A discrete Morse-based approach to multivariate data analysis

Federico Iuricich™* Sara Scaramuccia’
University of Maryland, University of Genova,
College Park (MD), USA Italy

Leila De Floriani®
University of Maryland,
College Park (MD), USA

Claudia Landi*
University of Modena
and Reggio Emilia, Italy

2000 ¢ g 2B |
| LN
W@

|

Figure 1: The Hurricane dataset is a multivariate dataset defined on a cubical grid. Here we are considering two values per point describing
the temperature and the pressure above ground. For each function, we are showing the function gradient computed on the original scalar
values. Then, critical cells obtained with our method are collected in clusters called extrema-clusters. Using the extrema-clusters and their
size (number of voxels composing each cluster) we provide an interactive method for filtering out uninteresting regions. The extrema-clusters
are shown in the lower part. For each image, only the clusters bigger than the indicated size are shown. The color scheme is based on the
cluster’s size. Comparing the function gradients with the clusters obtained we notice that bigger clusters are created where the gradient

disagree, for example in the eye of the hurricane.

Abstract

Multivariate data are becoming more and more popular in several
applications, including physics, chemistry, medicine, geography,
etc. A multivariate dataset is represented by a cell complex and a
vector-valued function defined on the complex vertices. The major
challenge arising when dealing with multivariate data is to obtain
concise and effective visualizations. The usability of common vi-
sual elements (e.g., color, shape, size) deteriorates when the number
of variables increases. Here, we consider Discrete Morse Theory
(DMT) [Forman 1998] for computing a discrete gradient field on a
multivariate dataset. We propose a new algorithm, well suited for
parallel and distribute implementations. We discuss the importance
of obtaining the discrete gradient as a compact representation of the
original complex to be involved in the computation of multidimen-
sional persistent homology. Moreover, the discrete gradient field
that we obtain is at the basis of a visualization tool for capturing the
mutual relationships among the different functions of the dataset.

Keywords: Multivariate topology, Persistent homology, Segmen-
tation analysis

Concepts: eComputing methodologies — Shape analysis;

*e-mail:iurif @umd.edu

Te-mail:sara.scaramuccia@dibris.unige. it

te-mail:claudia.landi @unimore. it

$e-mail:leila.defloriani @unige. it
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. (©) 2016 ACM.

1 Introduction

Topological methods aim at creating compact representations of a
data set, focusing on its local features without losing global infor-
mation. Among them, Morse theory [Milnor 1963] studies the rela-
tionships between the topology of a shape and the critical points of a
real-valued smooth function defined on it. It has been used both for
improving the performances of algorithms for computing homol-
ogy and persistent homology and as the basis for creating segmen-
tations of terrain and volume data based on the critical points of the
scalar field defined on them. Discrete Morse theory [Forman 1998]
due to Forman, a combinatorial counterpart of Morse theory, pro-
vides the notion of discrete gradient field (also called Forman gradi-
ent) for an efficient and derivative-free analysis of a scalar field. In
the case of univariate data, a Forman gradient has been extensively
used because, due to its discrete nature, it can be easily represented
[De Floriani et al. 2015]. Multivariate data are characterized by
several function values. A multivariate dataset usually consists of a
cell complex discretizing the domain, and a vector-valued function
defined on the complex vertices. In this context, the objective is to
study the relations among multiple functions defined on the dataset
rather than collecting results according to a single field. Such a
component-wise segmentation would, in general, lose some func-
tional relationships.

Given a multivariate data set, we propose an algorithm for comput-
ing a discrete gradient field compatible with all multiple functions
defined on a cell complex. The problem has been faced from a the-
oretical point of view in [Allili et al. 2016], leading to a solution
discussed in [Allili et al. 2015] of no practical interest, since it does
not scale with the size of the data set. On the other hand, in order for

SA ’16 Symposium on Visualization , December 05-08, 2016, , Macao
ISBN: 978-1-4503-4547-7/16/12...$15.00
DOI: http://dx.doi.org/10.1145/3002151.3002166

http://dx.doi.org/10.1145/3002151.3002166

topological data analysis to be a valuable tool in the applications,
we need to develop efficient algorithms that can effectively deal
with current big data sets. We propose here the first algorithm ca-
pable of computing a discrete gradient field on real-world data. Our
approach is easy-to-use and well suited for parallel and distributed
implementations. We consider two applicative domains where the
obtained representation can be successfully adopted, namely, for re-
ducing the complexity of computing multipersistent homology and
for the visual analysis of multivariate data.

In Section 2 we introduce the notions at the basis of our work. Re-
lated work is reviewed in Section 3. The new approach is described
in Section 4. We discuss the data structures used in our implemen-
tation in Section 5. In Section 6 we present our experimental results
and, in Section 7, we draw concluding remarks and we discuss fu-
ture developments.

2 Background notions

In this section, we describe our setting. We will discuss our work in
terms of simplicial complexes, although, all the results are valid for
any kind of regular cell complex. Formalism is avoided to provide
hands-on examples and intuitive definitions.

