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Abstract
This paper presents the state of the art in the area of topology-based visualization. It describes the process and results of an
extensive annotation for generating a definition and terminology for the field. The terminology enabled a typology for topologi-
cal models which is used to organize research results and the state of the art. Our report discusses relations among topological
models and for each model describes research results for the computation, simplification, visualization, and application. The
paper identifies themes common to subfields, current frontiers, and unexplored territory in this research area.

1. Introduction

Topology-based visualization has established itself as a versatile
approach to analyze scientific data. But beginners and experts alike
find it increasingly difficult to navigate the enormous body of liter-
ature on the topic. In this paper, we report on a study of the relevant
literature to clearly delimit and organize the field, and discuss re-
cent research results and trends. The contributions of this paper are:

• we propose a definition for topology-based visualization that is
as of yet been lacking in the literature,

• an organized and, in part, homogenized terminology for the rel-
evant concepts, and

• an overview of important research results in the field, identifying
current challenges and problems.

This report is intended for experts in the field seeking an up-to-date
overview or looking for synergies and unmet challenges, as well
as beginners and general visualization researchers interested in the
current state and capabilities of topology-based visualization.

The most similar predecessor to our paper is the survey on flow
field topology by Laramee et al. [LHZP07]. It contains a typology
for topology-based visualization, which, similar to ours, also uses
the separation of scalar, vector, and tensor field as well as time-
independent and time-dependent. Our classification considers de-
velopments in multifields and uncertainty visualization in addition.
The survey by Laramee et al. classified but did not elaborate on
scalar and tensor fields. The recent survey by Wang et al. [WWL16]
also focuses on vector field topology exclusively. The surveys by
Biasotti et al. [BGSF08,BDF∗08] and De Floriani et al. [DFFIM15]
cover topological models for scalar fields, but focus on shape de-
scription applications rather than visualization. The surveys on

time-dependent isosurfaces [MS09], feature tracking [PVH∗03],
multifields [FH09], and high-dimensional data [LMW∗15] cover
some topological methods, but even jointly they cover only a sub-
set of this state-of-the-art report’s scope. Our larger scope prohibits
an exhaustive discussion of the field’s results; instead we empha-
size more recent and visualization-targeted papers.

In this report, we first briefly describe the literature collec-
tion and annotation process underlying our work, define the term
“topology-based visualization” and give a typology of topological
models for visualization. We will then describe research results re-
lated to each of the topological models in an order supported by the
typology and finish with a discussion of similarities and differences
among topology-based methods for different classes of data.

2. Literature Research Procedure & Classification

We compiled an initial set of papers from the authors’ literature
databases on the topic. In a first phase, this compilation was read,
annotated, and judged for typicality – the later was to shape a defi-
nition for topology-based visualization; there is not yet one in print.
The purpose of the annotation was to construct a terminology suit-
able to group papers and thus organize the field. The annotation was
guided by a list of aspects to look out for (e.g., application area,
input data type, serial vs. parallel). As a side-product we noted syn-
onyms for structurally identical concepts. Even though the initial
set of papers did not fully cover the field, we deemed the selection
to be representative enough to meet these two goals.

We then analyzed the results of this first annotation phase, to
construct a definition of topology-based visualization:

Topology-based visualization uses topological concepts
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to describe, reduce, or organize data in order to be used
in visualization. Typical topological concepts are, e.g.,
topological space, cell complex, homotopy equivalence,
homology, connectedness, quotient space. Typical visual-
ization uses are, e.g. to highlight data subsets, to provide
a structural overview, or to guide interactive exploration.

Successively, we took the list of keywords resulting from the first
annotation, grouped them by aspect, replaced infrequent terms of
the same aspect by hyperonyms, sharpened ambiguous terms, or-
ganized the terms of each aspect hierarchically, and added terms to
complement aspects, i.e. to ensure each paper can be categorized
with respect to any aspect. The annotations were very helpful in
discussing and establishing clear definitions for the classes.

Before the second phase, we added papers from recent years of
journals TVCG and CGF as well as proceedings of the VIS, Eu-
roVis, PacificVis, and LDAV conferences plus the Topology in Vi-
sualization workshops when they met our definition for topology-
based visualization, as judged from title and abstract. Given our fo-
cus on topological methods with applications in visualization, we
did not explicitly consider computational geometry journals and
conference proceedings. We also removed papers from the initial
collection that did not meet our definition. In the second phase, we
then went through all these papers and categorized them again us-
ing a questionnaire form constructed from our refined terminology.
We allowed for the addition of comments to each aspect of catego-
rization to enabling adding terms we missed before. As it turns out,
this was hardly ever necessary; it was more often used to elabo-
rate on a term or note a synonym. Each paper was categorized by at
least one person. The first round annotations were used to check for
consistency. If a paper’s related work pointed to other potentially
relevant papers, they were again checked against our relevance cri-
terion and added to the corpus for processing if relevant. In total,
this report is based on a survey of approximately 350 publications.

Our annotation resulted in a classification along multiple axes,
not necessarily independent, plus some optional labels. The first
axis pertaining to input data is the input class with the following
options: a scalar field represents a real-valued function, a vector
field represents a vector-valued function, a tensor field represents a
tensor-valued function, and a multifield is a collection of functions
of any type on the same domain. Neither vector nor tensor fields are
treated as multiple scalar fields, instead we take multifield to refer
to fields of different modality, e.g., pressure and density in physical
simulations. Instead, if there is an ensemble of fields arising from
varying simulation parameters, the axis parameters denotes their
number. Input data may be labeled uncertain, when, e.g., it is given
as a probability distribution over the set of all functions or as a set
of samples drawn from a distribution over functions.

Since all our objects of study are functions, two axes describe
the domain of the function more closely. The first gives the input’s
topological dimension (e.g., surfaces have topological dimension
2). We did not consider the geometric dimension, i.e. the dimension
of the space the function’s domain is embedded in, because it has
no effect on topological properties of the function. In addition, the
function may be labeled time-independent or time-dependent. We
distinguish time from space, rather than just increasing the space
dimension, because time and space have idiosyncratic meanings.

Finally, the function has to be stored using a finite data struc-
ture to be amenable to computational processing. The domain dis-
cretization can be either piecewise constant, piecewise linear (sim-
plicial cells), structured (regular arrangement of (hyper-)cubical
cells), unstructured, or combinatorial (special case for discrete
Morse theory). We did not come across any topological methods
for meshless, e.g. SPH, data. We did not consider the interpolation
of the spatial embedding since it does not affect topology.

Our core axis of classification, having the most classes, is the
topological model of the function(s). For scalar fields we have
critical points; persistent homology; level-set-based approaches
like merge tree, contour tree, and Reeb graph; and gradient-based
approaches like the Morse-Smale complex. For vector fields we
have critical points, invariant sets, separatrices, saddle connectors,
Morse complex, FTLE/LCS, and Morse decomposition. Within ten-
sor fields we have degenerate points/lines and separatrices. Within
multifields we distinguish between Jacobi sets, Reeb space, joint
contour net, and Pareto sets. We also noted whether research re-
sults made use of topological simplification for removal of topo-
logical features and whether it is driven by persistence – the maxi-
mum change to a function to remove the feature, size – the domain
subset covered by the feature, energy – the total amount of change
to a function to remove the feature, scale space, or other methods.

Concerning the computation we annotated whether the algorith-
mic strategy is primarily numerical, i.e., solves ordinary differential
equations or large linear systems; combinatorial, i.e., mostly uses
comparisons and branching; or statistical, i.e., computes averages,
variances, or confidence intervals. We also considered the mode of
computation, i.e., whether it was declared by the authors as con-
current, data-parallel, or distributed. We noted when an algorithm
was declared approximate, whether it uses a divide-and-conquer
strategy, and whether it is streaming, i.e., able to process data while
it arises. Further labels taken from the original works are memory-
efficient, when the amount of memory required is kept small, out-
of-core, when parts of the data can be left on disk, and I/O-efficient,
when disk access is minimized in addition.

Finally, the visualization use considers how the topological
structure is employed within the surrounding visualization. Possi-
ble uses are highlighting if the topological structure is shown by
marking or coloring points in the original function’s domain. It can
also guide representation, e.g. via topology-controlled volume ren-
dering or seeding integration lines and surfaces, Topological struc-
ture can also be metaphorically represented, e.g., via graph drawing
or topological landscapes. The topological structure is sometimes
also used to guide interaction, e.g. inform manual selection of iso-
surfaces or present the data at multiple levels of detail after topo-
logical simplification gave rise to feature importance. Another use
relevant to time-dependent data is feature identification & tracking,
and an upcoming topic is the topology-controlled compression of
data for in-situ analysis. We also annotated the application domain
of the topology-based visualization, but the resulting classes are
small and too numerous to list here.

After annotation we noticed that the classification axes input
class, uncertainty, and time-dependency jointly determine the type
of topological model and can therefore be used to construct a ty-
pology of topological models, presented in Table 1.
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Table 1: Typology of Topological Models

tensor

scalar

vector

multi

Morse decomposition

Jacobi set, Reeb space

time-independent
certain

time-dependent

dynamic contour tree

streak line topology,

tensor topology tracking

critical point tracking,
dynamic merge tree,

joint contour net, Pareto sets

time-independent
uncertain

time-dependent

uncertain vector field toplogy

critical point confidence region
mandatory critical points,

uncertain LCS
critical point tracking, LCS,

unsteady vector field topology

degenerate points & lines, separatrices

stable Morse decomposition,
critical points, invariant sets,
separatrices, saddle connectors,

Morse-Smale complex, extremum graph
merge tree, contour tree, Reeb graph,
critical points, persistent homology,

3. State of the Art – Scalar Fields

There is a plethora of topological models for scalar fields. We
note that models for time-dependent/uncertain data are often dy-
namic/statistical extensions to the time-independent/certain case.
We will survey the base case first and then describe the extensions.

3.1. Certain Time-Independent Scalar Fields

Most topology-based visualizations for certain time-independent
scalar fields build on Morse theory for real-valued functions de-
fined on manifolds, in particular critical points and their relations.

3.1.1. Critical Points and Persistent Homology

A critical point of a function f : M→ R is a point p at which
the gradient of f vanishes: ∇ f (p) = 0; all other points of the d-
manifold M are called regular or ordinary. A critical point p is
degenerate if the Hessian, i.e., the matrix of second-order deriva-
tives Hi, j =

∂
2 f

∂xi∂x j
is singular at p. A smooth function f is called

Morse if all its critical points are non-degenerate and have distinct
function values. The index of a critical point is the number of nega-
tive eigenvalues of H and separates minima, maxima, and saddles.

Although these definitions work well for smooth functions, com-
puting critical points is non-trivial for discrete representations,
which lack proper differentiability. Banchoff [Ban70] computes the
critical points of a function on a closed, triangulated 2-manifold.
The function is defined as the distance to a fixed plane P and as-
sumed to be general, i.e., the values at vertices are distinct. In this
case, critical points coincide with vertices. To determine the type
of a point p, Banchoff considered how the star of p, i.e., the set of
simplices containing p, is intersected by a plane through p parallel
to P. Edelsbrunner et al. [EH04] determine a point’s type and in-
dex based on the homology of p’s lower link, i.e., the subcomplex
induced by the vertices of lower function value of p’s star.

