
Computing discrete Morse complexes from simplicial complexes

Ulderico Fugaccia, Federico Iuricichb, Leila De Florianic

aGraz University of Technology, Graz, Austria
bClemson University, Clemson, SC, USA

cUniversity of Maryland, College Park, MD, USA

Abstract

We consider the problem of efficiently computing a discrete Morse complex on simplicial complexes of
arbitrary dimension and very large size. Based on a common graph-based formalism, we analyze exist-
ing data structures for simplicial complexes, and we define an efficient encoding for the discrete Morse
gradient on the most compact of such representations. We theoretically compare methods based on
reductions and coreductions for computing a discrete Morse gradient, proving that the combination of
reductions and coreductions produces new mutually equivalent approaches. We design and implement
a new algorithm for computing a discrete Morse complex on simplicial complexes. We show that our
approach scales very well with the size and the dimension of the simplicial complex also through com-
parisons with the only existing public-domain algorithm for discrete Morse complex computation. We
discuss applications to the computation of multi-parameter persistent homology and of extrema graphs
for visualization of time-varying 3D scalar fields.

Keywords: Shape analysis, topological data analysis, discrete Morse theory, homology, persistent
homology, shape understanding, scientific data visualization.

1. Introduction1

In recent years, computational topology has2

become a fundamental tool for the analysis and3

visualization of scientific data. In particular,4

the efficient development of software tools for5

extracting topological features from data has6

led to an increasing number of applications of7

topology-based approaches in shape analysis and8

understanding, and in particular in the analysis of9

sensor [1] and social [2] networks, in chemistry [3],10

in astrophysics [4], in medicine [5]. Several math-11

ematical tools have been studied for computing a12

compact, topologically-equivalent object starting13

from a simplicial complex of large size. Examples14

of these tools are the discrete Morse complex [6],15

the size graph [7], and the tidy set [8].16

17

Discrete Morse Theory (DMT) [6] is a power-18

ful theory defined in a completely combinatorial19

setting, that aims at the construction of a dis-20

crete representation of a given simplicial complex, 21

based on a discrete Morse gradient (also called 22

Forman gradient or discrete gradient field) from 23

which a homology-equivalent chain complex, the 24

discrete Morse complex is built. The Forman gra- 25

dient and the associated discrete Morse complex 26

have been used both for the analysis and visualiza- 27

tion of scalar fields [9], and for computing standard 28

and persistent homology [10, 11, 12]. 29

In very recent research areas, like the analysis 30

of higher dimensional scalar fields [13] or in the 31

analysis of shapes based on multi-parameter persis- 32

tent homology [14, 15], there is a need for efficient 33

methods capable of encoding a Forman gradient on 34

higher dimensional simplicial complexes. 35

In this work, we introduce the first complete 36

study for implementing a Forman gradient on high 37

dimensional simplicial complexes. We start from a 38

theoretical evaluation of the various methods used 39

for building a Forman gradient, which are gener- 40

ally called reduction-based or coreduction-based. 41

Preprint submitted to Graphical Models November 11, 2018

We describe a third method initially formulated in42

[16], obtained by interleaving reductions and core-43

ductions, and we prove the equivalence of all three44

techniques. This equivalence will provide us the45

freedom to implement the method that best fits46

any given data structure.47

To this aim, we undertake a theoretical and ex-48

perimental evaluation of the three most common49

data structures for encoding simplicial complexes.50

Here, we focused on data structures with avail-51

able public-domain implementations. Our exper-52

iments clearly show that the Generalized Indexed53

data structure with Adjacencies (IA∗) [17], a data54

structure encoding only the vertices and a subset55

of the simplices of the complex, is the only one that56