2.1 Simplicial and chain complexes

A k-dimensional simplex, or k-simplex, ¢ is the convex hull of k41
affinely independent points. A face 7 of ¢ is the convex hull of any
subset of k — 1 points of o (indicated T < o), while ¢ is a coface of
T (indicated o > 7). A simplicial complex ¥ is a collection of sim-
plices such that every face of a simplex in X is also in X and the in-
tersection property holds, i.e., the intersection of any two simplices
of X is a single shared simplex, possibly empty. The boundary of
a simplex o is the set bd(o) of all T < 6. The coboundary cb(c)
(or the star) of o is the set of simplices T € ¥ such that T > 0. A
simplicial complex X has dimension d (d-complex for short) if the
maximum of the dimensions of its simplices is d. We will denote
by X the set of k-simplices in £. An element in X is also called
a vertex. Given a simplicial complex ¥, it is possible to compute
the chain complex associated with X. The chain complex is an alge-
braic representation of a simplicial complex, necessary for studying
its homology [Hatcher 2002]. Intuitively, the homology of a sim-
plicial complex X detects k-dimensional cycles of X, i.e. connected
components (0-cycles), tunnels (1-cycles), voids (2-cycles), and so
on. For a combinatorial description of the chain complex is enough
to know the incidence relations in the complex, intuitively repre-
sented by a graph. Each node in the graph represents a k-simplex in
Y. Each arc connects two nodes if for the corresponding simplices,
T and o0, either 6 < Tor o > 7.

2.2 Filtrations and Persistent Homology

A scalar field is generally represented as a pair (X, f), where X is
a simplicial complex and f is a function f : ¥y — R defined on
the vertices of £. Having defined a filtration as a sequence of sim-
plicial complexes £0 ¢ ! ¢ ... € £* = %, using f we can induce
a filtration on X by assigning, to each simplex of X, the maximum
function value of its vertices. The filtration of X is then defined as
the sequence of sub-level complexes X = f~!(—co,u]. In this con-
text, persistent homology [Edelsbrunner and Harer 2008] is used to
study the homological changes of the sub-level sets.

In Figure 2, we show two different functions defined on the same
1-dimensional simplicial complex X. Filtering ¥ according to f|
means sweeping the graph of f}, from bottom to top, introducing
simplices along the way. By starting from the lowest function value,

(=f)
(=f)
2 —> —> —» X < <« <—
® ® ® ® ® ® O)
6 4 2 1 3 5 7
X 4“— X —» X <4“— x —> X
® ® ® ® ® ® ®
1 5 6 3 4 7 2

Figure 2: Two filtering functions f1 and f> defined on the same
simplicial complex X. The graph of both functions is shown and the
values of both fi and f> are explicitly indicated for each vertex of
Y. The discrete gradient computed on each function is also indi-
cated. Arrows represent gradient pairs and exes represent critical
simplices.

we introduce vertex 1, then vertex 2 along with edge [2,1], and
so on. Looking at the filtration induced by function fi, the only
homological change occurs when vertex 1 is introduced, creating
the first component. The filtration induced by f, instead provokes
more changes. Simplices responsible of said changes are indicated
with an ex. At the time vertices 1, 2 and 3 are introduced they all
originate a new component. Successively vertices 4, 5 and 6 are
all introduced together with edges [3,4], [1,5] and [6,3] without
affecting the homology. By adding edge [5, 6], two distinct compo-
nents become connected, changing the homology again. The same
holds for edge [4,7].

In this paper, we focus on multivariate data having a function of the
form f : Xy — R". We consider the partial order < on R” defined
component-wise by u# < v if, for all component indexes i from 1
to n, u; < v;. A multifiltration is then a collection of simplicial
complexes ¥, for u € R” such that, for every two parameters u < v,
it holds that X* € XV.

A multifiltration can be seen as an n-dimensional array where the
indexes of each cell of the array correspond to the coordinates at
which a simplex is introduced. Figure 3 shows the matrix repre-
sentation for the simplicial complex £ composed by two adjacent
triangles. The bifiltration defined on X is indicated for each ver-
tex. The filtration value for all the other simplices o is computed by
taking, for each component, the maximum of the component value
of ¢’s vertices. In the matrix representation we can find simplices
depicted in red when the corresponding filtration value is equal to
the cell index. We can notice that the cell of coordinates (0,0) corre-
sponds to the empty space while the cell of coordinates (2,2) corre-
sponds to X. In this context, multidimensional persistent homology
aims at detecting the homological changes among nested pairs of
complexes. While referring to [Carlsson and Zomorodian 2007] for
a precise definition of multidimensional persistence, for the sake of
this work we consider it as the generalization of persistence homol-
ogy for a multifiltration.

2.3 Discrete Morse theory

The algorithm proposed in this paper retrieves an acyclic discrete
vector field (called discrete gradient for brevity) over the domain X.
The relevance of this output has to be seen within the framework of
Forman’s discrete Morse Theory [Forman 1998]. In discrete Morse
Theory, a (discrete) vector is a pair of simplices (&,7) such that
O < 7. A discrete vector field V is any collection of vectors over a
simplicial complex such that each simplex belongs to at most one

N

Figure 3: A bifiltration, defined on a simplicial complex, repre-
sented as a matrix. In each cell we depict in red simplices that are
introduced at the corresponding filtration level.

X X X X —» X <€«<— <— X X
o—eo 00— —e0—®

Figure 4: The discrete gradient computed on (¥, f) according to
the filtering function f = (f1, f2). Arrows represent gradient pairs
and exes represent critical simplices.

vector. Given a discrete vector field V, if a simplex belongs to no
vector, it is called critical. A V-path is a sequence of vectors (0, T;)
belonging to V , for i = 1,...,r, such that, for all indexes i < r—
1, 0j4+1 < 7 and ©; # G;4+1. A V-path might be closed if o1 =
o, and trivial if r = 1. A discrete gradient V is a discrete vector
field whose closed V-paths are all trivial. Given a discrete gradient
V on a simplicial complex X, we can compute the chain complex
associated with V represented as a graph G where,

o the nodes are the critical k-simplices of V, and
e the arcs are obtained by following the gradient paths of V.

