex split
split(v1, v2) if v1 is one of the vertices of e or of σ.

Note that simplices are never introduced twice in Σ, since
each vertex, edge and triangle is introduced by a single refine-
ment, and similarly critical simplices are never introduced twice
in V . Thus, the direct dependency relation defined above is a
partial order relation. The hierarchical structure of the HFT is
thus described by a Directed Acyclic Graph (DAG), in which
the nodes are the refinement operators and the arcs encode their
mutual direct dependencies.

Comparing to multi-scale models that represent only the mor-
phology of a scalar field, we can notice a relevant improvement
in the dependency relation for the i-insertions. We recall that
in [11, 4] the dependency relation is defined in terms of a dia-
mond (see Section 3). Each anti-cancellation, the equivalent of
our insertion, corresponds to a diamond. Two anti-cancellations
are dependent if the corresponding diamonds share at least one
vertex [11] or at least one edge [4]. Recalling that a diamond is
a quad having four critical maxima/minima as vertices, it is easy
to see that the relation in [11] has a minimum bound of four (i.e.,
one dependent diamond for each vertex of the quad). The upper
bound is not limited and it depends on the number of diamonds
incident in each vertex of the quad. The relation described in [4]
has a limited upper bound since we have at most four dependent
anti-cancellations (one for each edge of the diamond).

On the other hand, an i-insertion is dependent only on one
other i-insertion, which translates in having only a single link in
the hierarchy. Thus, it is minimal. This is an important aspect,
since fewer dependencies imply a higher expressive power for
a multi-scale model, where the expressive power is evaluated in
terms of the number of representations which can be extracted
from the model.
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7.2. HFT encoding

We represent the base mesh ΣB by encoding triangles and
vertices only. We use the Indexed-based data structure with Ad-
jacencies (IA) described in [28]. Both triangles and vertices are
indexed in two different arrays and can be referred by using four
bytes. For each triangle, we store the indices of its three vertices
and the indices of its three adjacent triangles. For each vertex,
we store its coordinates and the index of one of the triangles
incident in it. We denote as |Σ0| and |Σ2| the number of vertices
and triangles in ΣB, respectively. Encoding the vertices of ΣB

requires 28 bytes per vertex, i.e., 24 bytes for its coordinates
and 4 bytes for indexing one of its incident triangles. Each trian-
gle in ΣB requires 4 bytes for each incident vertex and for each
adjacent triangle.

Forman gradient V is encoded by associating, with each tri-
angle, the subset of pairs involving its edges and vertices. We
call this collection of pairs as local frame. We refer to [22] for a
detailed description of this encoding, which results in only one
byte per triangle for storing the entire V . Thus, encoding ΣB

plus VB requires in total

28|Σ0| + 25|Σ2| bytes.

The direct dependency relation in an HFT is encoded in
a DAG. Nodes are of two types for indicating mesh updates
(Nodeg) and topological updates (Nodem). Nodes of each type
are indexed in an array denoted Ng and Nm, respectively.

Each Nodeg represents a vertex split split(v1, v2), undo of an
edge contraction contract(v1, v2). It encodes:

• the coordinates of newly inserted vertex v1;

• one index to each node representing a vertex split on which
split(v1, v2) depends.

This requires storing 4 bytes for each split it depends on and
32 bytes for the coordinates of v1 (3+1 floats). Encoding each
node Nodeg ∈ Ng requires

32 + 4d bytes,

where d denotes the number of nodes Nodeg depends on, which
can be a variable number depending on the number of vertices
adjacent to v2 before the corresponding edge contraction.

Each Nodem represents an i-insertion, undo of an i-
cancellation applied to V . It encodes:

• the persistence value of the pair that will be introduced,
where the persistence is defined as the absolute value of
the difference between the field values at the two critical
simplices introduced;

• an index to the only topological node this refinement de-
pends on;

• an index to each geometric node this refinement depends
on.

Algorithm 2 selectiveRefinement(VB,Nm,ep,ΣB,Ng,el)
1: Input: VB, base Forman gradient
2: Input: Nm, updates for VB

3: Input: ep, threshold
4: Input: ΣB, base mesh
5: Input: Ng, updates for ΣB

6: Input: el, threshold
7: Output: (Σ′,V ′), mesh and gradient extracted
8:
9: VE = VB

10: ΣE = ΣB

11: for each n in Ng do
12: if el < error(n) then
13: break;
14: refineMesh(n, ΣE)
15: for each n in Nm do
16: if ep < error(n) then
17: break;
18: refineMorphology(n, VE , ΣE)
19: return (ΣE ,VE)

We use a float for encoding the persistence value (8 byte).
Since each refinement depends on only one Nodem (see Section
7.1), encoding this relation will require 4 byte only. Note that
there can be five or three geometric nodes to refer, which cor-
respond to the vertices of the two critical simplices it depends.
One of the two simplices is an edge, which is bounded by two
vertices, while the other simplex can be a triangle, which ac-
counts for three vertices or a single vertex. We overestimate the
storage cost required for each node in Nm as 8 + 4 + (5 ∗ 4)bytes.