Functions of interest to visualizations are often afflicted by noise
causing a large number of critical points. Topological simplifica-
tion removes critical points, preferably only those due to noise, and
often constructs a similar function with fewer critical points. Edels-
brunner et al. [ELZ02] use persistent homology to drive topologi-
cal simplification. This construct is often introduced starting from a

set of points that are turned into a one-parameter filtration of a cell
complex via geometric methods, but our discussion will start with
its topological treatment. Given a filtration, i.e., a sequence of sim-
plicial complexes where each simplicial complex is a subcomplex
of the next, persistent homology notes points in the sequence where
the complex’s homology changes, reflecting the creation or closing
of connected components, tunnels, and voids. Since these events
coincide with critical values, critical points responsible for the life-
time of a feature can be paired. Persistence is defined as the “du-
ration” of a feature, and topological simplification removes critical
point pairs in the order of lowest persistence. Bauer et al. [BKR14]
present a parallel algorithm to compute persistent homology.

Persistent homology in general is surveyed by Edelsbrunner and
Harer [EH08]; we will focus on visual representations and their ap-
plications. Critical point pairs can be represented as a barcode or a
persistence diagram [ELZ02]. A barcode is a set of horizontal lines
representing the lifetimes of critical pairs. A persistence diagram is
a scatter plot where each critical point pair is drawn as a point using
the begin and end time as x,y coordinates. A pair’s persistence is
thus indicated by the vertical distance to the main diagonal. Rieck
et al. [RML12] presented a visual design for persistent homology
chains in a radial layout to support visual discrimination between
datasets. Rieck and Leitte [RL14] illustrate the geometry of persis-
tent features using a force-directed layout on a graph encoding sim-
plex adjacency. In [RL15], they used persistence diagrams to assess
the quality of dimension reduction methods. While there are ex-
tensions of persistent homology, e.g. extended persistent homology
and persistence modules, to our knowledge none of them have been
used for visualization purposes yet, and are not discussed here.

3.1.2. Level Set Methods

A number of topology-based techniques are level set-based. A level
set is the preimage of a function f : Ω → R for some value v:
f−1(v) = {p ∈ Ω| f (p) = v}; it may consist of multiple connected
components called contours. The Reeb graph [Ree46] of a function
is the quotient space on Ω/∼ induced by the equivalence relation
p ∼ q if p,q belong to the same contour. If the domain Ω is sim-
ply connected, i.e., every simple closed curve in Ω can be smoothly
contracted to a point, the Reeb graph of f is a tree and then called
the contour tree [BR63]. For this simpler case, there exist multiple
efficient algorithms and alternate visual representation.
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Figure 1: The image in (a) shows a scalar function and marks contours in black, local maxima in red, local minima in blue, saddles in
yellow. Red lines mark the descending cells and blue lines the ascending cells of saddles. The subdivision described by these points and lines
is the Morse-Smale complex. Red points and lines plus the saddles form the maximum graph and blue points and lines plus the saddles form
the minimum graph. (b) shows the superlevel set merge tree and (c) the contour tree. (d) shows persistent homology for the superlevel set
filtration via barcodes. The pairs starting at a red node are in the H0 homology classes representing the life of connected components.

Like level sets, sublevel sets {p ∈ Ω| f (p) ≤ v} and superlevel
sets {p ∈ Ω| f (p) ≥ v} may consist of multiple connected compo-
nents. Equivalence among points can be defined similarly: p ∼ q
if f (p) = f (q) = v and they belong to the same component of the
sublevel/superlevel set for v. As long as the domain is connected,
the induced quotient space for each equivalence relation is always
a tree and is known under many names in the literature: join tree,
split tree, level set tree, volume skeleton tree, and barrier tree (for
functions on vertices of a graphs). We will refer to them as sub-
level/superlevel set merge trees. Even though their interpretation
varies among domains, their algorithmic treatment and visual rep-
resentations are mostly interchangeable.

A filtration for persistent homology may be viewed as a sequence
of growing sublevel sets of a piecewise constant function. Level set
graphs thus relate to persistent homology: graph nodes represent
critical points and changing level set homology. But because they
only consider connected component relations, critical points where
higher-order homology changes are not in the graphs. Some algo-
rithms add these missing critical points back in; following a rec-
ommendation by Chiang et al. [CLLR05], we refer to the resulting
structures Reeb topology graph and contour topology tree.

Merge Tree Carr et al. [CSA03] give an efficient algorithm to
compute the merge tree for piecewise linear functions on do-
mains of any dimension. They first sort the input mesh vertices
based on function value, breaking ties using simulation of sim-
plicity [EM90]. They then initialize one set for each mesh node
in a union-find data structure, and for each node v in sorting order,
merge the sets of its already processed grid neighbors, adding an
edge from each set’s lowest node to the current node in the tree.
This part runs in O(mα

−1(n)), where n is the number mesh ver-
tices, m the number or mesh edges, and α

−1 is the slowly growing
inverse Ackermann function. The algorithm is highly similar to the
construction of barrier trees for functions on graphs [FHSW02].

Morozov and Weber [MW13] use a special data structure called
skip trees for the distributed computation of the merge tree. It
avoids the communication-heavy parts of the computation by inter-

leaving it with topological simplification. Landge et al. [LPG∗14]
also compute and store merge trees in a distributed manner, but in
addition annotate them so that feature volumes can be reconstructed
without needing the original data. They emphasize the need to store
boundary extrema for a correct reassembly of merge trees.

Klemelä [Kle04] define the level set tree of a piecewise con-
stant function, approximating a density distribution, as the tree that
connects the finite number of superlevel sets according to set inclu-
sion relations. Three visual representation are proposed: a rooted
tree drawing, a volume plot, and a barycenter plot. The volume
plot modifies the rooted tree drawing by setting the edge thick-
ness proportional to the upper node’s associated level set’s size. For
each dimension of the input space, the barycenter plot assigns each
node the barycenter of the associated superlevel set. This allows to
judge skewness and kurtosis of the underlying density distribution’s
modes. Oesterling et al. [OST∗10] estimate a density function from
a set of input points representing a document collection and then
show that function’s merge tree as an alternative to clustering.

Oesterling et al. [OHWS13] give an algorithm to construct a
landscape profile, i.e. a 1D height function, for a given augmented
merge tree. This is the analog of the volume plot for merge trees of
functions that are not piecewise constant. Volke et al. [VMH∗13]
construct a landscape profile for a barrier tree. They then overlay re-
gions in the landscape with histograms showing the performance of
different swarm optimization algorithms that operate in the space.

A special subset of merge trees is the largest contour segmenta-
tion, which is defined as all superlevel set components that con-
tain only one local maximum. It was computed by Manders et
al. [MHS∗96] for piecewise constant 3D data using region grow-
ing and used to automatically mark cells in microscopy images.

Reeb Graph Algorithms for Reeb graph computation and simpli-
fication have been surveyed in [BGSF08, BDF∗08]. We will only
point out fundamental results, and focus on recent progress and
visualizations. Shinagawa and Kunii [SK91] give an algorithm to
construct a Reeb graph from a set of binary slices. A measure of
correspondence between connected components between adjacent
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slices is used to define the order of edges that are added to connect
these regions until a user-specified number of loops is reached.

Pascucci et al. [PSBM07] give a fast algorithm to compute the
Reeb graph from an unordered stream of triangles. The triangles
are processed individually, each updating the Reeb graph by adding
branches, closing branches, and filling loops. No complexity class
is given, but runtime for 3D data was empirically determined close
to the theoretical lower bound. Pascucci et al. [PSBM07] proved
that the Reeb graph of any piecewise linear function on a simpli-
cial complex is equivalent to the Reeb graph of the function’s re-
striction to the complex’s 2-skeleton, i.e. only its points, lines, and
triangles. Later work uses this idea to create efficient algorithms
for Reeb graph computation; here we only wish to point out a di-
rect deterministic algorithm presented by Parsa [Par13] with time in
O(m logm), m being the size of the input mesh’s 2-skeleton, and the
algorithm by Doraiswamy and Natarajan [DN13], which assembles
the Reeb graph from the contour trees of subvolumes induced by
the merge tree. We refer the reader interested in prior work on Reeb
graph computation to these references. Dey and Wang [DW12] give
an algorithm for the computation of approximate Reeb graphs and
their persistence for points sampled from a manifold.

Given the stronger focus on computer graphics and shape de-
scription, only a few visual representations and applications have
been proposed. Shinagawa and Kunii [SK91] illustrate Reeb graphs
using a simple orthogonal graph layout, but no algorithm for com-
puting such a layout is given. Shinagawa et al. [SKK91] use icons to
represent nesting in the Reeb graph. Pascucci et al. [PSBM07] give
two methods to show the Reeb graph: the first constructs a barycen-
ter skeleton-like representation during computation, the other uses
layered graph drawing; both are the predominant display styles.

Regarding applications, Ushizima et al. [UMW∗12] reconstruct
a Reeb graph from a sliced 3D space and annotate it with amount
of thickness to describe material transport and detect pockets. Reeb
graphs can be used to describe topological changes with time. E.g.,
Weber et al. [WBD∗11] compute a 4D temperature hypersurface
in a time-dependent 3D scalar field resulting from a combustion
simulation. They compute the Morse-Smale complex for the fuel
consumption rate restricted to this hypersurface, trace its crystals’
boundaries with the Reeb graph, and use it as a tracking graph.

Contour Tree Computation Takahashi et al. [TIS∗95] construct
the contour tree for a piecewise constant function on a 2D struc-
tured grid from the 1-skeleton of the function’s Morse-Smale com-
plex. De Berg and van Kreveld [dBvK97] compute the contour
tree in O(n logn) time for 2D piecewise linear functions, n being
the number of mesh vertices. Carr et al. [CSA03] gave the first
O(n logn + mα

−1(n)) time algorithm to compute the augmented
contour tree for any dimension. They assemble the contour tree
from the merge trees for superlevel and sublevel trees in linear time.
Chiang et al. [CLLR05] give an algorithm to compute the contour
tree for piecewise linear data using monotone paths. After classify-
ing some nodes as component critical, they start paths monotonic
in function value from them until they reach a local extremum or
an already visited path. In the later case, regions associated with
local extrema are merged in an union-find data structure. Only the
component-critical points need to be sorted this way and the algo-
rithm runs in O(n+ t log t) time, t giving number of critical points.

Raichel and Seshadhri [RS14] present an algorithm to compute the
contour tree in O(∑c∈C logd(c)) where C is the set of critical points
and d(c) denotes the depth of c in the resulting contour tree.

Pascucci and Cole-McLaughlin [PCM03] present an efficient al-
gorithm to compute the contour topology tree in parallel for piece-
wise trilinear data. They use a divide-and-conquer strategy to give
a run time in O(n+ t logn). The method extends to other cell in-
terpolants, provided one can specify an “oracle” which gives the
contour tree of a cell. Maadasamy et al. [MDN12] give paral-
lel formulations for the computation of component-critical points
and monotone paths. Morozov and Weber [MW14b] present a
distributed computation and storage for contour trees. They use
a global-local representation internally that reduces communica-
tion between nodes during construction and later queries. Carr et
al. [CSLA15] present a data-parallel algorithm for computing con-
tour trees for functions quantized in their range.