Forman [Forman 1998] proves that the homology of ¥ is always
isomorphic to the homology of complex encoded by G. The dis-
crete gradient V can be adapted to preserve the sub-level structure
with respect to a filtering function. In the univariate setting, Theo-
rem 4.3 in [Mischaikow and Nanda 2013] proves that the persistent
homologies obtained by filtering the complex in G coincides with
those of £/ In Figure 2, we depict with an arrow the gradient pairs
of the Forman gradient V computed for each filtering function. In
this case, we can notice that the unpaired (critical) simplices are
exactly those responsible for a topological change. This means that
computing persistent homology, using all the vertices and edges of
¥ or using only the simplices marked by an ex, lead to the same
result. For multidimensional persistent homology, the analogous
result is guaranteed by Corollary 3.12 in [Allili et al. 2016]. Re-
ferring to Figure 2, an example of discrete gradient compatible to
f = (f1, f2) is shown in Figure 4. In Section 4, we will discuss how
to compute a discrete gradient compatible to a multivariate func-
tion.

3 Related Work

Different tools related to Morse theory [Milnor 1963] exist for deal-
ing with with multivariate data. Jacobi sets [Edelsbrunner and
Harer 2004] provide a method of studying the relationship between
multiple Morse functions. Reeb spaces [Edelsbrunner et al. 2008],
and their discrete counterpart, Join Contour nets [Carr and Duke
2013], are obtained as a generalization of the notion of Reeb graph.
Huettenberger et al. [Huettenberger et al. 2013; Huettenberger and
Garth 2015] use the concept of dominance relation and Pareto opti-
mality to visualize k scalar-valued fields on a common domain giv-
ing an algorithm to compute Pareto sets for piecewise linear func-
tions.

Few methods exist generalizing the notion of Forman gradient to
the multivariate case. Discrete Morse Theory (DMT) [Forman
1998] has been used for both developing visualization tools [Gyu-
lassy et al. 2012] and computing persistent homology [Mischaikow
and Nanda 2013]. Many proposals exist for computing a discrete
gradient from a function sampled at the vertices of a cell complex.
The algorithm described in [King et al. 2005] is the first one to
introduce a divide-and-conquer approach for computing a Forman
gradient on real data. However, the latter has the main drawback
of introducing many spurious critical simplices. Two approaches
have been defined in [Shivashankar et al. 2012; Shivashankar and
Natarajan 2012] for 2D and 3D images respectively. Focusing on a
parallel implementation, they provide a substantial speedup in com-
puting the discrete gradient still creating spurious critical simplices.
In [Robins et al. 2011], a dimension-agnostic algorithm is proposed
that processes the lower star of each vertex independently. It has
been proved that up to the 3D case, the critical cells identified are
in one-to-one correspondence with the topological changes in the
sublevel sets, i.e. no spurious critical simplices are created. An ef-
ficient implementation of the latter, focused on regular grids, is dis-
cussed in [Giinther et al. 2012] while, for simplicial complexes, the
same algorithm as been extended to triangle [Fellegara et al. 2014]
and tetrahedral meshes [Weiss et al. 2013]. The first dimension in-
dependent implementation for simplicial complexes is presented in
[Fugacci et al. 2014].

The first attempt for extending the concept of discrete gradient to
the multivariate case can be found in [Allili et al. 2015]. Given
a multivariate function f : ¥ — R in input, the idea at the base
of [Allili et al. 2015] is to group cells where possible pairings can
be found. We refer to these subsets as filtration-based lower stars
(denoted L) which is defined on each simplex o of X as,

Ly(o):={aeX|a20 A f(o) < f(o)}.

The approach also requires following an order for visiting the sim-
plices of X. For each simplex o, if ¢ has been already classified
(i.e., paired or defined as critical), it is ignored. Otherwise, the set
of simplices in L¢(c) are extracted and paired via homotopy ex-
pansion. The resulting discrete gradient is proved to have the same
multidimensional persistence [Carlsson and Zomorodian 2007] of
the original simplicial complex. However, the algorithm is linear in
the number of simplices of X, and all the simplices have to be ex-
plicitly represented to avoid some simplex to be visited more than
once. Thus, using the algorithm on real-world data is not feasible.

4 Computing a discrete gradient on multi-
variate data

In this section, we describe our algorithm for computing a discrete
gradient on multivariate data. We consider a finite simplicial com-
plex X and a component-wise injective function f : Xy —> R" de-
fined on its vertices Xo. Let f = (fi,..., fz), we get injectivity for

Algorithm 1 ComputeDiscreteGradient(X, f)

Input: X simplicial complex

Input: f: ¥ — R” component-wise injective function
Qutput: V gradient pairs

Qutput: C critical simplices

V—g

C—g

I =ComputeIndexing(Xy,f)

: forallve Xy do

T, =ComputeIndexLowerStar(v,/)

K, =SplitIndexLowerStar(f,T,)

for all Se K, do
(Vs,Cs)=HomotopyExpansion(S,I)
V = V.append(Vy)
C = C.append(Cs)

end for

: end for

: return (V,C)

A S ol

_—
W s o

each component f; by means of simulation of simplicity [Edels-
brunner and Miicke 1990]. Function f is defined on all the sim-
plices of X by extending function f. For each simplex ¢ € ¥ and
for each component i of f we define

fi(o) = max f;(v).

veD

The proposed algorithm (see Algorithm 1) takes inspiration from
the one presented in [Robins et al. 2011] for scalar fields. The out-
put of the algorithm consists of two lists:

e V, the list of pairs (o, T) with o face of 7, and
e (, the list of critical simplices.

Efficiency is achieved by using a well-extensible indexing I, com-
puted by defining a total order over the vertices of ¥ (function
ComputeIndexing). The domain of / is extended to the whole
complex ¥ via [(0) := maxyeq I(v). We say that I is well-extensible
with respect to function f when, for every two simplices 0] and 0>,

f(o1) < f(02) = I(01) <I(07).