An experimental evaluation performed on the test datasets is
provided in Section 9.

8. Querying an HFT

We perform two kinds of queries: selective refinement queries
on an HFT , which extract representations of (Σ,V) at different
scales, and topological queries, which extract topological fea-
tures, like the critical net, ascending or descending manifolds,
Morse or Morse-Smale complexes.

8.1. Selective refinement

A selective refinement extracts from an HFT a mesh with the
minimum number of triangles endowed with a Forman gradient
with the minimum number of critical simplices based on some
prescribed criterion. In our current implementation, we have
defined two criteria based on edge length and persistence [9].
Specifically, a vertex split split(v1, v2) is performed if the length
of edge (v1, v2) is greater than a user-defined threshold value el,
and an i-insertion(σ, τ) is applied if the difference in absolute
value of f (σ) and f (τ) is greater than some threshold value ep.

Algorithm 2 describes how a selective refinement is per-
formed, starting from (ΣB,VB), where ΣB is the base mesh and
VB the base Forman gradient VB. The algorithm extracts a repre-
sentation at variable scale, that we denote as (ΣE ,VE), initialized
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Algorithm 3 refineMesh(n, ΣE)
1: Input: n, update operator
2: Input: ΣE , front mesh
3:
4: if refined(n) then
5: return;
6: if notReady(n) then
7: D = dependencyMesh(n)
8: for each d in D do
9: refineMesh(d,ΣE)

10: split(n,ΣE)

Algorithm 4 refineMorphology(n, VE)
1: Input: n, update operator
2: Input: VE , front Forman gradient
3: Input: ΣE , front mesh
4:
5: if refined(n) then
6: return;
7: if notReady(n) then
8: D = dependencyMesh(n)
9: for each d in D do

10: refineMesh(d,ΣE)
11: D = dependecyMorphology(n)
12: for each d in D do
13: refineMorphology(d,VE ,ΣE)
14: insert(n,Σ′)

with (ΣB,VB). It performs a visit of the refinements, that are
stored in descending order of edge length and persistence for Ng

and Nm, respectively. When reaching a node n, the algorithm
checks first if all the refinements on which n depends upon have
been performed, and, if they have not been, it activates them by
recursively visiting the predecessors of node n in the DAG. The
refinement corresponding to node n will be performed at the end
of this process.

The algorithm considers mesh refinements Ng (row 11) and
activates vertex splits as long as the geometric error in the
currently extracted mesh ΣE is larger than threshold el (row
12). Performing all possible mesh refinements first reduces the
activation of a vertex split due to an i-insertion. Since an i-
refinement depends on some vertex splits, increasing the reso-
lution of the mesh at first will increase the number of satisfied
dependencies once we are refining the nodes in Nm.

Algorithm 3 describes the procedure for updating the mesh by
performing the vertex split associated with a node n ∈ Ng. Func-
tion re f ined(·) returns the value true if the update has been al-
ready performed (row 4), false otherwise. Function notReady(·)
(row 6) returns the value true if the corresponding vertex split re-
quires one or more vertex splits to be performed first. Function
re f ineMesh(·) recursively calls algorithm 3 on all such required
splits. Note that the splits triggered by a vertex split are applied
weather or not the error they introduce is lower than el. After all
the dependencies have been solved, the vertex split is performed
on ΣE (row 10).

Algorithm 5 extractDescendingCell(sc,V ,Σ)
1: Input: sc, critical k-simplex
2: Input: V , Forman gradient
3: Input: Σ, triangle mesh
4: Output: M, descending k-manifold
5:
6: M = ∅

7: Q = ∅

8: add(M,sc)
9: enqueue(Q,sc)

10: while Q.notEmpty() do
11: s = dequeue(Q)
12: BDs = boundary(s,Σ)
13: for each b in BDs do
14: s1 = getPair(b,V)
15: if s1 , ∅ AND s1 , s then
16: add(M,s1)
17: enqueue(Q,s1)
18: return M

Once the desired resolution for ΣE has been achieved, the
refinement of gradient VE starts (Algorithm 2, row 15). For each
node n ∈ Nm, the corresponding i-insertion is performed if the
error associated with n is larger than threshold ep. Algorithm 4
works in the same way as algorithm 3 with only one difference.
Since an i-insertion corresponding to a node n in Nm may depend
on nodes in both Ng and Nm, the algorithm has to ensure that all
such refinements are performed before refining the gradient VE

with n (rows 8 and 11).

