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ABSTRACT
We consider the problem of modeling a terrain from both a geo-
metric and a morphological point of view for efficient and effective
terrain analysis on large data sets. We devise and implement a sim-
plification hierarchy for a triangulated terrain, where the terrain is
represented as a triangle mesh and its morphology is described by
a discrete Morse gradient field defined on the basis on the eleva-
tion values given at the vertices of the mesh. The discrete Morse
gradient is attached to the triangles, edges and vertices of the mesh.
We define a new edge-contraction operator for the edges of the tri-
angle mesh, which does not change the behavior of the gradient
flow and does not create new critical points, and we apply it to the
original full-resolution mesh in combination with a topological sim-
plification operator which eliminates critical simplices in pair. We
build the simplification hierarchy based on suitably combining such
operators and we evaluate it experimentally.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and networks; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling; I.3.6
[Computer Graphics]: Methodology and Techniques—Graphics
data structures and data types
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1. INTRODUCTION
Morse complexes and Morse-Smale (MS) complexes, rooted in
Morse theory, have gained much interest as powerful tools for pro-
viding a structural description of a terrain which constitutes the ba-
sis for analysis, visualization and semantic annotation. Forman [7]
has developed a discrete analogue of Morse theory for cell and sim-
plicial complexes. Since this approach is entirely combinatorial, it
avoids computing derivatives and is beneficial in the presence of
noise in the data, and thus is a good choice for dealing with discrete
data. The huge size of available datasets poses a variety of problems
also for their topological representation. In the literature, simplifica-
tion techniques for a terrain at different topological resolutions have
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been proposed. Simplification of Morse and Morse-Smale com-
plexes can be achieved by applying an operator, called cancellation
[10], which consists of removing two critical points of consecutive
index (i.e., a maximum and a saddle, or a saddle and a minimum)
which are connected by a separatrix line. This operator has been
investigated for 2D [6, 3] and 3D [9, 4] Morse-Smale complexes.
Issues arise in the geometrical representation associated with the
simplified Morse or Morse-Smale complexes. Current approaches
either maintain the original triangle mesh at full resolution as geo-
metrical description associated with the cells of the Morse or MS
complex, or they approximate from scratch the two-dimensional
cells of the MS complexes [2, 3, 12]. Hierarchical models for Morse
or MS complexes have been developed for terrain modeling based
on simplification hierarchies [6, 3, 5].

Here, we define and implement the first simplification operator for
triangle mesh endowed with a Forman gradient, a gradient-aware
edge-contraction, which avoids deleting or creating critical sim-
plices, thus maintaining the gradient behavior at each update. By
interleaving sequences of gradient-aware edge-contraction, to re-
duce the size of the triangle mesh, and of topological simplifica-
tions, to reduce the number of critical points of the terrain, we are
able to build up a simplification hierarchy for both terrain geome-
try and morphology. Such simplification hierarchy is at the basis
for a combined geometric and topological multi-resolution model
which would allow extractions of adaptive terrain representations at
variable geometrical and topological resolutions.

2. DISCRETE MORSE THEORY
Morse theory [10] studies the relationships between the topology of
a manifold M and the critical points of a scalar function f defined
on it. In the literature, two extensions of Morse theory to a discrete
domain can be found, namely piecewise-linear Morse theory [1]
and discrete Morse theory [7]. Discrete Morse theory is a discrete
counterpart of Morse theory for simplicial and cell complexes. In
this case, a discrete Morse function is defined on all the cells of the
complex. For the sake of simplicity, we will briefly review this the-
ory for 2D simplicial complexes, i.e., triangle meshes. The vertices,
edges and triangles of a triangle mesh are collectively called sim-
plices. A vertex is a 0-simplex, an edge a 1-simplex and a triangle
a 2-simplex.