There are different ways to obtain a well-extensible indexing and
any strategy is equivalent as we will see later. In our approach, we
achieve this result by ordering the vertices in ascending order based
on a single component f;. Notice that, since f is component-wise
injective, £i(v1) # fi(v2). If f(01) < F(0), then fi(01) < ().
For both o] and 0, their function value under f; is given by one
vertex with maximum index / in the simplex. Thus, our choice
ensures / to be well-extensible with respect to f. In Figure 5(a)
I (indicated within square brackets) is computed by ordering the
vertices with respect to the first component of f.

The algorithm processes the vertices one by one (possibly in paral-
lel) and, for each vertex v € X, the index-based lower star L;(v) is
computed (function ComputeIndexLowerStar) as

Li(v) = {oeZ| (o) = I(v).

The union of all the index-based lower stars is a partition of X.
Each index-based lower star L;(v) can possibly consists of a sin-
gle simplex, i.e. the vertex v, or multiple simplices. When L;(v)
is composed by more than one simplex, we know that for each

o e Li(v), f(o) = f(v) by construction. Most importantly, we
are guaranteed that for any pair of simplexes o, 7, if f(c) = f(7)
they both belong to the same lower star. Intuitively, if ¢ and 7
have the same value of f, there exists a vertex v on the boundary
of both such that f;(v) = fi(c) = fi(t). Since we built I based
on f;, v is also the vertex with maximum index / among those in-
cident in both o and 7. It follows that {o,7} € L;(v). However,
we may use any method for building / as long as the obtained in-
dexing is well-extensible. In other words, simplices belonging to
the same sub-level set (i.e., simplexes having the same value of f)
will end up in the same L;. Once the indexed-based lower stars
have been computed, simplices have to be organized to be correctly
paired. We recall that two simplices o, T can be paired if and only
if (o) = (). Function SplitIndexLowerStar is then used
for subdividing the simplices in T}, = L;(v) according to f. More
precisely, SplitIndexLowerStar(f,T,) returns K,, that is the
quotient of index-based lower star obtained through the equivalence
relation ¢ ~ 7 if and only if (o) = f(7).

For each equivalence class S of K, we compute the local discrete
gradient (Vg,Cs) via homotopy expansion. Two simplices, say k-
simplex o and (k + 1)-simplex 7, are paired via homotopy expan-
sion when ¢ has no unpaired faces and 7 has only one unpaired
face (i.e. o). Each local pair in Vg and each critical simplex in
Cg contributes to the global output (V,C). At this point the proce-
dure HomotopyExpansion has no conceptual differences from
the one described in [Robins et al. 2011] except that we will work
with the simplices in S and not on the full lower star. Two pri-
ority queues PQO and PQ1 are used for selecting which simplex
in S needs to be paired respectively to a higher or to a lower di-
mensional simplex. The priority queues are organized by listing,
in lexicographic order, the tuples containing the values of I for
the vertices of each simplex o. This ensures that if 0 & 7 in S,
then o takes priority over 7. We have demonstrated the equiva-
lence between our output and the one computed by the algorithm
Matching described in [Allili et al. 2015] (proof is omitted for
brevity). Thus, algorithm produces a discrete gradient V' compat-
ible with the multivariate function f = (fi,...,f,), reducing the
input complex X without affecting the persistence module with re-
spect to f. In Figure 5, we can see a working example for the pro-
cedure ComputeDiscreteGradient. Figure 5(a) shows the
simplicial complex indicating the function f for each simplex and
the computed indexing /. In Figure 5(b) the index-based lower
stars are extracted. Simplices having the same value belong to
the same lower star L;(v). Notice that a single L;(v) may en-
close simplices with different values of f. For example, the lower
star L;([3]) contains simplices with values (3,0),(3,1),(3,2) and
(3,3). HomotopyExpansion is called independently for each
equivalence class in L;([3]) (Figure 5(c)). The set of critical sim-
plices and gradient pairs obtained from each lower star are com-
bined in the final discrete gradient depicted in Figure 5(d).

Given a simplicial complex £ and a simplex ¢ € £, f(0)
can be retrieved in linear time in the number of the ver-
tices of 6. We also consider the extraction of the bound-
ary/coboundary of a given simplex ¢ as a linear operation
with respect to the number of simplices incident in ¢. The
main contribution to the complexity of the algorithm comes
from procedure ComputeIndexing and from cycling over
the vertices of X. Functions ComputeIndexLowerStar
and SplitIndexLowerStar only require the retrieval of the
coboundary of each vertex. In ComputeIndexing vertices are
sorted according to a single component of the input function. Thus,
it requires O(my -logmg) operations, with mg the number of vertices
in X. The computational complexity of Homot opyExpansion is
determined by the updates of the two queues PQO and PQ1. We
have implement each queue as a heap. Their maximal length is

S—1> (3,0). ->c—>
S, g
= (3,1). >g

Y
Sg foX
—=>|(3,2): (3,2): *§—>
S
> [33). 33| > T———

(© ()

Figure 5: (a) The filtering function values are depicted as pairs. The vertex indexing I is depicted within square brackets. (b) I is propagated
to all the simplices. Colors indicate simplices belonging to the same index-based lower star. (c) For each lower star, the level sets S; are built

collecting simplices having the same function value f. Pairs and ¢

ritical simplices are created via homotopy expansions within each S;. (d)

The discrete gradient is obtained as the union of all the pairs and critical simplices classified in the lower stars. Critical vertices are depicted

in blue and the critical edge is depicted in green.

the cardinality of S, denoted A. It is easy to see that each sim-
plex in § always enters some queue and at most once for each of
the two queues, as in [Robins et al. 2011]. As a result, each call
of HomotopyExpansion consists of a number of operations of
O(A). When we are in low dimensions, as it is the case in real-
world applications of multivariate data (d equal to 2 or 3), the num-
ber of simplices per level set (i.e., A) is always negligible, as well as
the number of total level sets S. Thus, the complexity is dominated
by the for-cycle (and thus it is linear in the number of vertices my).
This represents a substantial improvement with respect to the algo-
rithm presented in [Allili et al. 2015] that is linear in the number of
simplices.