8.1.1. Extracting topological features

Several topological features can be extracted from an HFT
at different scales. We have developed algorithms for extracting
descending and ascending manifolds from an extracted triangle
mesh ΣE endowed with the Forman gradient VE . The collection
of the descending and ascending manifolds forms the discrete
ascending and descending Morse complexes, respectively. From
these latter, all the other topological features can be computed.
The Morse-Smale complex is obtained by intersecting the as-
cending and descending manifolds. The critical net is computed
by considering the critical simplices and the 1-manifolds of the
ascending and descending Morse complexes connecting them.

Algorithm 5 describes the process of extracting a descend-
ing k-manifold. The gradient is visited by using a breadth-first
traversal (row 6). All boundary (k − 1)-simplices are computed
for each k-simplex s extracted from the queue, (row 10). If a
(k − 1)-simplex b is paired with a k-simplex s1, different from
s, s1 is added to the queue (row 11). Each k-simplex is visited
at most once, so this operation has a time complexity of O(Σk)
where Σk is the number of k-simplices in ΣE . The algorithm for
extracting an ascending manifold is the same as algorithm 5, ex-
cept for row 11 where, for each k-simplex s, the (k+1)-simplices
in the co-boundary of s will need to be extracted.
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Dataset |Σ0| |Σ2| |Nodeg| |Nodet | |Nodeg|% |Nodet |%

Neptune 2.0M 4.0M 2.0M 2.2K 99.8% 0.11%
Dragon 3.6M 7.2M 3.6M 5.7K 99.8% 0.11%
Statuette 4.9M 10M 4.9M 11K 99.7% 0.22%
ComoLake 810K 1.6M 806K 25K 96.9% 3.07%
MajorLake 810K 1.6M 806K 29K 96.4% 3.57%
Maui 2.0M 4.0M 2.0M 25K 98.7% 1.2%
Baia 4.1M 8.3M 4.1M 16K 99.5% 0.41%
Puget 9.7M 19M 9.7M 17.1K 98.2% 1.75%

Table 1: Characteristics of the datasets used in our experiments. For each
mesh we show the dataset name (column Dataset), the number of vertices and
triangles (columns |Σ0 | and |Σ2 | respectively), the number of geometric and
topological nodes in the HFT (columns |Nodeg | and |Nodet | respectively) and
the percentage of such nodes respect to the total number of nodes (columns
|Nodeg |% and |Nodet |% respectively).

9. Experimental results

In this Section, we discuss our experimental evaluation of the
HFT . The purpose of our experiments is to show the efficiency
of our approach in computing Morse complexes on representa-
tions, at different levels of resolution, extracted from the HFT .
We present only the results obtained in extracting the ascend-
ing and descending Morse complexes, for the sake of brevity,
but the Morse-Smale complex can be efficiently computed from
them, as well as the critical net by following the separatrix gra-
dient paths. Our experiments have been performed on a desktop
computer with a 3.2Ghz processor and 16GB of memory.

We have tested our implementation by computing the storage
cost of the HT F for five terrain datasets. Since our implemen-
tation is defined for triangle meshes, we have also tested it by
using three triangulated shapes. The field value for each vertex
is initialized with the corresponding coordinate on the z axis.
Figures focus on terrain datasets since improving efficiency for
geospatial applications is the main focus of our work. Numerical
results are presented for all datasets. In Table 1, we present the
datasets used for our experiments. All the datasets are courtesy
of the Virtual Terrain Project (VTP), the Stanford 3D Scanning
Repository and the Aim@Shape repository. The size of the tri-
angle meshes used in the experiments is between 1.6M and 19M
triangles.

For each dataset, we have built an HFT by simplifying it
with an interleaved sequence of mesh and topological simpli-
fications. We recall that a topological refinement requires a
specific resolution of the mesh (see the dependency relation
defined in Section 7.1). This is imposed by the resolution of
the mesh when the corresponding simplification has been per-
formed. Then, we prioritize geometrical simplifications. Once
all viable mesh simplifications have been performed, and all the
remaining ones are blocked because of some critical simplex,
we perform a subset of the viable topological simplifications.
We simplify 10% of the initial number of critical simplices at
each iteration. At this point, new mesh simplifications become
available, and the process can continue until no more mesh or
topological simplifications can be performed. This way, the res-
olution required by each topological refinement will be as low
as possible and we will not be forced to excessively refine the
mesh while performing the topological refinements.