can suitably scale to higher dimensions without be-57

ing affected by the exponential growth in the num-58

ber of simplices. We propose a solution to com-59

pactly encode a Forman gradient attached to the60

IA∗ data structure.61

Based on the latter encoding, we have de-62

fined and implemented an efficient, dimension-63

independent, algorithm for computing a Forman64

gradient and for retrieving the discrete Morse com-65

plex defined by it, which is fundamental for com-66

puting, among others, homology and persistent ho-67

mology. We compare our approach to the one68

developed in [11] and implemented in the soft-69

ware library Perseus [18] which computes a discrete70

Morse complex using a data structure implement-71

ing the Hasse diagram of the complex, the Inci-72

dence Graph. Our experiments show that our ap-73

proach is more efficient and it is also easy to paral-74

lelize.75

The remainder of the paper is organized as fol-76

lows. Section 2 introduces some preliminary no-77

tions about simplicial complexes, simplicial and78

persistent homology, and discrete Morse theory.79

Section 3 reviews some classical topological data80

structures for simplicial complexes as well as al-81

gorithms for computing a Forman gradient and a82

discrete Morse complex. In Section 4, we intro-83

duce, evaluate and compare the data structures for84

compactly encoding a simplicial complex and we85

discuss a new compact encoding for the Forman86

gradient. In Section 5, we present the reduction87

and coreduction-based algorithms used for comput-88

ing a Forman gradient. Section 6 is devoted to the89

formal proof of the theoretical equivalence of these90

approaches, while, in Section 7, we introduce a new91

approach based on the interleaving of the two. In 92

Section 8, we describe a coreduction-based algo- 93

rithm for building a discrete Morse complex based 94

on the IA∗ data structure and on the compact rep- 95

resentation of the Forman gradient. In Section 9, 96

we evaluate the performances of our algorithm on 97

a variety of input complexes. Finally, in Section 98

10, we draw some concluding remarks and discuss 99

applications of our approach to single and multi- 100

parameter persistent homology computation and to 101

the analysis and visualization of time-varying 3D 102

scalar fields. 103

2. Background 104

In this section, we introduce some notions which 105

are at the basis of our work. We briefly define and 106

discuss simplicial complexes, simplicial homology 107

and persistent simplicial homology, as well as dis- 108

crete Morse theory. 109

2.1. Simplicial complexes 110

A k-simplex σ is the convex hull of k+ 1 affinely 111

independent points in the Euclidean space. For in- 112

stance, a 0-simplex is a single point, a 1-simplex 113

an edge, a 2-simplex a triangle, and a 3-simplex a 114

tetrahedron. Given a k-simplex σ, the dimension 115

of σ is defined to be k, and denoted as dim(σ). Any 116

simplex σ′, which is the convex hull of a non-empty 117

subset of the points generating σ, is called a face 118

of σ. Conversely, σ is called a coface of σ′. 119

A simplicial complex Σ is a finite set of simplices 120

such that: 121

• each face of a simplex in Σ belongs to Σ; 122

• each non-empty intersection of any two sim- 123

plices in Σ is a face of both. 124

We define the dimension of a simplicial complex 125

Σ, denoted as dim(Σ), as the largest dimension of 126

its simplices. Given a simplex σ of Σ, we define 127

the star of σ as the set of the cofaces of σ in Σ. A 128

simplex σ is called a top simplex if its star consists 129

only of σ itself. Given a simplex σ face/coface of 130

σ′, σ and σ′ are said to be incident. For k > 0, 131

two k-simplices in Σ are said to be adjacent if 132

they share a face of dimension k − 1, while two 133

0-simplices u and v in Σ are called adjacent if they 134

are both faces of the same 1-simplex. 135

2

136

137

Queries on a simplicial complex are often ex-138

pressed in terms of the topological relations defined139

by the adjacencies and incidences among its sim-140

plices.141

• Boundary relations: given a q-simplex τ and142

a k-simplex σ with q > k, we say that σ is in143

boundary (q, k)-relation with τ if σ is a face of144