5 Data Structures

In the following, we will present the results obtained by running
our algorithm on datasets having a triangulated domain (triangle
meshes) and volumetric images discretized as cubical grids. We
will describe first the data structures used for encoding the input
complexes and the gradient in output.

The memory requirements of our algorithm are determined by the
overhead necessary for encoding the input complex and the discrete
gradient. The data structures used for the latter can be specialized
based on the type of the input complex, namely triangle meshes or
cubical grids. In both cases, the multivariate function is defined on
the vertices of X. This means storing a floating point value for each
component of f, for each vertex.

Triangle meshes A triangle mesh is a 2-dimensional simplicial
complex formed by vertices, edges, and triangles. To compactly en-
code the relations among these simplices we are using an incidence-
based data structure with adjacency (IA) introduced in [Nielson
1997]. The IA data structure encodes vertices and triangles explic-
itly, plus some additional relations. For each triangle o we encode
areference to its three vertices and a reference to the triangles shar-
ing a face with 0. For each vertex instead, we encode a single
triangle incident in it. Let mg and my the number of vertices and
triangles in X, respectively, the total footprint required for encoding
¥ is mg + 6my. The discrete gradient is here encoded by adopting
the representation described in [Weiss et al. 2013]. The latter fo-
cuses on encoding all the gradient pairs locally to a triangle. The
faces of dimension 1 of a triangle ¢ are the three edges each one
having two faces of dimension O (vertices). Thus there are 9 pos-
sible gradient pairs internally to a triangle. If we consider also the
possible pairs between ad edge of ¢ and an adjacent triangle we
get 12 possible gradient pairs and thus 22 = 4096 possible com-

binations. However, since the restrictions imposed by the discrete
gradient (i.e. that each simplex can be involved in at most one pair-
ing) we have only 97 valid cases for a triangle. We can encode all
these cases using only 1 byte per triangle and encoding the gradient
only requires my bytes.

Cubical Grids Representing a cubical grid is a much easier task
than unstructured meshes. Let us consider the graph G = (N,A)
where N is the set of cells composing the cubical grid and A is
the set of incidence relations between the cells in N. The regular
distribution and connectivity of the cells in G makes possible to
encode the topology of the complex implicitly. By enumerating the
cells in NV, we can extract any relation in A using index calculations
without any overhead. Based on the same rationale, the discrete
gradient is encoded by assigning a Boolean value to each arc & in
A, where the two cells connected by « are paired in V. Then, the
discrete gradient is encoded as an array of bits of length |A|.

6 Experimental results

Experiments have been performed on a MacBook Pro with a
2.8GHz quad-core processor and 16GB of memory. The first three
datasets are triangle meshes, each having three scalar fields defined
on the vertices (see [Cerri et al. 2014] Section 6.2 - Db2 for de-
tails on the functions). The last four datasets are collections of
time-varying scalar fields defined on a cubical grid. For our ex-
perimental analysis, we have coupled a subset of the original scalar
fields, on a single timestep. The Hurricane Isabel WRF Model Data
describes the simulation of the Hurricane Isabel. The first dataset
Hurricanep, is created by coupling the scalar fields describing pres-
sure (weight of the atmosphere above a grid point) and tempera-
ture. The second dataset Hurricane,; still combines the temper-
ature measurement with two scalar fields describing the density of
clouds in the atmosphere distinguishing between rain clouds and ice
clouds. The turbulent combustion simulation instead is a simulation
of temporally-evolving plane jet flames. Combustion,, presents
two scalar fields describing vorticity and combustion-generated
OH. Combustiony,, instead combines the scalar field describing
mixture fraction and the one for chi distribution. Results are re-
ported in Table 1.

6.1 Multipersistence homology

When considering topological data analysis, the discrete gradient
may be used as a compact representation of the original com-
plex to be involved in the computation of multidimensional per-

18K

Figure 6: Critical cells are computed and collected in clusters called extremal-clusters. Using the extremal-clusters and their size (number
of voxels composing each cluster) we can visualize them on screen, filtering out the smaller ones. Here we are showing the extrema-clusters
found on the Turbulent Combustion Simulation drawing only those larger than the indicated size. Smaller clusters are depicted in blue, the

larger ones in red.

Dataset Size Fields Ic] Single Time G o TmeM.
Neptune 12M simpl 3 1.4M (8x) 2.1m 0.8m (2.5x) 7.3m
Statue 30M simpl 3 2.1M (15x) 6.1m 2.1m (2.9x) 12.1m
Lucy 84M simpl 3 5.6M (15x) 154m 5.6m (2.7x) 22.9m
Hurricane [500 x 500 x 100] 2 122M (16x) 46.Im 11.2m (4.1x) 13.4m
Hurricane,s [500 x 500 x 100] 3 57M (40x) 47.8m 12.2m (3.9x) 17.0m
Combustion,, [480 x 720 x 120] 2 43.1M (7.6x) 58.2m 18m (3.2x) 23.7m
Combustiony,, [480 x 720 x 120] 2 459M (7.3x) 67.2m 18.6m (3.5x) 20.1m