A function F : Σ→ R, defined on a triangle mesh Σ, is a discrete
Morse function (also called a Forman function) if for every i-simplex
σ ∈ Σ, all the (i−1)-simplices on the boundary of σ have a lower
function value than σ , and all the (i+1)-simplices bounded by σ

have a higher function value than σ , with at most one exception.
If there is such an exception, it defines a pairing of cells, called a
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Figure 1: (a) Triangles and edges involved in an edge-contraction (edge e is depicted in red). From left to right we show the result of
the contraction of edge e. In (b) and (c) two different gradient configurations before and after an edge-contraction are shown.

gradient pair. Otherwise, σ is a critical simplex of index p. Thus,
an i-simplex σ is not critical if and only if there exists an (i− 1)-
simplex τ such that F(τ) ≥ F(σ) or an (i− 1)-simplex β such
that F(β )≤ F(σ). These two cases are mutually exclusive, i.e., a
simplex σ can be paired either with a non-critical simplex bounded
by σ or with one of its faces. A pair can be viewed as an arrow
formed by a head (i-simplex) and a tail ((i−1)-simplex). A simplex
that is not a head or a tail of any arrow is a critical simplex.

A V -path is a sequence of simplices [σ0,τ0,σ1,τ1, ...,σi,τi, ...,σq,-
τq] such that σi and σi+1 are on the boundary of τi and (σi,τi) are
paired simplices, where i = 0, ...,q. The collection of all paired
and critical simplices of Σ forms a discrete Morse gradient (also
called a Forman gradient) V if all the V -paths are acyclic. V -paths
correspond to the integral lines of the discrete Morse function F
defined on Σ. We will call separatrix V j-path any V-path of the fol-
lowing form: [τ,σ0,τ0,σ1,τ1, ...,σi,τi, ...,σq,τq,σ ], where τ and σ

are two critical simplices of dimension j and ( j−1), respectively.

In this work, we consider a discrete terrain model as a pair (Σ, f ),
where Σ is the triangle mesh discretizing the domain, and f is the
elevation given at the vertices of Σ, which is the information we
are given as input, and we build from Σ a discrete Morse gradient
field V compatible with the elevation function f . Σ endowed with
gradient field V is denoted as (Σ,V ).

3. A GRADIENT-AWARE MESH SIMPLIFI-
CATION OPERATOR

The most common operator for simplifying triangle meshes is edge
contraction. An edge-contraction acts on mesh Σ by contracting an
edge e, with endpoints v1 and v2, to one of its endpoints (i.e., v2)
(see Figure 1(a)). When mesh Σ is endowed with a discrete Morse
gradient V , we have to modify also the pairings in V accordingly.
The key idea here is to locally modify V without modifying the
critical vertices, edges or triangles, or adding new critical simplices,
thus maintaining the behavior of the gradient flow. We impose
feasibility conditions on mesh Σ and on the discrete Morse gradient,
i.e., on the pair (Σ,V ).

An edge-contraction, contract(v1,v2), is feasible on mesh (Σ,V )
if and only if: (i) all the simplices to be removed (edge e, vertex
v1 and triangles t1 and t2) or to be modified (edges and triangles
having vertex v1 on their boundary) by the edge contraction are not
critical; (ii) v1 is paired with edge e in V ; (iii) there are at least three
triangles in Σ incident in v1.

Clearly, no critical simplex is removed during simplification, be-

cause of condition (i). We need to show that we do not introduce
any critical simplex. Condition (iii) is required to avoid having a tri-
angle incident in v1 and adjacent to both t1 and t2, since this would
not guarantee that we do not introduce new critical simplices. Then,
we will show that all the simplices paired before the application
of contract(v1,v2) are still paired after, and this guarantees that no
critical simplex is introduced. We show this for the left part of the
star (which is defined by the set of triangles incident in e and in
its extreme vertices) of the oriented edge e to be contracted only,
since the updates required are symmetrical on the left and on the
right part. We denote as v3 the vertex of t1 different from v1 and v2,
and we denote as t3 and t5 the triangles adjacent to t1 on the edge
opposite to v2 and v1, respectively. Specifically, for the left part,
vertex v3, edge (v3,v1) and triangles t3 and t5 must be paired before
and after the simplification.