τ . We denote as bdq,k(τ) the set of simplices145

in boundary (q, k)-relation with τ .146

• Coboundary relations: given a q-simplex τ and147

a k-simplex σ with q > k, we say that τ is148

in coboundary (k, q)-relation with σ if τ is a149

coface of σ. We denote as cbdk,q(σ) the set of150

simplices in coboundary (k, q)-relation with σ.151

• Adjacency relations: given two k-simplices σ152

and σ′, we say that σ is in adjacency (k, k)-153

relation with σ′ if σ is adjacent to σ′. We de-154

note as adjk,k(σ) (or, simply adj(σ)) the set of155

simplices in adjacency (k, k)-relation with σ.156

In the following, we will call immediate bound-157

ary and coboundary relations those boundary and158

coboundary relations involving simplices of con-159

secutive dimensions. In the following, we will of-160

ten refer to them as bd(·) and cbd(·) or, when161

we need to explicit the complex Σ with respect162

to these relations are considered, as bdΣ(·) and163

cbdΣ(·). Figure 1 illustrates the topological re-164

lations of a 1-simplex (edge) σ0 in a simplicial165

complex Σ. Simplices in the immediate bound-166

ary, immediate coboundary and adjacency relations167

are depicted in blue, red, and green, respectively.168

Specifically, bd1,0(σ0) = {v1, v3}, cbd1,2(σ0) = {τ},169

and adj1,1(σ0) = {σ1, σ2, σ3, σ4}.170

Simplicial complexes are a subclass of the more171

general class of cell complexes [19]. They are ex-172

tensively used because of their combinatorial prop-173

erties and of the possibility of representing collec-174

tions of unorganized sets of points, usually called175

point clouds. Alpha-shapes [20], Delaunay trian-176

gulations [21], Čech complexes [22], Vietoris-Rips177

complexes [23], witness complexes [24, 25, 26] and178

graph-induced complexes [27] are different ways for179

endowing a point cloud with a simplicial structure.180

Čech complexes are the most classical way to build181

a simplicial complex starting from a point cloud,182

Figure 1: Topological relations of edge σ0. Immediate
boundary relation bd1,0(σ0) consists of the two blue vertices
v1, v3. Immediate coboundary relation cbd1,2(σ0) consists
of the red triangle τ . Adjacency relation adj1,1(σ0) consists
of the four green edges σ1, σ2, σ3, σ4.

but their construction requires exponential time in 183

the number of the input points [23]. 184

Vietoris-Rips (VR) complexes [23] represent a 185

compromise between Čech complexes and the ap- 186

proximations based on subsampling adopted by 187

witness [24, 25, 26] and graph-induced [27] com- 188

plexes. Let G = (N,A) be a graph, a clique in G 189

is defined as a complete subgraph of G. The flag 190

complex of G, denoted as Flag(G), is the simplicial 191

complex whose simplices correspond to the cliques 192

of G. Given a finite set of points P in a metric 193

space (such as the Euclidean space) and a positive 194

real number ε, the Vietoris-Rips (VR) complex is 195

the flag complex of the graph whose set of nodes 196

coincides with P and having an arc for each pair 197

of points in P whose distance is at most ε. Figure 198

2(a) shows, for each point of a set P , the neighbor- 199

ing points at a distance less or equal to ε. Figure 200

2(b) shows the edges connecting points in P whose 201

mutual distance is less or equal ε. Figure 2(c) shows 202

the cliques computed on graph G and the resulting 203

VR complex Σ. 204

2.2. Simplicial and persistent homology 205

Simplicial homology provides invariants for shape 206

description and characterization. Given a simpli- 207

cial complex Σ, we define the chain complex asso- 208

ciated with Σ as the pair C∗(Σ) := (Ck(Σ), ∂k)k∈Z, 209

where: 210

• Ck(Σ) is the free Abelian group whose ele- 211

ments, called k-chains, are linear combinations 212

with integer coefficients of the k-simplices of Σ; 213

• ∂k : Ck(Σ) → Ck−1(Σ) is the homomorphism 214

encoding the boundary relations between the 215

k-simplices and those (k − 1)-simplices of Σ 216

such that ∂2 = 0. 217

3

(a) (b) (c)

Figure 2: Construction of a VR complex Σ: given a finite set of points P , the disks of radius ε are computed (a); an edge is
created for each pair of points at distance less than ε (b); the VR complex is retrieved by adding a simplex for each clique
of the obtained graph (c).