Contour Tree Simplification Carr et al. [CSvdP10] use differ-
ent geometric measures to compute the stability of contours. They
consider contour length, area, and function value integrated over
area for 2D data, contour surface area, enclosed volume and func-
tion value integrated over volume for 3D data. They present an
O(n logn) time algorithm to compute a contour hierarchy. Pascucci
et al. [PCMS04] present a multiresolution version of contour trees
called the branch decomposition. They adapt Carr’s contour tree
algorithm to generate the branch decomposition during computa-
tion without additional cost. This representation makes simplifica-
tion fast and easy to implement. Both Weber et al. [WBP07] and
Thomas and Natarajan [TN11] propose a simplification that re-
duces the depth of the branch hierarchy by moving branches “up
the hierarchy” if the difference of saddle function value to the par-
ent branch is small enough. Arge and Revsbæk [AR09] present an
I/O-efficient algorithm for contour tree simplification.

Contour Tree Visualization Bajaj et al. [BPS97] present contour
trees within their “contour spectrum” interface. They compute and
present statistics such as contour length, area, and volume in a
histogram-like representation and embed a node-link diagram of
the contour tree. No details are given as to how this layout is com-
puted. Both Pascucci and Cole-McLaughlin [PCM03] and Carr et
al. [CSvdP10] show the contour tree with a layered graph layout,
constraining nodes’ y-positions to their function value.

Takahashi et al. [TFO09] use an idea from manifold learning
to produce drawings resembling contour trees from data given as
points in a high-dimensional space plus a function value at each
point. They define a geodesic distance between points in the space
defined by the k-nearest neighbor graphs and the function’s values
at vertices, then use landmark multidimensional scaling to obtain a
projection in 3D. Kraus [Kra10b] uses the simple idea that the area
of an isosurface must be the sum of the area of its contours and
proposes to visualize contour trees as stacking histograms for each
contour tree edge similar to stacked bar charts. A challenge is to
avoid edge crossings, for which Kraus uses a simple greedy heuris-
tic. Heine et al. [HSCS11] outline the aesthetic criteria for graph
drawings of contour trees and present two algorithms for comput-
ing graph drawings subject to a subset of these criteria.

Pascucci et al. [PCMS04] represent a contour tree metaphori-
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Figure 2: Different visual representations of the FUEL data set – the result of a combustion simulation. Left to right: direct volume rendering;
toporrery [PCMS04], graph drawing [HSCS11], and topological landscape [WBP07] of the contour tree (topological landscape image
courtesy of Gunther Weber); topological spine of the extremum graph (Image c© 2011 IEEE, reproduced, with permission, from [CLB11]).

cally as a “toporrery” reminiscent of an orrery. The branch hierar-
chy is laid out in the x-y-plane using radial graph drawing and then
shifted in z-direction based on the node’s isovalue. Branches are
drawn using an L-shape. An alternate drawing marks the contour
tree’s critical points in the domain and connects them according to
tree edges using straight lines. Weber et al. [WBP12] extend the
toporrery design to “topological cacti”: they vary line thickness to
show geometric properties of contour tree branches.

Weber et al. [WBP07] give a recursive algorithm that constructs
a 2D scalar field for a given contour tree and use it to represent
the contour tree of a function defined in any dimension. The scalar
field is rendered as a terrain and called a “topological landscape”.
The landscape can be deformed to represent geometric properties of
contours. Oesterling et al. [OST∗10] use the same core algorithm,
but present the resulting 2D scalar field as a color map instead. Har-
vey and Wang [HW10] recognized the similarity of the problem to
tree maps and give a slice-and-dice and a Voronoï-tree-map based
construction that also accurately reflects volume contained inside
contours. While Weber et al. [WBP07] always chose the global
minimum to be represented by the landscape’s border, Harvey and
Wang [HW10] allow the user to pick any local extremum – caus-
ing landscapes to emphasize different structures. The user can pick
from a gallery where similar landscape are shown close together.

Fujishiro et al. [FTAT00] suggested to use critical values to guide
transfer function design for volume renderings of 3D scalar fields,
because at these critical values the topology of isosurfaces changes.
Takahashi et al. [TTF04] compute the “volume skeletonization”, by
which they mean a contour topology tree for a piecewise constant
volumetric scalar field, and use it to automatically generate a trans-
fer function for volume rendering. The core idea is to increase opac-
ity near saddle values and vary a spectral color map more strongly
in opaque value ranges. Weber et al. [WDC∗07] compute the con-
tour tree for 3D scalar fields and identify regions in the volume with
tree branches. This allows the user to specify a transfer function for
each branch separately; suitable defaults emphasize critical points.

Contour Tree Applications Path seeds by van Kreveld et
al. [vKvOB∗97] are cell sequences annotated at the contour tree,
that can be used to start growing an isosurface for a given isovalue.
This enables responsive user interfaces for selecting isosurface.

Figure 3: Flexible isosurface interface for contour selection show-
ing how interactive manipulation of tags in the contour tree (right)
leads to a semantic volume segmentation on the left. Image c© 2010
Elsevier, reproduced, with permission, from [CSvdP10].

Carr et al.’s [CSvdP10] “flexible isosurface” user interface allows
the user to select, color, and adjust isovalues for contours. They
adapt path seeds but use edges rather than 3-cells, giving them a
smaller memory footprint. They use their system to extract anatom-
ical parts from volumetric medical scans (cf. Figure 3). Johansson
et al. [JMC07] use the flexible isosurface interface to allow the user
to specify seed surfaces which are then adjusted locally to give bet-
ter material boundaries. Bajaj et al. [BGG09] present an applica-
tion where they use the contour tree of a distance field computed
from an isosurface to guide the identification of tunnels and pockets
in molecular interaction surfaces. Thomas and Natarajan [TN11]
look for similar subtrees within a contour tree to find topologically
similar structures, hinting at symmetries in the data. Biedert and
Garth [BG15] use the contour tree to automatically segment volu-
metric data in-situ and represent the result as a set of depth images.
These are used in place of the full simulation data for later analysis.

Carr and Snoeyink [CS09] propose to construct so-called wid-
gets for interpolants and construct finite-state automata that repre-
sent the possible configurations of level sets with increasing func-
tion value. They use the example of the trilinear interpolant and
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use their method to prove the correctness of marching cube case ta-
bles. Etiene et al. [ENS∗12] test the correctness of marching cube
algorithm implementations by checking whether they yield triangu-
lations consistent with the contour tree of the trilinear interpolant.

3.1.3. Morse-Smale Complexes

An integral line of a smooth function f : M→ R is a maximal
curve, where the tangent matches the gradient at each point. Let p
be a critical point of index k on f , then the descending k-cell of p is
defined by the integral lines that converge on p. Dually, the ascend-
ing (d− k)-cell of p is defined by integral lines that originate at p.
The ascending and descending cells decomposeM into ascending
and descending Morse complexes, respectively. If each non-empty
intersection of a descending and an ascending cell is transversal,
their connected components define the Morse-Smale (MS) complex
– a domain partition into regions with equivalent gradient behavior.

Computation There are two foundational theories for computing
the Morse-Smale complex on a smooth function’s discretization:
the piecewise linear Morse theory [Ban70] and the discrete Morse
theory [For98]. The former uses Banchoff’s characterization of
critical points to compute the Morse cells, growing the maximal
cells from seeds located at the minima/maxima (region growing ap-
proaches), or computing the lines of steepest ascent/descent start-
ing from the saddles (boundary-based approaches). A plethora of
works have been presented for computing the Morse complexes
from which the MS complex can be derived [DFFIM15].

In [EHZ01] the first algorithm for computing an MS complex
on a triangulated 2-manifold has been proposed. The notion of MS
complex is adapted to the discrete case in order to guarantee a cer-
tain structure to the complex although the preconditions of Morse
theory are not respected (i.e., isolated degenerate critical points are
present in the data). The notion of Quasi Morse-Smale (QMS) com-
plex is introduced and numerical accuracy is achieved via local
transformations that preserve the structure of the complex. In the
2D case, a QMS complex is a quadrangulation of the triangle mesh
but the 1-cells of the QMS complex are not necessarily those of
maximal ascent/descent, as they are in an MS complex. Edelsbrun-
ner et al. [EHNP03] extend the concept and computation of the
QMS to tetrahedralized 3-manifolds.

The algorithms described in [BEHP04] and [GNPH07] focus on
tracing the lines of steepest ascent/descent more accurately. While
in [EHZ01] the steepest slope was evaluated on the edges of the
triangle mesh, Bremer et al. [BEHP04] extend the approach allow-
ing separatrix lines to cross triangles. Since tracing separatrix lines
across triangles is computationally intensive, a different approach
for the 3D case is proposed in [GNPH07] following a region grow-
ing schema. The MS complex is computed as collection of vertices,
i.e., through vertex labeling. First, minima are found and an ascend-
ing 3-cell is grown from each of them. Then, ascending 2-cells are
built starting from boundary vertices of 3-cells and finally, ascend-
ing 1-cells are built starting from boundary vertices of 2-cells. De-
scending 3-, 2-, and 1-cells (in this order) are computed inside the
ascending 3-cells using the same approach in a symmetric way.

Although easy to implement, all piecewise linear algorithms are

generally computationally intensive and not well suited for paral-
lelism. For this reason Discrete Morse Theory (DMT) [For98] gath-
ered a lot of attention being an adaptation of Morse theory to the
discrete case, defined in a fully combinatorial way. Using DMT a
discrete gradient vector field can be computed from sampled data
on a cell complex Γ. A vector is defined as a pair of cells (σ,τ)
where σ is an k-cell in the immediate boundary of τ (i.e. their di-
mension differs by 1). A discrete vector field V defined on Γ is a
collection of pairs such that each cell of Γ is in at most one vector
of V . A V-path is a sequence σ1,τ1,σ2,τ2, ..., σr,τr of k-cells σi
and (k + 1)-cells τi, i = 1, ..,r with r ≥ 1, such that (σi,τi) ∈ V ,
σi+1 is a face of τi, and σi 6= σi+1. A V-path with r > 1 is closed if
σ1 is a face of τr different from σr−1.

A discrete vector field V is a discrete Forman gradient vector
field (or Forman gradient) when there are no closed V-paths in V .
A critical cell of V of index k is a k-cell γ which does not appear in
any pair of V . Following the V-paths starting and having destination
in a critical simplex, the Morse cells can be computed efficiently.

Most algorithms concentrate on computing the Forman gradi-
ent from the data sampled at the vertices of a cell complex. The
algorithm described in [GBHP08] is the first one to introduce a
divide-and-conquer approach for computing a Forman gradient on
real data. However, many spurious critical simplices are identified
during the gradient computation that have to be removed later, thus
affecting time performances and topological accuracy.