Table 1: Results obtained computing the discrete gradient the the
boundary maps on three triangle meshes and four volumetric im-
ages. For each dataset we indicate its size (number of cells for
triangle meshes or resolution of the volume datasets), number of
scalar values for each point (Fields), number of critical cells ob-
tained (C), and timings required for computing the discrete gradient
(Time G.) and the boundary maps (Time M.).

sistent homology. By computing the multidimensional persistent
homology one means retrieving the persistence module [Carlsson
and Zomorodian 2007], that is the algebraic entity encoding all
the multiparametrized family of homologies and the linear maps
among them. The algorithm proposed in [Carlsson et al. 2009]
for computing the persistence module of a multifiltration has worst
time complexity O(n*m?), where n is the number of functions and
m is the number of simplices. Other targets for the multidimen-
sional persistent homology computation are the rank invariant and
the multigraded Betti numbers [Carlsson and Zomorodian 2007].
Even if easier to compute, the main drawback of the rank invari-
ant is the number of comparable multiparameters O(m>") where it
should be computed. To this aim, the tool RIVET [Lesnick and
Wright 2015] is an interesting optimized visualization tool for the
n = 2 case. The tool constructs a suitable barcode template in
O(m3x + (m +log k) k?), where k = ki k, with k; the number of
different coordinates for the iM-component in the support of the
multigraded Betti numbers of any index. Then, the tool manages to
complete the rest of the information by updating those results in lin-
ear time with respect to m. By removing unnecessary cells, our con-
tribute is twofold. On the one hand, it allows reducing the impact
of parameter m in a single and consistent way in multidimensional
persistent homology computation without the need of repeating the
procedure for each slice. Moreover, for the rank invariant, entire
function level sets might disappear and this possibly reduces the
impact of parameter k. For each dataset in Table 1 we are reporting
the compression factor, i.e. the ratio between the number of cells in
the original complex and the number of critical cells in the discrete
gradient and we also indicate the timings for computing the discrete
gradient and the boundary matrices (connection between the critical
cells). We can see that the compression factor obtained goes from
40x to 7.6x in the worst case. The efficiency provided by our al-
gorithm in computing the discrete gradient is remarkable. We have
compared a single threaded implementation with a parallel imple-
mentation based on OpenMP. On average, the parallel implementa-

tion achieves a 2.7x speedup when working on triangle meshes and
a 3.6x speedup when working with cubical grids. Starting from the
discrete gradient we are also computing the boundary maps of the
corresponding chain complex. This can be done by retrieving the
connections between pairs of critical simplices, using the gradient
paths of V, as described in [Fugacci et al. 2014]. Timings required
for computing the boundary maps are reported in Table 1 (column
Time M.). Here the implementation is single threaded only.

6.2 Topology-based visualization

While visualizing the information provided by multipersistent ho-
mology is currently a long term goal, relevant information about a
multivariate dataset can be obtained by studying the discrete gradi-
ent alone. Referring to Figure 1, we notice that clusters of critical
cells appear where the gradients of the two functions are in an op-
posite direction. These clusters can be analyzed to get some hints
for where to study the functions behavior with greater accuracy.

Figure 7: Slices of the two fields on the Turbulent Combustion
Simulation (Vorticity) and (OH) are shown with superimposed the
extrema-clusters occupying the same area (depicted in black).

Extrema-clusters Starting from the discrete gradient we collect
the sets of connected critical cells. We call minima-clusters the col-
lection of critical O-cells connected by critical 1-cells. They can
be easily computed using an union-find data structure defined on
the critical O-cells and by linearly processing all the critical 1-cells.
Each 0-cell initially forms a minima-cluster on its own. Sweep-
ing on the critical 1-cells, we consider only those having two crit-
ical O-cells vy,v, on their boundary. If vi,v, belong to different
minima-clusters, they are merged. Dually, maxima-clusters are de-
fined as collections of critical d-cells connected by critical (d — 1)-

cells and they are computed in a similar fashion. Maxima- and
minima-clusters are easily encoded as segmentations defined on the
vertices/d-cells of the dataset (i.e. an integer label for each ele-
ment). Minima- and maxima-clusters overlap in those areas where
the function is more chaotic. Then, we can identify these regions
by intersecting the two decompositions and originating what we call
the extremal-clusters. Each voxel is labeled with an index indicat-
ing the pair of minima and maxima clusters it belongs to. While the
extremal-clusters are not a rigorous estimator for evaluating differ-
ences among multiple functions, they are fast to compute and, more
importantly, they provide an interactive framework to help the user
to eliminate noise.

In Figure 1 we show the result obtained on the Hurricanep, dataset.
In this dataset, temperature values are decreasing from the lower
part of the dataset to the upper part. Pressure has an opposite trend
in the eye of the hurricane and behaves similarly to the tempera-
ture in the remaining part (see the function gradients shown in the
figure). This result is evident at a glance by looking at the large
red cluster appearing in all the images in Figure 1. The small re-
gions, concentrated on the top of the dataset, are clearly visible
when the threshold used is small (10 - 400). They are originated by
the chaotic direction of the gradient in the higher part of the tem-
perature function. In Figure 6, we show an example illustrating the
extremal-clusters obtained on the Combustion,, dataset. Once the
clusters have been computed, we filter out the smaller ones based
on the size of the cluster (number of voxels). In this sense, the size
of each cluster works as an intuitive value for defining the impor-
tance of the area where functions disagree. In the leftmost image
of Figure 6, all extremal-clusters formed by more than 50 voxels
are shown. This decomposition is progressively refined by increas-
ing the minimum size of an extremal-cluster to 1000, 5000 and
18000 voxels. Figure 7 better describes the way extremal-clusters
identify the area in which the functions differ. The same slice is
shown coloring accordingly to vorticity (image above) and to the
OH produced (image below). The extremal-clusters shown in Fig-
ure 6 (with threshold 18K) are sliced as well and depicted in black.
Focusing on the neighborhood of the black segments in the two im-
ages we can notice the functions, having an opposite behavior, by
looking at the color patterns.