For each dataset, we show the number of vertices and trian-

gles in the mesh Σ at full resolution as well as the number of
nodes in the corresponding HFT , classifying them as mesh re-
finements (Nodeg) and as morphological refinements (Nodet).
All datasets are simplified by interleaving sets of topological
simplifications with sets of morphological simplifications. In
the last two columns we show the percentage of nodes of a cer-
tain type with respect to the total number of nodes. We can
notice that mesh refinements (Nodeg) are almost 90% of the
total number of nodes, while the morphological refinements ac-
count for a small part of the entire model. This emphasizes
the importance of simplifying the mesh when we are interest in
topological data analysis.

Figure 6: Comparison of the memory consumption for storing a mesh a full
resolution and the corresponding Hierarchical Forman Triangulation.

In Figure 6, we compare the storage cost for encoding the
HFT , i.e., the base mesh and base gradient (ΣB,VB) plus the
data structure encoding the refinements and the DAG of the
dependencies, and that for encoding (ΣF ,VF), i.e. the mesh at
full resolution endowed with the Forman gradient.

The storage costs are estimated as discussed in Section 7.2.
The pair (ΣF ,VF) is encoded in the same data structure used for
the base mesh and base gradient (ΣB,VB). We have estimated
that the HFT provides a saving in storage between 34% and
40% with respect to the storage cost ofy (ΣF ,VF).

The higher compression achieved does not impact efficiency.
We have computed the time required by performing all sim-
plifications which from ΣF and VF , i.e., the representation at
full resolution, lead to ΣB and VB. As opposed, we have tested
our model by starting from the base representation ΣB and Vb

encoded in the HFT , applying all the possible refinements un-
til reaching ΣF and VF . On the largest dataset terrain dataset
Puget), the simplification process takes more than 1 hour, while
the full refinement of the model takes less than 2 minutes.

The main purpose of the HFT is to allow an efficient inter-
active topological analysis of a dataset by overcoming all the
limitations deriving by a fixed resolution in the underlying mesh
representation. In Figure 7 we show an example of a selective
refinement performed by varying the topological level of de-
tail while keeping the mesh at full resolution. For each image,
we are showing the descending 2-manifolds (which form the
descending Morse complex). We are also showing the total
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C=34K, 66sec. C=12K, 62sec. C=3.1K, 59sec. C=0.9K, 55sec.

Figure 7: Selective refinement performed by extracting the mesh at full resolution and the topology at variable resolution. For each representation extracted we show
the total number of critical simplices (denoted C) and the time (in seconds) required for extracting all the ascending and descending manifolds. Colored regions
superimposed on the triangulation correspond to the descending 2-manifolds.

number of critical simplices extracted and the time required for
computing all the ascending and descending manifolds. We
notice that, independently of the scale of the topological repre-
sentation, the timings for extracting the Morse complexes are
almost the same. This is due to the underlying mesh, which is
at full resolution.

On the other hand, as shown in Figure 8, varying the resolu-
tion of the underlying mesh can affect the computation of the
ascending and descending manifolds considerably. In these ex-
periments, we have performed extractions by varying the resolu-
tion of the mesh, but always extracting the topological represen-
tation at full scale. For each image, we show the time required
for computing ascending and descending Morse complexes. De-
pending on the mesh resolution, computing the ascending and
descending manifolds is generally 3 to 30 times faster than com-
puting them on the mesh at full resolution. Figure 8 underlines
the importance of having an efficient multi-scale model for data
exploration. The level of detail provided by Figure 8(b) or (c)
is adequate for studying the morphology of the dataset globally.
When the user is interested in a broad overview, the less refined
representation of Figure 8(a) can be sufficient. On the other
hand, the speed-up obtained by using the latter is clear. The
key aspect and distinctive feature of our model is in supporting
an efficient and effective extraction of representations at scales
which can vary in different parts of the mesh. This provides the
capability to zoom in on the overview picture, increasing the
level of detail only on small parts of the domain.

By using the HFT , we can use a high mesh resolution only
on specific regions of interest. The extractions at variable scale
are performed by setting as input parameter a window inside the
domain in which to concentrate the resolution. Figure 9 shows
the results of a window query where we extract, at full mesh res-
olution, only the subset of the domain inside the window. From
top to bottom we show three images obtained by increasing the
far bound of the viewport. For each image, we report the num-
ber of vertices in the extracted mesh and the time required for
extracting the descending 2-manifolds. Critical triangles (de-
picted in red), edges (depicted in green) and vertices (depicted
in blue) are also shown for giving a visual representation of the
morphological resolution.