Shivashankar et al. [SMN12] define a similar approach for piece-
wise bilinear functions. The algorithm provided is GPU-based
and out-of-core, but still introduces artificial critical simplices. In
[SN12] the method is extended to piecewise trilinear functions.
Saddle-extremum connections are still computed on the GPU, but
saddle-saddle connections concurrently on the CPU.

In [RWS11] a dimension-agnostic algorithm is proposed that
processes the lower star of each vertex independently. It has been
proved that up to the 3D case, the critical cells identified are in one-
to-one correspondence with the topological changes in the sublevel
sets, i.e. no spurious critical simplices are created. The algorithm
has been extended in [FIDFW14] and [WIFDF13] for triangle and
tetrahedral meshes, respectively; they provide the first compact rep-
resentation for a Forman gradient on simplicial complexes.

Even if faster and topologically more accurate, algorithms based
on DMT share a problem with methods rooted in piecewise linear
Morse theory. In general, none of them converge to the ground truth
smooth function when the underlying discrete domain is refined. To
address this problem, Gyulassy et al. [GBP12] present a probabilis-
tic algorithm for discrete gradients and deterministic algorithms for
2D and 3D data to compute more accurate manifold geometry.

When working with high-dimensional data, only a subset of
the Morse-Smale cells is considered, in particular for visualization
purposes. Gerber et al. [GBPW10] approximate the Morse-Smale
complex for high-dimensional data by computing the maximal cells
of the MS complex on the point cloud directly. Descending Morse
cells are computed by connecting points via k-nearest neighbor and
by assigning a maximum to each node; ascending Morse cells are
computed analogously. The Morse crystals (maximal cells of the
MS complex) are created collecting vertices with the same label
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pair. Because these approximated Morse crystals can be non-simply
connected, Harvey et al. [HRP∗12] use the Reeb graph of such
crystals to find and close spurious loops.

Correa et al. [CLB11] introduced topological spines – a planar
visual representation of a d-dimensional piecewise linear scalar
field, based on its extremum graph. An extremum graph can be
computed from the descending or ascending Morse complex. The
maximum graph G = (V,E) is the extremum graph computed from
the descending Morse complex Γ and representing the adjacency
relations of its maximal cells, i.e., V consists of the maximal cells
of Γ and vertices are connected if and only if the corresponding de-
scending cells are adjacent in Γ. Dually, the minimum graph can be
computed from the ascending Morse complex.

Simplification Simplification of an MS complex is a fundamental
step to create effective descriptors of a scalar field. The huge size
of the datasets and the presence of noise make reducing the num-
ber of critical points crucial. A k-cancellation is a simplification
operator defined in Morse theory that transforms the ascending and
descending Morse complexes into complexes with fewer cells. Let
p be a (k+1)-cell and q a k-cell, with k = 0, . . . ,d−1 of a descend-
ing Morse complex. A k-cancellation is performed provided that q
is incident in p only once. The k-cancellation(p,q) removes cells
p and q and changes the connectivity of the remaining cells.

Two different approaches for applying the cancellation operator
exist in the discrete case, depending on the structure used for rep-
resenting the MS complex. The first approach works on a graph-
based representation of the MS complex [EHZ01,BEHP04,ČD11].
Each simplification removes a pair of critical points merging the
corresponding Morse cells explicitly (i.e., collapsing the nodes of
the graph). This method requires all the MS cells to be computed
before starting the simplification algorithm.

In [For98], the cancellation operator is described in terms of
updates on the Forman gradient V . The k-cancellation(q, p) oper-
ator deletes a critical k-simplex q and a critical (k+ 1)-simplex p
if and only if p and q are connected through exactly one V -path.
The effect of a k-cancellation(q, p) on V is to reverse the gradi-
ent arrows on the V -path between p and q pairing, as a conse-
quence, both p and q. Algorithms developed for a Forman gradi-
ent [WGS10, GSW12, FIDFW14] are typically slower since they
have to update, for each simplification, all the gradient pairs along
the V -path. On the other hand, they exploit the implicit representa-
tion the Forman gradient provides, resulting in low storage costs.

The two methods are equivalent when working in 2D but may
create different results when working in three or higher dimen-
sions. As described in [GRSW14], the connectivity among the crit-
ical cells involved in a 1-cancellation between saddles may change
without control, thus leading to topologically inconsistent represen-
tations. In [IFD15] the first simplification algorithm that solves this
problem is presented, based on the operator introduced in [ČD11].

Most of these works considered only the simplification of the MS
complexes and not the modification of the original scalar function
according to the topological simplification. Bremer et al. [BEHP04]
numerically modify the function, defined on a triangulated domain,
using Laplacian smoothing after each cancellation, in order to
agree with the new topology. In [WGS10], the bottleneck of the

smoothing step performed after each cancellation in [BEHP04]
is solved by constructing a topologically valid function after all
the cancellation steps, resulting in a faster process. Günther et
al. [GJR∗14] present a method to smooth a given input scalar func-
tion while preserving a user-specified set of local extrema, operat-
ing directly on a discrete gradient field representation of the input.

A different take on simplification is based on scale-space ap-
proaches, i.e. considering the stability of critical points in a fam-
ily of functions generated by a smoothing operator. Reininghaus
et al. [RKG∗11] use a DMT-based approach to compute a mea-
sure of persistence that, compared to persistent-homology-based
approaches takes each critical point’s Morse cell size into account.

Visualization The first complete characterization of the features
that can be visualized from an MS complex is provided in
[GKK∗12]. All the different information that can be extracted from
the Morse cells, as well as the decomposition provided by the
MS complex, are discussed with graphical examples. Moreover,
a tool for the multiresolution representation of MS complexes is
described providing the first visualization framework for the inter-
active investigation of a scalar field based on Morse features. While
fundamental when working in two or three dimensions, the above
visualization framework is suboptimal for high-dimensional data.

To address this problem, Gerber et al. [GBPW10] combined a
topological and a geometric technique for obtaining a new method
for the visual exploration of data in high dimensions. The MS com-
plex is used here as a segmentation schema. A regression curve is
computed for each cell of the MS decomposition and augmented
with local information such as sampling density, standard devia-
tion, and function value. The same problem is faced by Correa et
al. [CLB11], where they use a force-directed graph layout to posi-
tion the vertices. In addition, contour nesting and contour volume
are computed and shown as an overlay on the graph layout.

Applications Morse and Morse-Smale complexes have been used
in a variety of applications fields, including geographic information
systems, biology, and medicine.

Gyulassy et al. [GDN∗07] use a topologically simplified Morse-
Smale complex of a signed distance field computed from a 3D iso-
surface to find the skeleton of a porous material. They can mod-
ify the distance field to give the smallest number of critical points,
prune “fingers”, and straighten arcs of the Morse-Smale complex.

Simplified Morse-Smale complexes computed on real data have
been used in [GBC∗14]. The MS complex is used as a topologi-
cal representation of molecular interactions (i.e., covalent and non-
covalent bonds) for studying chemical systems through visualiza-
tion. In [NKWH08], a hierarchy of simplifications on the MS com-
plex is computed and stored to study biomolecular surfaces.

In [GGL∗14], a combination of the region-growing algorithm
described in [GNPH07] and of the Forman gradient computation
described in [RWS11] is defined. The MS complex is used here for
the automated segmentation in histopathology. The Forman gradi-
ent is computed constrained to an MS segmentation obtained semi-
automatically: a domain expert removes false negatives from an
initial segmentation with the algorithm from [GNPH07].
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Correa and Lindstrom [CL11] use extremum graphs to assess
the accuracy of different geometric graphs that reconstruct con-
nectivity from high-dimensional point sets. They study k-nearest
neighbor graphs, Delaunay triangulations, nearest neighbor graphs,
relative neighborhood graphs, Gabriel graphs, diamond graphs, β-
skeletons, as well as their own generalizations of the later five.
Thomas and Natarajan [TN13] use augmented extremum graphs
to detect topologically and, in part, geometrically similar substruc-
tures for a user-provided “query” structure. They also use them
to generate transfer functions for volume rendering. Maljovec et
al. [MWR∗16] use linearizations of Morse cells to enable the study
of parameter spaces arising in simulations for reactor safety.

One of the most important applications is the interactive explo-
ration of data based on multiresolution models. Such models pro-
vide a hierarchy on which on-line queries can extract morpholog-
ical representations at different resolutions. Multiresolution mod-
els have been developed for terrains [EHZ01,BEHP04,DDMV10],
volume data [GKK∗12] or have been defined dimension-agnostic
[ČDI12]. Some of them have also considered to combine the mul-
tiresolution representation of the topology with the underlying
geometry. In [BEHP04], the Morse cells are retriangulated after
each simplification/refinement for describing the given morpholog-
ical resolution. The Multiresolution Morse Triangulation (MMT)
[DDMV10] is a first attempt to simplify both geometry and mor-
phology of a scalar field in a combined and consistent manner.
However, it is verbose, and mesh simplification through half-edge
collapse may generate new critical points. In [IDF14] a simplifi-
cation hierarchy based on the gradient-aware edge-contraction has
been proposed which avoids deleting or creating critical simplices.

3.2. Exact Time-Dependent Scalar Fields

Critical Point Tracking Edelsbrunner and Harer [EH04] outline
an idea to use Jacobi sets (see Sec. 6) to track critical points of
time-dependent scalar fields. They treat the time-dependent func-
tion f (p, t) on a d-dimensional domain as a time-independent func-
tion on a (d+1)-dimensional domain and define a second function
g(p, t) := t; the Jacobi set of these two functions then traces out
the critical points’ paths. Jacobi sets have been used by Bremer et
al. [BBD∗07] to track features for 2D time-dependent scalar fields.
They propose to simplify Jacobi sets based on the duration that
they persist. Reininghaus et al. [RKWH12] track critical points in
2D time-dependent scalar fields on structured grids by transform-
ing each adjacent time slice into a 3D combinatorial vector field
in which detection and tracking critical points amount to a path
search. Cohen-Steiner et al. [CSEM06] give an algorithm for up-
dating persistent homology of a filtration when the piecewise lin-
ear function changes smoothly. They show that smooth changes in
function cause smooth changes in the persistence diagram and de-
fine vineyards as the tracks of critical point pairs in these diagrams.

Level Set Tracking A number of level set tracking methods
have been proposed and are surveyed in [MS09]. Samtaney et
al. [SSZC94] track sublevel sets that are grown from minima un-
til they exceed a geometric measure, e.g. volume or homogene-
ity. Across time, sublevel sets are identified via spatial overlap and
a Reeb graph is constructed by removing edges from a weighted

graph until a user-specified number of components remain. The
result is shown using layered graph drawing, color-coded to em-
phasize merges. Kettner et al. [KRS03] present the Safari interface,
where for each time step in a time-dependent scalar field a contour
tree is computed to give a histogram for the number of connected
components over time and isovalue. Using the system, a user can
then select interesting isovalues. Szymczak [Szy05] propose a sys-
tem called “subdomain-aware contour trees”. He computes contour
trees for adjacent time-steps and annotates the parts within a do-
main of interest. His system then allows the user to query, e.g., for
sets of contours that will split n times more often than they will
merge. Sohn and Bajaj [SB06] identify contours through a measure
that considers both spatial overlap of the interior and exterior of
a pair of contours. Thresholding this measure results in a tracking
graph that is presented using layered graph drawing techniques.