7 Concluding Remarks

We have proposed a new approach for computing a discrete gra-
dient vector field on multivariate data. The key idea underly-
ing our approach is avoiding to retrieve the lower star of all the
cells of the input complex. Moreover, by using the indexed-based
lower star we produce a partition of the input complex. The algo-
rithm is easy to parallelize and the actual performances have been
tested on real-world datasets proving its practical importance. By
proving the equivalence with the output of [Allili et al. 2015] we
have demonstrated that the discrete gradient computed is compati-
ble with the multidimensional persistent homology induced by the
multiple functions. Thus, our contribution represents a first step to-
wards an efficient computation of multidimensional persistent ho-
mology. Based only on the information provided by the discrete
gradient, we have defined a new visualization tool. Based on the
clusters of critical cells in the discrete gradient, we are able to iden-
tify the subsets of the dataset where the input functions have an
uneven behavior. By classifying the clusters based on their dimen-
sion, we are able to filter out the noise and uninteresting regions.
The visualization framework described shares common traits with
others methods defined for studying interactions among multiple
scalar fields.

The work described in [Nagaraj et al. 2011] shares our same ratio-
nale, focusing on computing a gradient-based comparison measure.

The measure, called multifield comparison measure (denoted nr),
captures the extent of alignment of the gradient vectors at a point.
The multifield comparison measure can be seen as a scalar field
describing the behavior of the multiple functions. Looking at the
distribution of M, the relationships of the input functions can be
studied. The approach is numerical, as opposed to ours that is com-
binatorial. Results are mainly shown on 2D grids while timings for
computing 1r are not provided. Visualizing 7N in the case of 3D
scalar fields is not straightforward. As opposed, we are able to ob-
tain clear three-dimensional representations of the input fields also
providing an interactive framework for studying the extrema clus-
ters. From a computational complexity point of view, both methods
depend only on the dimension of the domain, being independent of
the number of fields.

Pareto sets [Huettenberger et al. 2013] and Joint Contour Nets
[Huettenberger et al. 2013; Carr and Duke 2014] aim at subdividing
the domain with respect to the vector-valued function behavior. A
Pareto set includes Pareto optima (points with incomparable neigh-
borhood), Pareto minima (points with neighborhood either incom-
parable or greater), and Pareto maxima (points with neighborhood
either incomparable or lower). The reachability graph is introduced
in [Huettenberger et al. 2013] for encoding the relations among
Pareto optima, minima and maxima so as to provide a meaningful
representation of the function under investigation. Joint Contour
Nets (JCNs) [Carr and Duke 2014] split each cell into connected
regions of points having equal quantized isovalue for all the fields.
Each connected region is called a slab. Adjacency relations be-
tween slabs are encoded as arcs in the net. JCNs are related to
Jacobi sets [Edelsbrunner and Harer 2004] since these latter corre-
spond to a subset of the arcs in the net. In our method, cells are
defined as critical when the gradients of their boundary points are
opposite. For the same reason, a point is defined Pareto. As de-
scribed in [Huettenberger et al. 2013], the Jacobi sets for two func-
tions are the points where the gradients are parallel. Thus, in this
case, both the method in [Huettenberger et al. 2013] and the critical
vertices found by our method are a subset of the Jacobi sets. We
have not been able to compare the two methods on the same dataset
but, for the volume dataset shown in [Huettenberger et al. 2013] the
reported timing for extracting the reachability graph on a tetrahedral
mesh of roughly 750K simplices is around 20 minutes. By compar-
ing with our results, we can see that our method is more efficient.
Taking inspiration from what has been done in the univariate case
we are currently studying the information retrieved by visiting the
gradient V-paths. Using ascending/descending paths of the discrete
gradient computed we will be able to design an adjacency relation
among the extrema-clusters and possibly to define a simplification
process for building hierarchical representations of such clusters.

Acknowledgements

This work has been partially supported by the US National Sci-
ence Foundation under grant number IIS-1116747. Hurricane Is-
abel data produced by the Weather Research and Forecast (WRF)
model, is courtesy of NCAR, and the U.S. National Science Foun-
dation (NSF). The turbulent combustion simulation is made avail-
able by Dr. Jackqueline Chen at Sandia Laboratories through US
Department of Energy’s SciDAC Institute for Ultrascale Visualiza-
tion. Meshes are courtesy of The Stanford 3D Scanning Repository
and the Aim@ Shape repository.

References

ALLILI, M., KACZYNSKI, T., LANDI, C., AND MASONI, F.,
2015. A new matching algorithm for multidimensional persis-
tence. ArXiv, Id:1511.05427, Nov.

ALLILI, M., KAczyNsKI, T., AND LANDI, C. 2016. Reduc-
ing complexes in multidimensional persistent homology theory.
Journal of Symbolic Computation.

CARLSSON, G., AND ZOMORODIAN, A. 2007. The theory
of multidimensional persistence. In SoCG 07 Proceedings of
the twenty-third annual symposium on Computational geometry,
ACM New York, Gyeongju, South-Korea, vol. 392, 184-193.

CARLSSON, G., SINGH, G., AND ZOMORODIAN, A. 2009. Com-
puting multidimensional persistence. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 5878 LNCS, 1, 730—
739.

CARR, H., AND DUKE, D. 2013. Joint contour nets: Computation
and properties. In Visualization Symposium (PacificVis), 2013
IEEE Pacific, 161-168.