The updates on V depend on edges (v3,v2) and (v3,v1). If these
edges are both paired with a triangle (i.e., see Figure 1(b)), then t3,
(v3,v2) and t5 will have the same pairs after the simplification (see
Figure 1(b)). The same holds when the gradient arrows have op-
posite direction (i.e., (v3,v2) is paired with t1 and (v3,v1) is paired
with t3). When (v3,v2) is paired with one of its vertices (see Figure
1(c)), t3 is necessarily paired with (v3,v1), since t3 cannot be criti-
cal). Thus, the removal of both (v3,v1) and t3 does not make any
paired simplex unpaired (see Figure 1(c)). When (v3,v1) is paired
with one of its vertices we get the same result.

4. FORMAN GRADIENT SIMPLIFICATION
OPERATORS

We use two simplification operators to modify the morphology of
the terrain by operating on the Forman gradient V defined on Σ.
Such operators are called cancellation, and extend to discrete Morse
theory the cancellation operators defined in the smooth case [10].
Operator 1− cancellation applied to (Σ,V ) deletes a critical edge
e and a critical triangle t connected through a separatrix V2-path. If
we denote as t ′ the other critical triangle connected to e through a
separatrix V2-path, the effect of a 1−cancellation(e, t, t ′) on V is to
delete t and e from the sets of critical simplices of V and to reverse
the gradient arrows on the only separatrix V2-path from t to e (see
Figure 2).

Dually, operator 0−cancellation applied to (Σ,V ) deletes a critical
vertex v and a critical edge e connected through one separatrix V1-
path. We call v′ the other critical vertex connected to e through a
separatrix V1-path. The effect of a 0− cancellation(e,v,v′) on V
is to delete v and e from the sets of critical simplices of V and to
reverse the gradient arrows on the only separatrix V1-path between



Figure 2: Effect of 1-cancellation(e, t, t ′) on a Forman gradient
V defined on a triangle mesh. The original gradient field V , on
the left side, with two critical triangles t and t ′ (red triangles)
and one critical edge e (green edge). Separatrix V -paths, out-
side the portion of the triangle mesh shown, are depicted with
bold lines. Regular V -paths, outside the portion of the triangle
mesh shown, are depicted with dotted lines. Red arrows indi-
cate the V -path involved in the simplification.

v and e.

5. GRADIENT-AWARE SIMPLIFICATION HI-
ERARCHY

We are interested in extracting representations of a terrain at dif-
ferent resolutions, for both the underlying triangle mesh, and the
morphology. To this aim, we have combined the geometric and
topological simplification operators described in Sections 3 and 4.
We generate a simplification hierarchy from a sequence of gradient-
aware edge-contraction operators, reducing the size of the triangle
mesh, and from a sequence of topological cancellation operators,
simplifying the morphology of the terrain.

The discrete terrain model given as input consists of a triangle mesh
Σ f ull discretizing the domain, and a function f giving the elevation
values at the vertices of Σ f ull . The first step consists of computing
a discrete Morse gradient, the Forman gradient V associated with
the simplices of Σ f ull and compatible with function f . Recall that
gradient field V consists of a collection of critical simplices plus a
collection of pairs of the type (triangle, edge) or (edge, vertex). To
compute V , we have adapted the algorithm by Robins et al. [11]
from regular grids to triangle meshes.

Starting from pair (Σ f ull ,V ) the simplification hierarchy is built by
an alternating sequence of geometric and topological simplifica-
tions. As a first step, all the feasible edge-contractions are per-
formed in increasing order of edge length. Note that we use edge
length for simplicity just to prove the feasibility of the approach.
To obtain a higher fidelity to the original mesh, we plan to experi-
ment with other quality measures, such as the Quadric Error Metrics
(QEM) [8]. We perform, at each simplification step, the maximum
number of possible independent simplifications. When all feasible
edge-contractions have been performed, we construct a queue, with
the topological simplifications, in increasing order of persistence
and we perform all of them. The persistence of an i-cancellation
involving two critical simplices is defined as the difference in ab-
solute value of the elevations at the corresponding critical points
(maxima, minima or saddles) in the original triangulated terrain [6].
The interleaving between collections of geometric and of topologi-
cal simplifications continues in the simplification process until no

more simplification is possible. The resulting mesh, that we call the
base mesh and denote as ΣB, is endowed with a simplified Forman
gradient, that we denote as VB.