Bremer et al. [BWT∗11] represent large time-dependent 3D
scalar fields by computing one merge tree per time step and anno-
tating its branches with statistical measures for further scalar fields.
They track features in time using spatial overlap and allow the user
to specify an isovalue for which a tracking graph is generated from
the immediate representation. The tracking graph is shown as a lay-
ered graph drawing. Building on this work, Widanagamaachchi et
al. [WCBP12] consider the problem of updating the graph layout
of a tracking graph when the user changes the isovalue of interest.
Lukasczyk et al. [LMGH15] use kernel density estimates for points
in space and time and show the Reeb graph for one isosurface of
the resulting function to visualize spatio-temporal patterns with ap-
plications in epidemiology and analyzing crime data.

Dynamic Level Set Graphs Edelsbrunner et al. [EHMP04] com-
pute time-dependent contour trees for scalar fields on a simply-
connected 2- or 3-sphere. They track critical points via Jacobi sets,
then use the result to update the contour tree initialized for the
first time step using an involved case analysis. Mascarenhas and
Snoeyink [MS05] note difficulties in implementing the algorithm
for 2-manifolds and that turning structured into simplicial grids re-
sults in many spurious Jacobi sets. A practical approach requires
topological simplification. Edelsbrunner et al. [EHM∗08] later ex-
tend the approach by annotating the time-dependent contour tree
with all changes in homology and path seeds for flexible isosur-
face extraction. They also discuss challenges when extending the
method to 4- or 5-manifolds and non-simply connected domains.

Keller and Bertram [KB07] present the hyper-Reeb graph, which
describes a Reeb graph changing in time, and an algorithm to de-
pict this structure as an extension of a similar algorithm for time-
independent Reeb graphs. Oesterling et al. [OHW∗16] give an al-
gorithm to compute the time-varying version of the merge tree for
piecewise linear functions in arbitrary dimensions. Noting that the
augmented merge tree’s structure only changes when the sorting
order of adjacent tree nodes changes, they determine a sequence of
local updates to the augmented merge tree. They relate changes in
the augmented merge tree to changes in the unaugmented merge
tree. They present the results using one layer for each time step
containing a 1D landscape profile and indicate correspondences as
well as events such as bifurcation and joins via visual links. Heine
et al. [HSF∗06] present a dynamic graph drawing algorithm for se-
quences of barrier trees, when given a tracking for tree leaves.
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3.3. Uncertain Time-Independent Scalar Fields

For multivariate-Gaussian-distributed functions on 2D and 3D
structured grids, Mihai and Westermann [MW14a] present a
method to compute “confidence regions” and type probabilities for
critical points from the derived Hessian fields. A critical point’s
confidence region is defined as the set of all points where the trace
and determinant of the Hessian are within a confidence interval sig-
nifying a critical point. They classify each grid point considering
covariance with its 8 neighbors in 2D and 26 neighbors in 3D.

Bubenik [Bub15] constructs an “envelope” function from the
persistence diagram of a function and uses linear combinations
of these envelopes to provide aggregate visualizations of multiple
scalar functions and define some statistical measures like deviation.

Günther et al. [GST14] propose a non-local characterization of
critical points and their spatial relation for uncertain piecewise lin-
ear functions in 2D. They assume that each grid position is assigned
a probability distribution function with finite support and construct
an upper and a lower bound function. Recognizing a certain nest-
ing relation of sublevel and superlevel sets of realizations with these
bounds, they compute a spatial region and level set value interval
for critical points. Nesting is also employed to put critical points
into a merge-tree-like structure enabling simplification.

Kraus [Kra10a] uses image operators opening and closing to re-
move noise from volumetric data on structured grids. The operators
are changed slightly to preserve local extrema. Contour trees for
the modified data sets are assembled into one super contour tree,
indicating similarities and differences using color. To visualize an
ensemble of scalar fields, Wu and Zhang [WZ13] compute and sim-
plify a contour tree from the mean field and overlay its graph draw-
ing with glyphs indicating contour variance. Zhang et al. [ZAM15]
use a Monte Carlo method to query an uncertain 2D terrain for the
probability whether two points lie on an edge in the contour tree
and what their expected height difference is.

4. State of the Art – Vector Fields

Formally, a (stationary) vector field v on a manifold M is a map
from the manifold itself into its tangent bundle; every point x ∈M
is mapped onto an vector in tangent space. An integral curve in
v through a point x is the (under reasonable assumptions) unique
solution to the first ordinary differential equation with v as its right-
hand side and initial condition x. Integral curves capture the notion
of transport or advection and are the central elements of study in
vector field topology. The closely associated flow of a vector field
describes how manifold points move under finite-time advection.

Limit sets and invariant sets represent the basis of most topology-
based visualization techniques. While the former are sets of limit
points of integral curves in positive and negative time, the latter rep-
resent subsets of the vector field domain that are mapped to them-
selves under the induced flow. By far the largest body of work on
the topology-based visualization of vector fields is based on the
topological model of limit sets and their connections; these are typ-
ically extracted and visualized directly. For a more thorough intro-
duction to these concepts, we refer the reader to [GH83].

In the following, we survey topology-based visualization tech-
niques following the typology laid out in Table 1. Due to available

Figure 4: Classification of critical points in a 3D vector field.

space, we cannot include a thorough discussion of applications of
topology-based vector field visualization; we instead refer the inter-
ested reader to the surveys by Laramee et al. [LHZP07,LCJK∗09],
Pobitzer et al. [PPF∗11], and Wang et al. [WWL16] and focus on
discussing the most important references per model and explicitly
point to recursive references in the cited works.

4.1. Exact Time-Independent Vector Fields

4.1.1. Direct Visualization of Vector Field Topology

Critical Points and Separatrices The works Helman and Hes-
selink [HH89] and Globus et al. [GLL91] were among the first to
extract critical points, i.e. limit sets of dimension zero, from the
numerical representation of a flow fields with the aim of visualiza-
tion. Critical points are easily identified as isolated points where the
vector field vanishes (e.g. a velocity is zero); i.e., for a vector field
v :M→Rd , a point p with v(p) = 0 is critical. Such points can be
classified into several types based on the first-order approximation
through the Jacobian matrix∇v of the vector field in a small neigh-
borhood. In practice, this is achieved by numerical analysis of the
eigensystem of the Jacobian matrix. In the case of eigenvalues of
mixed sign, a critical point is called a saddle point. Typical types
of critical points in a three-dimensional vector field are depicted in
Figure 4. As is easy to see, saddle points act as limit sets for integral
curves of the form in both positive and negative time.

The specific sets of integral curves whose positive-time limit is
a given saddle point is called the saddle’s stable or attracting man-
ifold; conversely, curves forming its unstable or repelling manifold
reach it in the negative time limit. Often, both sets are uniformly
called separatrices, or separation surfaces if they are of dimension
two. It can be shown that the quotient of the set of all integral curves
with respect to their limit sets forms a partition of the domain into
regions of uniform behavior between which there is no transport.
In this sense, separatrices act as transport boundaries, and thus the
topological model captures the semantics of vector fields exceed-
ingly well. For the purpose of visualization, the decomposition is
not typically computed explicitly; rather, depiction of the separatri-
ces is often viewed as sufficient to imply the decomposition, espe-
cially in the two-dimensional and surface cases (Figure 5 provides
an example). Hauser and Gröller further illustrate this [HG00].

It should be noted in passing that many concepts from scalar field
topology correspond to the special case of vector field topology
of the scalar’s gradient field; for more details, see Section 3.1.3.
However, this similarity has not played a major role in topology-
based visualization. We will discuss this point further in Section 7.
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Figure 5: Direct visualization of critical points and separatrices
on a cerebral aneurysm dataset, extracted using the combinatorial
approach of Reininghaus and Hotz. Image c© 2011 Springer, repro-
duced, with permission, from [RH11].

Critical point extraction and classification from a tetrahedral
discretization with assumed linear interpolation was described by
Nielson [NJS∗94] and has subsequently been generalized to a
variety of computational grid types and interpolants. Mann and
Rockwood [MR02] employ Geometric Algebra to identify cells
containing critical points (or curves thereof). Scheuermann et
al. [SKMR98, SHK∗97] extract, classify, and visualize non-linear
or higher-order critical points. Corresponding visualization tech-
niques for 3D vector fields are further studied by Weinkauf et
al. [WTHS04b]. Bhatia et al. [BGW∗14] prove necessary and suffi-
cient conditions for the existence of critical points in a grid cell for
a large class of interpolants and from this derive a combinatorial
algorithm to identify candidate cells.

Addressing explicitly the computation of separating surfaces,
Mahrous et al. [MBS∗04] derive a segmentation of a three-
dimensional vector field domain by explicitly observing the behav-
ior of integral curves. Separating surfaces then result as segmenta-
tion boundaries. Taking a direct approach, Garth et al. [GTS∗04a]
use the computation of integral surfaces to extract and render sep-
aration surfaces. Schneider et al. [SRWS10] improved on this by
allowing robust convergence of integral surfaces to critical points.
Observing the typically complex geometry of separating surfaces,
Theisel et al. [TWHS03] and Weinkauf et al. [WTHS04a] point
out saddle connectors as a possible solution, reducing separatrix
surfaces to curves connecting saddles. England et al. [EKO07] em-
ploy a collocation technique to compute (un)stable manifolds from
analytical dynamical systems.

Particular attention is given to (two-dimensional) vector fields
on curved surfaces by some authors. The vector field topology
on such surfaces is intimately connected to fluid flow phenomena
such as boundary separation and attachment of a surrounding three-
dimensional flow. Following the seminal works of Kenwright et
al. [KHL99], who utilize topology extraction to identify separation
and attachment lines, Wiebel et al. [WRKS10] visualize surface
topology in the context of surrounding flow.

Figure 6: Indirect visualization of vortex rings (invariant tori) us-
ing a Poincaré section [PS07]. Image courtesy of Ronny Peikert.

Galilean-Invariant Flow Topology A shortcoming of vector field
topology is its lack of Galilean invariance. In brief, two observer in
relatively moving reference frames will observe different topolog-
ical skeletons. To address this deficiency, Wiebel et al. [WGS07]
proposed the concept of localized flow to isolate a specific topo-
logical structure independent of observer movement. This idea
is substantially extended by Bhatia et al. [BPB14], who show
strongly improved results avoiding physically impossible topologi-
cal structures in some cases. Similar concepts are used by some au-
thors to extend stationary topology-based visualization to the time-
varying case, where topological structures are identified in refer-
ence frames co-moving with flow particles (cf. Sec. 4.2.3). Bujack
et al. [BHJ16] propose a similar yet different approach to address
Galilean invariance. By considering every domain point as criti-
cal and filtering for persistence (cf. Section 4.1.3), they determine
locally dominating frames of reference that are well-suited to visu-
alization.