Given C∗(Σ), we denote as Zk(Σ) := ker ∂k218

the group of the k-cycles of Σ, and as219

Bk(Σ) := Im ∂k+1 the group of the k-boundaries220

of Σ. The kth homology group of Σ is defined as221

Hk(Σ) := Hk(C∗(Σ)) = Zk(Σ)/Bk(Σ). Intuitively,222

homology groups reveal the presence of “holes”223

in a simplicial complex Σ. The non-null elements224

of each homology group are cycles, which do225

not represent the boundary of any collection of226

simplices of Σ. The rank βk of the kth homology227

group of a simplicial complex Σ is called the kth228

Betti number of Σ. In particular, β0 counts the229

number of connected components of Σ, β1 its230

tunnels and holes, and β2 the shells surrounding231

voids or cavities.232

233

Persistent homology [28, 29, 30] aims at overcom-234

ing intrinsic limitations of standard homology by235

allowing for a multi-scale approach defined through236

a filtration. Let Σ be a simplicial complex, a filtra-237

tion F of Σ is a finite sequence of subcomplexes238

{Σm | 0 ≤ m ≤ M} of Σ such that ∅ = Σ0 ⊆239

Σ1 ⊆ · · · ⊆ ΣM = Σ. The p-persistent kth ho-240

mology group Hp
k (Σm) of Σm consists of the k-241

cycles included from Ck(Σm) into Ck(Σm+p) mod-242

ulo boundaries.243

Figure 3 shows an example of a filtration of a sim-244

plicial complex Σ. Persistent homology detects the245

changes in the homology of Σ and it allows distin-246

guishing between relevant homology classes, such247

as the 1-cycle in Σ1 which is born at step (a) and248

persists until the end of the filtration, and negligi-249

ble homology classes like, for instance, the 1-cycle250

which is born at step (b) and immediately dies at251

(a) (b) (c)

Figure 3: A filtration of a simplicial complex Σ. In (a),
Σ1 consists of two different connected components and one
non-boundary 1-cycle (a); in (b), Σ2 gains a non-boundary
1-cycle while it becomes connected; finally, in (c), the 1-
cycle created at step (b) becomes the boundary of the unique
triangle in Σ3 and its contribution in homology vanishes.

step (c). 252

2.3. Discrete Morse theory 253

Discrete Morse theory due to Forman [6, 31] pro- 254

vides a powerful tool for analyzing the topology of 255

an object. It has been defined for cell complexes 256

but, for the sake of simplicity, we will review dis- 257

crete Morse theory in the context of simplicial com- 258

plexes. 259

A simplicial complex Σ is endowed with a function 260

f : Σ → R, called a discrete Morse function if, for 261

every simplex σ in Σ, 262

• c+(σ) := #{τ ∈ cbd(σ) | f(τ) ≤ f(σ)} ≤ 1, 263

• c−(σ) := #{ρ ∈ bd(σ) | f(ρ) ≥ f(σ)} ≤ 1. 264

It is easy to show (see [6], Lemma 2.5) that, for 265

a discrete Morse function, c+(σ) and c−(σ) cannot 266

be simultaneously equal to 1. A k-simplex σ in Σ 267

4

(a) (b)

Figure 4: (a) A discrete Morse function on a simplicial com-
plex and (b) the corresponding Forman gradient (red sim-
plices are critical simplices).