We have evaluated our model, by defining a window-based
query automatically, by centering the window inside the dataset
and defining its size as a percentage (10% 30% and 50%) of
the size of the domain. We require a maximum mesh resolution

inside each window and no constraint outside. The operation
achieves a 30x speed up with respect to working on the mesh at
full resolution for the smallest window. The speed up reduces
to 8x when using the largest window.

10. Concluding remarks

We have presented a new multi-scale model, the Hierarchical
Forman Triangulation (HFT), which is a combined geometric
and topological representation for a triangle mesh Σ endowed
with a Forman gradient V . The HFT is generated through an
edge contraction operator for the mesh, which preserves the gra-
dient, and through a topological operator, which reduces the
number of critical simplices in V without modifying the sim-
plices in Σ. The model has a low storage cost, lower than that
of the mesh at full resolution, and provides a high flexibility by
adjusting the resolution of the mesh to comply with the scale of
the topological representation. We obtain a consistent saving in
computation times for extracting Morse complexes both when
reducing the resolution globally and when performing adaptive
refinements inside a window. There are several avenues for
developing the work presented here. In the current model gen-
eration, the edges are contracted in order of their length. This
choice has been performed since our objective has been to de-
velop and experiment with the entire framework without wor-
rying about the quality of the approximation of the terrain or
3D shape we produce. To obtain a higher fidelity to the original
shape, we plan to experiment with other quality measures, such
as the Quadric Error Metrics(QEM) [29].

If we consider any triangle mesh ΣE endowed with a For-
man gradient VE , extracted from the HFT , we notice that, if we
attach to the vertices of ΣE the scalar field values of the corre-
sponding vertices of the original mesh, they may not agree with
the gradient VE . This is not an issue when we want to compute
topological features since the gradient field is always correct.
Methods exist that modify a piecewise-linear function while pre-
serving the morphological structure of the Morse-Smale com-
plex [30, 31, 32, 33]. We can apply such techniques to our
extracted representations, which have a lower complexity due
to the reduced size of the mesh. We are also planning to modify
the function values at the vertices to obtain a function admis-
sible for VE , by considering techniques which generate from a
Forman gradient a discrete Morse function compatible with it.

We observe that the operations of computing and simplifying
a Forman gradient are not limited to triangle meshes, but we
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(a) |Σ0|=96K,2.1sec. (b) |Σ0|=400K,3.3sec. (c) |Σ0|=1M,7.2sec. (d) |Σ0|=4M,66sec.

Figure 8: Selective refinements performed by extracting topological features at full resolution and the mesh at variable resolutions. For each extraction we show the
total number of vertices (denoted |Σ0 |) and the time (in seconds) required for extracting the ascending and descending Morse cells. Colored regions superimposed on
the triangulation correspond to the descending 2-manifolds. Figure (d) shows the mesh at full resolution

can consider other discretization of a 3D shape, for instance
as a quad mesh. A quad mesh can be represented with a very
similar data structure as the one we use for triangle meshes, and
an extension of the gradient encoding for triangle meshes to
quad meshes seem to be straightforward. A Forman gradient is
defined for cell complexes, and the cancellation and insertion
will work in the same way. The triangle-specific part is the mesh
simplification and refinement. We are currently studying the
definition of new gradient aware simplifications for simplifying
quad meshes. A set of local operators for simplifying a quad
mesh is discussed in [34]. Besides having sequences of edge
contractions, we are considering the extension of edge/vertex
rotate and diagonal collapse as well.

Both the definition and the implementation of the hierar-
chical model and the topological simplification operators are
dimension-independent. Our current plan is to define a gradient-
aware edge contraction and its inverse, vertex split, for tetrahe-
dral meshes endowed with a Forman gradient. Multi-resolution
models for tetrahedral meshes can be found in the literature
based on edge contraction and vertex split [35]. We plan to
develop a hierarchical Forman tetrahedralization for 3D scalar
fields defined on unstructured tetrahedral meshes for volume
data analysis and visualization.

Finally, a Forman gradient has been recognized as a powerful
tool for computing the homology of a shape in an efficient man-
ner. In this alternative framework, the Forman gradient is used
as a compact representation of the triangle mesh on which com-
puting homology or persistent homology efficiently. By apply-
ing the cancellation/insertion operators we are guaranteed not
to change the homology of the shape. In the same way, the edge
contraction/vertex split operators are guaranteed to preserve its
persistent homology. We are planning to make an exploratory
use of the HT F for extracting homology generators on a triangu-
lated shape, computing specifically homology generators which
are ”localized” [36] in the sense of being independent and as
smaller as possible.
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