Combinatorial Techniques In comparison to the numerical ap-
proach of many earlier works, purely combinatorial and hybrid
techniques have gained ground and promise to forgo inconsistent
results and guarantee topological properties such as invariants. A
variety of techniques transform continuous vector fields into graph
representations from which they then extract topological structures.
Reininghaus and Hotz [RH11] leverage combinatorial vector fields
based on discrete Morse theory for this purpose.

The edge maps approach [BJB∗11] considers the connectivity of
points on the edges of a triangulation for this purpose. Levine et
al. [LJB∗12] improve on this by turning a continuous vector field
into a quantized representation with bounded error. An advantage
of combinatorial techniques is the ease of computing a topological
segmentation of the vector field domain, which is demonstrated by
all these works.

Thus far, combinatorial techniques are limited to two-
dimensional stationary fields, and a generalization would appear
to be a significant undertaking. A substantial advantage of these
methods however is that they can be applied to flows on non-planar
surfaces with ease.

Invariant Sets Invariant curves and surfaces with respect to the
flow form another class of limit sets that are often of interest in
applications, as they isolate specific regions of a vector field’s do-
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main. Wischgoll et al. [WS01, WS02] describe algorithms to aug-
ment classical vector field topology depiction using closed orbits
in two- and three-dimensional flows, which they detect by observ-
ing re-entry of streamlines in the cells of the discretization grid.
The same goal is accomplished by Theisel et al. [TWHS04] using
a technique that is independent of the computational grid. Kasten
et al. [KRRS14] illustrate the extraction of periodic orbits of saddle
type in three-dimensional vector fields.

Peikert et al. [PS09,PS07] visualize invariant sets in vortex rings
by using the Poincaré map, in which intersections of integral curves
with a cutting plane implicitly illustrate invariant tori (cf. Fig. 6); an
example is shown in Figure 6. Tricoche et al. [TGS11] and Sander-
son et al. [SCT∗10] present similar techniques to explicitly extract
invariant tori in magnetic fusion simulations.

Chen and co-authors focus on the Morse decomposition as a
topological model of two-dimensional vector fields [CMLZ08].
The topological structures of a vector field are encoded in the
Morse connection graph. From this, they extract Morse sets
that capture all invariant sets of the flow, and proceed to clas-
sify them using the Conley index [CDS∗12]. Szymczak and
Zhang [SZ12] provide robust algorithms for Morse decomposi-
tion of piecewise-constant vector fields. The general framework
is extended by Szymczak and Brunhart-Lupo [SB12], who extract
nearly-recurrent components of three-dimensional flows.

4.1.2. Indirect Visualization

Several methods were presented that do not show the topological
skeleton of a vector field directly, but rather use it to derive other vi-
sualizations from it. For example, Löffelmann and Gröller [LG98]
visualize the flow near topological structures such as critical points
and invariant tori of dynamical systems. A similar approach is pur-
sued by Ye et al. [YKP05].

The use of cutting planes (also called section planes by some
authors) in conjunction with topology tracking techniques has
been shown useful for several specific use cases. Tricoche et
al. [TGK∗04] introduce so-called moving section planes that move
through a three-dimensional vector field domain and sample the
projected vector field. By tracking topology along the plane move-
ment parameter, they are able to identify vortex cores as trajecto-
ries of swirl-type critical points. An extension to the time-varying
case is shown by Laramee et al. [LWSH04]. The particular use
of section-plane topology to identify flow features is further in-
vestigated by Wiebel et al. [WTS09]. They employ moving sec-
tion planes to identify separation and attachment lines over flow-
embedded surfaces.

Instead of canonically embedding the topological skeleton of a
three-dimensional flow into its domain, Rössl and Theisel [RT12]
proposed more abstract visualization by using multidimensional
scaling to obtain an embedding that may be beneficial in interac-
tive visualization of often complex three-dimensional structures.

Reich et al. [RSH∗12] convert vector fields into Morse connec-
tion graphs, from which they isolate topological structures and vi-
sualize them using layered graph drawing.

Figure 7: Topology-preserving approximation of a stream dataset.
Left: Coarsened grid. Right: Direct visualization of critical points
and separatrices. Image c© 2015 Springer, reproduced, with per-
mission, from [KKW∗15].

4.1.3. Simplification and Compression

The simplification of topological structures extracted from vector
fields has received a considerable amount of attention in the litera-
ture. The motivation for this is two-fold. First, both numerical and
combinatorial techniques suffer from discretization artifacts that re-
sult in erroneous visualization, often in the form of a large num-
ber of small-scale structures. Furthermore, the increasing structural
complexity of vector fields in applications leads to visualizations
that are difficult to understand. In this context, simplification tech-
niques aim to abstract from small-scale behavior, reducing artifacts
and providing more comprehensible visualization. A major bene-
fit of topological simplification (as opposed to other filtering tech-
niques that reduce complexity, e.g. smoothing) is that consistency
can be explicitly enforced on the level of topological structure,
yielding an always consistent (but not necessarily accurate) result.

For two-dimensional vector fields, de Leeuw and van
Liere [dLvL00,dLvL99] compare implicit and explicit filtering and
collapse critical points and regions of the topological segmentation
based on distance and area metrics, but do not enforce consistency.
Tricoche et al. [TSH01a, TSH00, TSHC01] cluster nearby linear
critical points and replace clusters by higher-order critical points,
conserving global consistency. Weinkauf et al. [WTS∗05] provide
a similar technique for three-dimensional vector fields. More re-
cently, Skraba et al. [SRW∗16] describe a framework for the di-
rect cancellation of pairs or groups of critical points in a three-
dimensional vector field with guaranteed minimum perturbation.

The approach of Reininghaus et al. [RH11] is based on com-
puting a combinatorial vector field from a discrete one; the corre-
sponding computation can be explicitly controlled to yield a con-
sistently simplified result. Similarly, Morse sets [CDS∗12, SZ12]
can be computed in hierarchical fashion and thus possess a built-in
simplification scheme.

Theisel et al. [TRS03a] further investigate the aspect of com-
pressing a vector field while preserving the topological skeleton. A
further approach towards reducing the storage complexity of vector
fields while preserving their topological structures is given by Koch
et al. [KKW∗15] (cf. Figure 7).
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Figure 8: Tracking graph of a two-dimensional vector field shown
using a 2D+time embedding. Colors indicate robustness of crit-
ical points and allow the separation of features from noise. Im-
age c© 2013 John Wiley and Sons, reproduced, with permission,
from [WRS∗13].

4.2. Exact Time-Dependent Vector Fields

The transition from the stationary to the time-dependent case has
proven difficult for topology-based methods, and a complete exten-
sion of time-invariant topology-based visualization has remained
elusive. Largely, corresponding techniques fall into three classes,
examined in the following.

4.2.1. Topology Tracking

Parametric topology visualization (or topology tracking) interprets
time as the parameter in a parametric family of vector fields, and
examines the changes in topological structure as the parameter is
varied. For some applications, especially those where the vector
field varies very slowly compared to the transport processes it de-
scribes, this approach is well-founded. A crucial insight underly-
ing most topology tracking approaches is that as the parameter
is varied, changes in topology occur only at so-called bifurcation
events [AS92], where limit sets appear, are annihilated, or change
their type. This evolution is often captured in the form of a track-
ing graph that illustrates the movement and bifurcations of criti-
cal points and other limit sets by adding time as an additional axis
(cf. Figure 8).

For the case of two-dimensional flows, Tricoche et
al. [TWSH02] utilize a cell-wise continuation technique to
compute the evolution of critical points and their bifurcations
over time, assuming linear interpolation between successive time
slices of a discrete vector field. They compute and visualize both
the trajectories of critical points over time as well as the surfaces
traced out by separatrices. Garth et al. [GTS04b] extend this
approach to the three-dimensional case. However, as depiction
of the (four-dimensional) trajectories is difficult, they propose a
two-dimensional graph representation of critical point evolution
obtained using a projection approach. To avoid small-scale noise
introduced by the (not always suitable) assumption of linear
interpolation in time, they filter critical points based on lifetime.

Wischgoll and Scheuermann [WSH01] track the evolution of
closed orbits in planar time-dependent flows and detect corre-
sponding bifurcation events. Krauskopf et al. [KOD09] investigate
parameter-dependent behavior for general dynamical systems on
the example of the Lorentz attractor.

Theisel et al. embed the tracking problem into the feature flow
field framework [TS03]. By considering time as a spatial dimen-
sion along which integral curves propagate with constant velocity,
they are able to employ methods for stationary 3D vector fields
to both identify critical point trajectories and bifurcation events.
A later extension to their work is furthermore suitable to detect
closed orbits and global bifurcations [TWHS05]. Weinkauf et al.
furthermore provided numerical improvements to the original tech-
nique [WTGP11].

Wang et al. [WRS∗13] provide a sophisticated framework to
investigate robustness of critical points that encodes its stability
under small perturbations; this allows effective separation of fea-
tures from noise. Similarly, Skraba et al. develop a simplification
algorithm for time-varying critical points based on degree the-
ory [SWCR15].

4.2.2. Lagrangian Coherent Structures

The visualization of Lagrangian coherent structures (LCS) is able
to elucidate fast dynamics in quickly changing flows. Essentially,
LCS capture a dynamic skeleton of time-varying flows by observ-
ing the finite-time nature of advection, as opposed to the infinite-
time limit sets characterized in vector field topology. However, it
should be noted that strictly speaking, LCS do not define a topol-
ogy (or topological segmentation) in the mathematical sense. Due
to the fruitful research addressing LCS, and their roots in dynamical
systems theory, we nevertheless view them as a topological model.

Haller [Hal02] first characterized LCS as finite-time attracting or
repelling structures via computation of Finite-Time Lyapunov Ex-
ponent (FTLE) fields. Shadden et al. [SLM05] further illustrated
that ridges in these fields may be interpreted as finite-time trans-
port barriers. From a visualization perspective, direct depiction of
the FTLE fields may be sufficient to convey the temporal dynam-
ics of a vector field. However, the computation of these fields is
very laborious. This problem can be ameliorated using, e.g., GPU
computing (e.g., [GLT∗09]) for small vector field datasets. To fa-
cilitate a more general setting, Sadlo et al. [SP07] and Garth et
al. [GGTH07] developed adaptive computation methods. Kasten et
al. [KPH∗09] and later Kuhn et al. [KRWT12] investigated the ef-
fect of varying computational schemes pertaining to the computa-
tion of FTLE fields. An extension to studying separation and at-
tachment was given by Garth et al. [GWT∗08].

Sadlo and Peikert [SP09] investigate the relationship between
LCS and vector field topology in the stationary case, and showed
that LCS visualization is in some cases advantageous over direct
depiction of topological structures.

A variety of authors have proposed further schemes to investi-
gate the extraction and use of LCS in a general context but indepen-
dent from visualization; due to the limited space available here, we
refer the reader to several recent works [PD10, HSW11, KER∗14,
MBESar] and recursive references therein for a more complete
overview.
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Figure 9: Streak manifolds from saddle-type trajectories generalize
stationary saddle points to time-varying flow. Image c© 2013 IEEE,
reproduced, with permission, from [ÜSE13].