CARR, H., AND DUKE, D. 2014. Joint contour nets. In IEEE
Transactions on Visualization and Computer Graphics, IEEE
Computer Society, vol. 20, 1100-1113.

CERRI, A., FABIO, B. D., JABLONSKI, G., AND MEDRI, F. 2014.
Comparing shapes through multi-scale approximations of the
matching distance. Computer Vision and Image Understanding
121, 43-56.

DE FLORIANI, L., FuGAccl, U., IURICICH, F., AND MAGILLO,
P. 2015. Morse Complexes for Shape Segmentation and Homo-
logical Analysis: Discrete Models and Algorithms. Computer
Graphics Forum 34, 2, 761-785.

EDELSBRUNNER, H., AND HARER, J. 2004. Jacobi sets of mul-
tiple Morse functions. In Foundations of Computational Math-
ematics, Minneapolis 2002, vol. 312 of London Mathematical
Society Lecture Note Series. Cambridge University Press, 35—
57.

EDELSBRUNNER, H., AND HARER, J. 2008. Persistent homology-
a survey. Contemporary mathematics 453, 257-282.

EDELSBRUNNER, H., AND MUCKE, E. P. 1990. Simulation of
simplicity: A technique to cope with degenerate cases in geo-
metric algorithms. ACM Trans. Graph. 9, 1, 66-104.

EDELSBRUNNER, H., HARER, J., AND PATEL, A. K. 2008. Reeb
spaces of piecewise linear mappings. In Proceedings of the
Twenty-fourth Annual Symposium on Computational Geometry,
ACM, New York, NY, USA, SoCG ’08, 242-250.

FELLEGARA, R., LURICICH, F., DE FLORIANI, L., AND WEISS,
K. 2014. Efficient computation and simplification of discrete
morse decompositions on triangulated terrains. In Proceedings
of the 22Nd ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, ACM, New York,
NY, USA, SIGSPATIAL ’ 14, 223-232.

FORMAN, R. 1998. Morse theory for cell complexes. Advances in
mathematics 134, 1, 90-145.

Fucaccl, U., TuricicH, F., AND DE FLORIANI, L. 2014.
Efficient computation of simplicial homology through acyclic
matching. In 16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2014,
Timisoara, Romania, September 22-25, 2014, IEEE, F. Winkler,
V. Negru, T. Ida, T. Jebelean, D. Petcu, S. M. Watt, and D. Za-
harie, Eds., 587-593.

GUNTHER, D., REININGHAUS, J., WAGNER, H., AND HOTZ,
I. 2012. Efficient computation of 3d morse—smale complexes

and persistent homology using discrete morse theory. The Visual
Computer 28, 10, 959-969.

GYULASSY, A., KOTAVA, N., KiM, M., HANSEN, C., HAGEN,
H., AND Pascucci, V. 2012. Direct Feature Visualization Us-
ing Morse-Smale Complexes. [EEE transactions on visualiza-
tion and computer graphics 18,9, 1549-62.

HATCHER, A. 2002. Algebraic topology. Cambridge UP, Cam-
bridge.

HUETTENBERGER, L., AND GARTH, C. 2015. A Comparison of
Pareto Sets and Jacobi Sets. Springer Berlin Heidelberg, Berlin,
Heidelberg, 125-141.

HUETTENBERGER, L., HEINE, C., CARR, H., SCHEUERMANN,
G., AND GARTH, C. 2013. Towards multifield scalar topology
based on Pareto optimality. Computer Graphics Forum 32, 3
(Jun), 341-350.

KING, H., KNUDSON, K., AND MRAMOR, N. 2005. Generat-
ing Discrete Morse Functions from Point Data. Experimental
Mathematics 14, 4, 435-444.

LESNICK, M., AND WRIGHT, M. 2015. Interactive Visualization
of 2-D Persistence Modules. Preprint ArXiv, 1-75.

MILNOR, J. W. 1963. Morse Theory. Annals of Mathematics
Studies. Princeton University Press.

MiSCHAIKOW, K., AND NANDA, V. 2013. Morse Theory for
Filtrations and Efficient Computation of Persistent Homology.
Discrete & Computational Geometry 50, 2, 330-353.

NAGARAJ, S., NATARAJAN, V., AND NANJUNDIAH, R. S. 2011.
A gradient-based comparison measure for visual analysis of mul-
tifield data. Computer Graphics Forum 30, 3, 1101-1110.

NIELSON, G. M. 1997. Tools for triangulations and tetrahedraliza-
tions and constructing functions defined over them. In Scientific
Visualization: overviews, Methodologies and Techniques, G. M.
Nielson, H. Hagen, and H. Miiller, Eds. IEEE Computer Society,
Silver Spring, MD, ch. 20, 429-525.

ROBINS, V., WoOD, P. J., AND SHEPPARD, A. P. 2011. Theory
and algorithms for constructing discrete morse complexes from
grayscale digital images. IEEE Transactions on Pattern Analysis
and Machine Intelligence 33, 8, 1646—1658.

SHIVASHANKAR, N., AND NATARAJAN, V. 2012. Parallel com-
putation of 3d morse-smale complexes. Comput. Graph. Forum
31, 3,965-974.

SHIVASHANKAR, N., MAADASAMY, S., AND NATARAJAN, V.
2012. Parallel computation of 2d morse-smale complexes. IEEE
Trans. Vis. Comput. Graph. 18, 10, 1757-1770.

WEISsS, K., IURICICH, F., FELLEGARA, R., AND DE FLORIANI,
L. 2013. A primal/dual representation for discrete Morse com-
plexes on tetrahedral meshes. Computer Graphics Forum 32,
3pt3, 361-370.