6. EXPERIMENTAL RESULTS
The purpose of our experiments is to show the efficiency of our ap-
proach in computing the Morse complexes on representations of the
triangulated terrain at different level of resolutions. Experiments
have been performed on a desktop computer with a 3.2Ghz proces-
sor and 16GB of memory. The size of the triangle meshes used is
between 1.6M and 19M triangles. By analyzing the number and
kind of simplifications performed, we have noticed that the geomet-
rical simplifications account for almost 90% of the total number of
simplifications. This behavior emphasizes the importance of simpli-
fying the geometry when we are interested in topological analysis.

The main purpose of our simplification hierarchy is to allow an ef-
ficient topological inspection of a terrain dataset. To this aim, we
consider the discrete ascending and descending Morse complexes.
Since the time complexity for extracting the descending/ascending
Morse complex depends on the total number of simplices (vertices,
edges and triangles) and not on the number of critical simplices,
simplifying just the topology will not lead to a reduction in the time
required for extracting the Morse cells. To verify such behavior, we
have computed the cells of the Morse complexes on several repre-
sentations simplified at different levels of topological resolution. An
input parameter sets the persistence threshold, for the topological
resolution, computed as a percentage of the total elevation range. In
Figure 3(a), we illustrate the timings for computing all the cells of
Morse complexes from the representations obtained. We notice that,
independently of the simplification error for the topology, having
the underlying geometry at full resolution leads to the same timings
for computing the Morse complexes. On the contrary, as shown
in Figure 3(b), varying the resolution of the underlying geometry
can affect the computation of the Morse cells considerably. In the
experiments we have performed extractions at full resolution for the
topology of each terrain data sets (i.e., without any topological sim-
plification) simplifying the geometry with the error indicated and,
as a result, the computation of the Morse cells is 2 to 6 times faster
than computing them on the mesh at full resolution. In Figure 4 we
show two examples of a critical net (i.e. ascending and descending
1-cells) computed on two representations of the Dolomiti dataset.
Red points correspond to maxima, green points to saddles and blue
points indicate minima. Descending 1-cells (depicted in blue) are
chains of edges starting from a saddle and ending into a minimum.
Ascending 1-cells (depicted in red) are chains of triangles start-
ing from a maximum and ending into a saddle. In Figure 4(a) we
strongly reduce the topological resolution (8K simplifications) but
we leave geometry at full resolution, in Figure 4(b), instead, we
use the same topological resolution on the mesh at coarsest resolu-
tion. We have observed that the geometry resolution directly affects
the computation of Morse features and we could be tempted to use
only the coarsest geometrical representation. However (see Figure
4(b)), Morse features are generally applied to scalar field analysis
for analyzing and/or visualizing relevant parts of the terrain and, for
such goals, the coarsest representation is generally insufficient. For
this reason a variable-resolution model would offer a good solution
for augmenting the geometric resolution only in specific regions of
interest.

7. CONCLUDING REMARKS
The simplification hierarchy proposed here is a first step towards the
definition of a multi-resolution model for the interactive exploration
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Figure 3: (a) Time required for computing Morse complexes on simplified representations with various topological resolutions and
with geometry at full resolution. (b)Time required for computing Morse complexes on representations with geometry and topology
at full resolution.

(a) (b)

Figure 4: Representations for the Dolomiti dataset obtained varying the topological resolution (8K simplifications applied) and with
geometry at (a) full and (b) coarsest resolution.

of a terrain, both from a geometric and morphological points of view.
Our current plan is to define gradient-aware edge-contraction for
tetrahedral meshes endowed with a Forman gradient and develop
a Forman hierarchy for 3D scalar fields defined on unstructured
tetrahedral meshes for volume data analysis and visualization. Since
both the edge collapse and the simplification of a Forman gradient
are operations defined in a dimension independent way we are going
towards the definition of a multi-resolution model for scalar fields
defined on volume meshes.
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