4.2.3. Alternate Approaches

Kasten et al. [KHNH11] propose to use moving reference frames,
determined from acceleration magnitude, in which it appears sen-
sible to employ notions of vector field topology to visualize time-
varying flows. Fuchs et al. [FKS∗10] consider the concept of un-
steadiness to quantify to what extent this approach is meaningful.

Several authors have considered alternative notions of topology
that do not or only in part generalize directly from the stationary
case. Sadlo and Weiskopf [SW10] replaced stream lines in station-
ary fields by streak lines in 2D time-varying vector fields. Through
this, they are essentially able to capture stable and unstable mani-
folds of (possibly moving) saddle-type trajectories that assume the
role of saddle critical points from the classical case. Most interest-
ingly, their approach can be viewed as a generalization of the sta-
tionary case. An extension of their approach to three-dimensional
vector fields was given by Üffinger et al. [ÜSE13] (cf. Figure 9).

A commonality between these methods is that they capture spe-
cific structures in a vector field that convey the prevalent dynamics
and are reminiscent of elements of flow topology such as critical
points and separatrices in the stationary case. However, in our def-
inition they are not topological in the mathematical sense; neither
the existence of topological invariants nor a notion of topological
equivalence and induced domain decomposition have been shown.
Nevertheless, we consider the work in this area promising and view
this direction of research as fruitful for the topology-based visual-
ization of time-dependent vector fields.

4.3. Uncertainty in Vector Fields

A nascent area of research is the application of topological con-
cepts to the visualization of vector fields under uncertainty. For
background and precise terminology in this context, we point to
the excellent analysis by Potter et al. [PRJ12]. We include here
also techniques aimed at comparison of vector fields on the basis
of topological concepts; while not primarily aimed at uncertainty
visualization, such techniques can be applied to understand simi-
larities and differences among members of a vector field ensemble.

A quantitative comparison technique (or distance measure) for
stationary two-dimensional vector fields based on the similarity of
their critical points is given by Lavin et al. [BH99]. Based upon a
specific characterization of critical points in two fields, their dis-
tance is then derived from the Earth mover’s distance between their
sets of critical points. Theisel et al. [TRS03b] employ topology
tracking (cf. Section 4.2.1) to determine correspondence between
critical points in two stationary, 2D vector fields.

Figure 10: Morse sets extracted from convex vector fields at in-
creasingly finer resolution capture nearly recurrent flow on sur-
faces under uncertainty. Image c© 2011 John Wiley and Sons, re-
produced, with permission, from [Szy11].

An interpretation of uncertain vector fields as uncorrelated point-
wise directional distributions is given by Otto et al. [OGT11b]. It al-
lows to extend computational algorithms from classical vector field
topology and straightforward visualization and extraction of criti-
cal points using probabilistic integral curves. They show that from
this, typical topology-based visualization techniques for stationary
“crisp” vector fields can be used. A further extension of this work
by the same authors [OGT11a] achieves the same for closed orbits.

Petz et al. [PPH12] adopt a model that includes spatial corre-
lation. Based on this, they investigate probabilistic local features,
e.g., critical points in two and three dimension. Their analysis is
based on a probabilistic computation of the Poincaré index.

Szymczak et al. [Szy11] introduce the stable Morse decompo-
sition of so-called (piecewise-constant and stationary) convex vec-
tor fields. Here, the convex hull of multiple vector fields is used
to construct a super-transition graph, from which Morse sets are
obtained that correspond to topological structures (cf. 10). A corre-
sponding visualization is shown in Figure 10. While the approach
is intended to investigate the stability of the Morse sets under per-
turbation (a limited form of uncertainty), it appears useful for more
generally uncertain vector fields, i.e. ensembles or stochastic fields
with bounded distribution.

Several authors also investigate an extension of the LCS ap-
proach (cf. Section 4.2.2) to unsteady vector field ensembles.
Schneider et al. [SFRS12] consider replacing FTLE as a basis for
LCS with the finite-time variance – more easily extended to include
uncertainty – of integral curves in a small neighborhood. Hummel
et al. [HOGJ13] also utilize variance measures to distinguish LCS
that exist within all members of an ensemble from those that result
from variation across an ensemble, thereby providing a more nu-
anced interpretation of visualization. Directly addressing uncertain
vector fields, Guo et al. [GHP∗16] derive and visualize a proba-
bility density function for LCS obtained using brute-force Monte-
Carlo integration.

5. State of the Art – Tensor Fields

The field of tensor visualization often is highly application driven
and techniques are designed around special features in the data set.
Therefore, few general tensor field visualization techniques exist

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

656



C. Heine et al. / A Survey of Topology-based Methods in Visualization

Figure 11: Triple-degenerate points (magenta) and degenerate
lines of a stress tensor field. Yellow arrows indicate points of load.
Image c© 2005 IEEE, reproduced, with permission, from [ZPP05].

and many concepts from scalar or vector field topology have not
found their way into tensor field visualization, yet. The concept of
a tensor of order r, i.e., a multilinear form

T :Rd× . . .×Rd︸ ︷︷ ︸
r

7→R

includes the case of scalars (r = 0) and vectors (r = 1), which have
been discussed before. In this section, we talk about tensors of order
two and higher. The majority of literature on tensor field visualiza-
tion historically focuses on symmetric second-order tensor fields
(r = 2) either in 2D or in 3D.

Critical points in symmetric second-order tensor fields In a
fixed coordinate system, a second-order tensor can be seen as an
d × d matrix. A real, d-dimensional, symmetric matrix M has d
(possibly equal) real eigenvalues λ1 ≤ . . .≤ λd with associated or-
thogonal eigenvectors e1, . . . ,ed . A tensor line is a line in a symmet-
ric, second-order tensor field f : Ω 7→Rd×d that is everywhere tan-
gential to the eigenvector of the i-th eigenvalue [DH94]. At points
where at least two eigenvalues are identical, the sorting cannot be
performed unambiguously and the tensor line becomes undefined;
these are called degenerate points.

Looking at two-dimensional tensor fields (d = 2), first-order de-
generate points can be classified similarly to vector field critical
points based on a modification of the Poincaré index, which, due to
the directional ambiguity of the lines, is a multiple of 1

2 . The rele-
vant indices for first-order degenerate points are − 1

2 for a trisector
and 1

2 for a wedge point.

Wedge points have one or two dedicated directions separating
a hyperbolic from a parabolic section. Trisector points have three
dedicated directions separating three hyperbolic sectors. Both types
of degenerate points can be seen as an analogue to saddle points in
vector fields, and they form the seed points of a topological skeleton
in 2D. Auer and Hotz [AH11] introduced an algorithm to compute
a complete topology on 2D manifolds in 3D.

Tracking of degenerate points over time has been first introduced
by Tricoche et al. [TSH01b]. The property of merging and splitting
critical points can be used for tensor field simplification [TSHC01].

Degenerate lines in 3D tensor fields In 3D symmetric second-
order tensor fields, degenerate points can be classified according
to the eigenvalues that are equal. If major and medium eigen-
value are equal, the tensor can be described as planar, if medium
and minor eigenvalue are equal, it is said to be linear. Zheng et
al. [ZP04,ZPP05] point out that planar and linear degenerate points
form stable line structures in 3D. Purely isotropic degenerate points
are unstable in 3D.

Lagrangian definitions Similar to vector fields, a Lagrangian
metaphor may be used to display similar behavior in tensor fields.
Tricoche et al. [THBG12] show that LCS ridges on the eigenvector
fields mainly correspond to separating surfaces in the tensor field.

Uncertain tensor fields Little work has been done to combine un-
certainty with topological features in tensor fields. The only ap-
plication that falls into this category is the combination of prob-
abilistic tractography in magnetic resonance imaging data with a
focus on a topological analysis. Therefore, Schultz et al. [STS07]
use the definition of Zheng et al. [ZPP05] on lines tracked with
random perturbation together with a clustering technique to extract
line-features in MRI data. As it is only based on a line tracking
technique, it is not restricted to second order tensor fields. Never-
theless, its applicability may be limited to MRI data.

Higher-order tensor data Even though higher-order tensor
glyphs have been studied in more detail, there is no unique def-
inition of topology for higher-order tensors yet. Hlawitschka et
al. [HSA∗07] defined lines in higher-order tensor fields in 3D and
derived a definition for degenerate points as an extension to second-
order tensor fields. This leads to a definition of critical points and
critical lines, but so far, there is no efficient algorithm for calculat-
ing those structures. Schultz [Sch11] proposed a tensor decompo-
sition technique for 2D fields to derive multiple vector fields from
tensor fields. Lines of discontinuity in those fields can be seen as a
topological skeleton of the field.

Non-symmetric second-order tensor fields Even though the
higher-order techniques include the non-symmetric case, special
approaches have been defined for non-symmetric second order ten-
sor fields. Zheng and Pang [ZP04] describe the topology of asym-
metric tensor fields by introducing the concept of the dual eigenvec-
tor to define lines in areas, where the tensors are not symmetric. Lin
et al. [LYL∗12] derive two graph-based representations of tensor
fields called eigenvector and eigenvalue graph. They use the con-
cepts introduce by Zhen and Pang to define the eigenvector graph of
a tensor field as a graph with nodes for each area on the eigenvector
manifold, which segments the field, and a node for each degener-
ate point. These nodes are then linked by edges representing their
neighborhood relationship in the domain. For the eigenvalue graph,
the same concept is followed, but the segmentation is performed by
the eigenvalue manifold, segmenting the field into areas where pos-
itive or negative scaling, clockwise or counterclockwise rotation, or
anisotropic stretching is dominant.

Applications Possible application of tensor field topology is as
broad as the variety of data itself and has to be tailored and in-
terpreted according to the meaning of the data. The original papers
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Figure 12: Left: Jacobi set (black and colored), Pareto maxima
(red), and Pareto minima (green) of two scalar fields on a 2D slice
from a 3D cylindrical flow simulation. Image c© 2013 John Wi-
ley and Sons, reproduced, with permission, from [HHC∗13]. Right:
graph drawing of a joint contour net for 3 scalar fields . Nodes
describe connected regions of similar values (given by color) and
edges show region adjacency. Image c© 2013 IEEE, reproduced,
with permission, from [CD13].

show hyperstreamlines in tensor fields from mechanical engineer-
ing such as earthquake simulations. The single point load and dou-
ble point load data set are known as reference data sets and are
available as material stress and as strain fields. Topological defi-
nitions in the terms of segmenting the domain in a variety of be-
haviors has been done in the study of earthquakes [PLC∗11] by
interpreting segmentations of the domain.

As topological features may be boundary induced, a direct ap-
plication of tensor field topology to brain data is challenging due
to the brain’s complex surface. There, topological features on de-
rived values instead of the tensor data directly show promising re-
sults [Sch11, THBG12, HVSW11].

6. State of the Art – Multifields

Edelsbrunner and Harer [EH04] define the Jacobi set of k real-
valued Morse functions defined on a common d-manifold as the
set of critical points of one function restricted to all preimages of
the remaining functions. There are multiple equivalent definitions:
the Jacobi set can also be defined as the set of all points where the
function’s gradients are linearly dependent. This definition high-
lights that when k > d all points become trivially Jacobi, and Ja-
cobi sets are no longer expressive. The authors show that for k = 2
generic functions, the Jacobi set is a 1-manifold. In the piecewise
linear setting, they present an algorithm for computing Jacobi sets
as a set of grid edges, decomposed into simple cycles. Jacobi sets
are typically shown by embedding their geometry in the domain.

Edelsbrunner et al. [EHNP04] extent the concept of Jacobi sets
to a measure of local or global (averaging over the local measure)
similarity of functions. The former equals the volume of the par-
allelepiped spanned by the function’s gradients. In the continuous
case, a point is in the Jacobi set if this measure is zero. Nagaraj
and Natarajan [NN11] adapt this idea to simplify the Jacobi set of
two Morse functions on a common 2-manifold. They replace the
two functions by a scalar function giving their local similarity and
compute the Reeb graph for this function. For piecewise linear data,

the similarity at vertices is estimated as a weighted average over all
incident triangles. They then propose an integer linear program and
a greedy heuristic to simplify topology subject to a maximum total
change in function.

For two 3D scalar fields, Schneider et al. [SWC∗08] propose to
compute the two field’s contour trees, simplify them, then construct
the largest contour segmentations. Using spatial overlap, they com-
pute similarity among contours of different fields and present them
as an edge-weighted bipartite graph. The user can interactively se-
lect contour pairs and study their relation in the original 3D space.
Schneider et al. [SHCS13] extend this approach to multifields. Sim-
ilarity of contours is now computed using mutual information, the
resulting k-partite graph is clustered using the Chinese whispers al-
gorithm, and the result presented in a thumbnail gallery to start the
exploration process of the user.

Edelsbrunner et al. [EHP08] defined the Reeb space of k real-
valued functions on a common d-manifold as the quotient space
of the connected components of f ’s preimages. They show that for
piecewise linear data, if the value c is not in the range of values of
the complex’s k−1-skeleton, the preimage f−1(c) is either empty
or a (d− k) manifold (assuming k ≤ d). Singh et al. [SMC07] pre-
sented a structure called mapper for computing a descriptive simpli-
cial complex for scalar multifields. It starts from a topological cov-
ering of the function’s image and computes the connected compo-
nents of their preimage, which amount to a covering of the domain.
Each cover becomes a vertex in the resulting simplicial complex
and simplices are defined for each set of vertices whose associated
covers’ intersect. The resulting complex’s 1-skeleton is shown us-
ing force-directed graph drawing. Carr and Duke [CD13] proposed
a similar construction called joint contour nets for scalar multi-
fields. They discretize each function’s range into equally-sized in-
tervals and construct a graph from connected components of the
finite number of preimages of the discretized function. They give
an algorithm to compute joint contour nets for piecewise linear data
and present them as node-link diagrams using force-directed graph
drawing. Nodes are colored to hint at the original functions’ val-
ues. Joint contour nets are used by Duke et al. [DCK∗12] to study
nuclear scission processes from an input describing density fields.
Although the data is time-dependent, they process each time step
separately and detect structural changes in the joint contour nets
visually. Chattopadhyay et al. [CCDG14] propose Jacobi structures
– the projection of the Jacobi set to the Reeb space of a multifield
– which is more expressive than pure Jacobi sets. They compute
an approximation using joint contour nets and it is used in recent
work [CCD∗15] to define a scaling-invariant topological simplifi-
cation scheme for multifields on domains with simple topology.

Huettenberger et al. [HHC∗13] use the concept of dominance
relation and Pareto optimality to visualize k scalar-valued fields
on a common domain. Let the dominance relation be defined as:
(u1, . . . ,uk) � (v1, . . . ,uk) if and only if

∧
1≤i≤k ui ≥ vi. This par-

tial ordering replaces the order relation over the real numbers in
the single-scalar-field case. The authors are then able to classify
each point p in the domain based on the existence of dominated
and dominating points within an ε-neighborhood of p. The possi-
ble types are locally Pareto minimal, locally Pareto maximal, lo-
cally Pareto optimal, and regular; these extend the notion of local

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.

658



C. Heine et al. / A Survey of Topology-based Methods in Visualization

extrema to multifields but are unable to provide a definition for a
multifield saddle. Pareto sets are the union of all non-regular points.
The authors gave an algorithm to compute Pareto sets for piece-
wise linear functions. Huettenberger and Garth [HG15] showed that
Pareto sets are a subset of Jacobi sets. Recognizing this relation,
Huettenberger et al. [HHG14] used a strategy similar to Nagaraj
and Natarajan [NN11] to simplify Pareto sets and remove noise.
The results were used by Huettenberger et al. [HFEG15] to study
the quality of car manufacturing processes. Furthermore, Huetten-
berger et al. [HHG16] showed that a directed version of joint con-
tour nets can approximate Pareto sets, hinting at a further relation
of these structures.

7. Discussion & Conclusion

In conclusion, we present some observations and relations among
topological structures for different data types as well as pressing
open problems arising from our literature review.

Empty Cells in our Typology Some cells in Table 1 are empty.
There are currently no topological structures defined for the corre-
sponding classes of input data. We attribute this to a combination
of both the difficulty of defining such models and the lack of de-
mand from users of visualization, in turn caused by the increased
computational cost associated with producing data of the necessary
type. In the following, we will discuss links between some of the
cells of our typology in order to shed light on possible translational
research that could fill them.

Scalar and Vector Fields Morse-Smale complexes for scalar
fields and classical vector field topology are linked by gradient
computation that turns a scalar field into an irrotational vector field.
While this link could be interpreted to indicate that vector field
topology is more general than scalar field topology, we would ar-
gue that this is not the case. Computational approaches to methods
employing gradients assume the input to be a finite-sized approxi-
mation of a smooth function on a manifold where the output would
converge to the ground truth in the limit with increasing resolu-
tion. Level set methods, such as the merge tree or Reeb graphs, can
be defined for any function on a topological space and can work
naturally with discrete spaces, as evidenced by barrier trees and
other methods to study combinatorial optimization processes (cf.
Section 3.1.2). Also, if vector field topology were the generaliza-
tion of scalar field topology, which topological structure for vec-
tor fields would correspond to the Reeb graph? Furthermore, the
link may exist in theory, but is not used much in practice. Discrete
representations for scalar fields are typically piecewise linear (or
multilinear), thus their gradients are technically not continuous. Al-
gorithms for scalar fields often try to work around this deficiency.
Discretizations of vector fields, on the other hand, are continuous
and therefore “smoother by one degree”. This discrepancy prohibits
interchanging algorithms for the two classes directly.

Loosening the ties of level set methods with smooth Morse func-
tions can lead to simpler and more general algorithms, possibly at
the expense of loosing the connection to critical points. Such a shift
in perspective can open new avenues for other problem settings. For
instance, moving from gradient-based to ordering-relation-based

definition of critical points allowed a thinking outside the box and
gave rise to Pareto sets for multifields, which replace order by par-
tial order relations (cf. Section 6).

We also note that via techniques like finite-time Lyapunov ex-
ponents and Galilean-invariant vector field topology, vector fields
are turned into scalar fields. Although Lagrangian coherent struc-
tures are typically computed using geometric ridges, in the scalar
setting ridges have a history of approximating the saddle manifolds
of Morse-Smale complexes. It would appear useful to further study
this connection in future work.

Tensor Fields Event though tensors of different order have been
used in scientific visualization, symmetric second-order tensors are
prevalent. Techniques based on line integration have been trans-
fered to those tensor fields, but not others. Definitions for the topol-
ogy of higher-order tensor fields exist, but are tied to concrete appli-
cations and do not yet provide a widely-accepted framework. Even
though some concepts are shared, a direct link of tensor field topol-
ogy with either scalar, vector, or multifields similar to the gradient
construction that links scalar and vector field topology are not yet
known. Establishing such links, e.g. by studying the topology of
the Hessian of a scalar field, could advance translational research.

In general, the visualization of tensor field topology has not
found its way into many application domains. This may be due to
the lack of a proper interpretation for the components of the topo-
logical skeleton. Even though the structures can be interpreted in
various ways, we identify the application-specific interpretation of
tensor field topology as an area for future research.

Multifields We would like to highlight Jacobi sets, which can be
cleverly employed for critical point tracking by reducing a time-
dependent problem in d-dimensions to a time-independent multi-
field problem in d + 1 dimensions. It is interesting to see whether
the idea underlying critical point tracking via Jacobi sets can be
used to give accurate and fast algorithms for other topological fea-
tures, e.g., dynamic Morse-Smale complexes or tracking of vector
field topology. Treating time as just an additional spatial dimension
(e.g., in isosurface tracking), or using computation-heavy similar-
ity estimation & matching for feature identification and tracking,
appear inelegant compared to dynamic level set graphs.

A deeper understanding of the relations among topological mod-
els, similar to work linking Pareto sets, Jacobi sets, and directed
joint contour nets, can help translate research results between re-
lated structures. Further reductionism appears possible. Since we
define multifields slightly broader than, e.g., parameter ensembles
or samples from a distribution of functions, any method that works
for multifields is applicable (although not necessarily optimal) to
the other cases as well, but not vice versa. Prioritizing research for
multifields could indirectly benefit the other cases as well.

Multifields are a rather new addition to the family of topology-
based visualization. There are currently not many applications, but
we anticipate this situation to improve, as soon as the interpretation
of the topological models for real-world problems are clearer.

Uncertainty From our literature review, original approaches ap-
pear necessary for one of the current major developments in
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topology-based visualization: the incorporation of uncertainty. Nat-
urally initial work has focused on known structures and derived
fields (e.g. variance-annotated contour trees, or range-based merge
trees for an uncertain function) or combines existing tools such as
critical point definition and statistics. Instead we could shift our at-
tention from the points of the domain and their relation to whole
functions and their relation regarding the probability function.

Topology-Based Interaction An area neglected by ongoing re-
search is the use of topological abstractions to build intelligent user
interfaces for visualization and analytics. In this regard, the exam-
ples of topology-controlled volume rendering and the recent work
of Weber et al. on combustion visualization must be considered
inspiring. Topology-based visualization techniques, having solid
mathematical foundations and built-in mechanisms for abstraction
and simplification, have the potential to shine and stand on equal
footing with techniques from, e.g., the domain of machine learn-
ing. We anticipate the interplay between topology-based visualiza-
tion and visual analytics to deepen.

Topology-Based In Situ Visualization A further class of prob-
lems that appears deserving of additional attention from researchers
is the utility of topology-based methods in in-situ visualization. It
would appear that topology-based techniques could play a major
role in addressing some of the most pressing issues such as auto-
mated data selection for storage, meaningful reduction of data and
structural complexity, and providing robust feature definitions for
visualization and statistical analysis. As a crucial precondition, par-
allel computation of topology needs additional attention.

To conclude, while topology-based methods possess an exten-
sive history in visualization, it appears there are still sufficient rel-
evant yet unsolved problems for the current and next generation of
visualization researchers.
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