is called critical simplex of index k (or, k-saddle)268

if c+(σ) = c−(σ) = 0. A critical simplex of index269

0 is called a minimum, while a critical simplex of270

index d = dim(Σ) a maximum. Figure 4(a) shows271

a discrete Morse function f defined on a simplicial272

complex. Each simplex is labeled with the corre-273

sponding value of function f . Vertex 1 is critical274

(minimum), since f has a higher value on all edges275

incident to it. Edge 5 is critical (saddle), since f276

has a higher value on the incident triangle 7, and277

lower values on its vertices.278

A discrete vector field V on Σ is a collection of279

pairs of simplices (σ, τ) ∈ Σ×Σ such that σ ∈ bd(τ)280

and each simplex of Σ is in at most one pair of281

V . A discrete Morse function f : Σ → R induces282

a discrete vector field V = {(σ, τ) ∈ Σ × Σ |σ ∈283

bd(τ) and f(σ) ≥ f(τ)}, called a Forman gradi-284

ent (or, equivalently, gradient vector field) of f on285

Σ. A pair (σ, τ) ∈ V can be depicted as an arrow286

from σ to τ . Given a discrete vector field V , a V -287

path (or, equivalently, a gradient path) is a sequence288

[(σ1, τ1), (σ2, τ2), . . . , (σr, τr)] of pairs of k-simplices289

σi and (k + 1)-simplices τi, such that (σi, τi) ∈ V ,290

σi+1 is a face of τi, and σi 6= σi+1. A V -path is a291

closed path if σ1 is a face of τr different from σr.292

It has been proven that a discrete vector field V is293

the Forman gradient of a discrete Morse function if294

and only if V is free of closed paths [6].295

Given a Forman gradient V on a simplicial com-296

plex Σ, the discrete Morse complex associated with297

Σ is a chain complex M∗ := (Mk, ∂̃k)k∈Z, where:298

• groups Mk are generated by the critical k-299

simplices;300

• the boundary maps ∂̃k are obtained by follow-301

ing the gradient paths of V (see Subsection 8.2302

for a detailed description).303

(a) (b)

Figure 5: (a) A Forman gradient computed on a simplicial
complex and (b) the graph structure formed by the gradient
paths (boundary maps ∂̃k) connecting the critical simplices
(groups Mk).

A discrete Morse complex M∗, associated with 304

a simplicial complex Σ, provides a homologically 305

equivalent representation of Σ (see [6], Theorem. 306

8.2). If we consider a simplicial complex Σ, and 307

we compute a Forman gradient V on it (see Figure 308

5(a)), we obtain a discrete Morse complexM∗ hav- 309

ing its cells in one-to-one correspondence with the 310

critical simplices of V . M∗ can be described as a 311

graph having nodes in correspondence of the criti- 312

cal simplices of V , and having the arcs in one-to-one 313

correspondence with the gradient paths connecting 314

such nodes (see Figure 5(b)). 315

Since Σ and M∗ are homologically equivalent, 316

computing the homology on M∗ is preferable due 317

to the fact that the cells inM∗ are generally fewer 318

than the simplices in Σ. As shown in [32], the ho- 319

mological equivalence between a simplicial complex 320

Σ and a discrete Morse complex M∗ associated 321

with Σ can be generalized to persistent homology 322

by requiring that the Forman gradient V is filtered 323

with respect to the filtration F considered. For- 324

mally, given a filtration F = {Σm | 0 ≤ m ≤ M} 325

of a simplicial complex Σ, a Forman gradient V 326

of Σ is filtered with respect to F if, for each pair 327

(σ, τ) ∈ V , there exists m ∈ {1, . . . ,M} such that 328

σ, τ ∈ Σm and σ, τ /∈ Σm−1. 329

3. Related work 330

In this section, we review the state-of-the-art on 331

data structures for encoding simplicial complexes 332

and on algorithms for computing a discrete Morse 333

complex. 334

5

3.1. Topological data structures for simplicial com-335

plexes336

Several topological data structures for encoding337

a simplicial complex have been proposed in the lit-338

erature, mainly for simplicial complexes in low di-339

mensions, and focusing on triangle and tetrahedral340

meshes (see [33] for a survey). We consider here341

data structures specific for simplicial complexes in342

arbitrary dimensions.343

The most general dimension-independent data344

structure for cell and simplicial complexes is the345

Incidence Graph. An Incidence Graph (IG) [34]346

is a topological incidence-based representation of a347

simplicial complex which encodes all the simplices348

as nodes of a graph and their immediate boundary349

and coboundary relations as its arcs. The Simpli-350

fied Incidence Graph (SIG) [35] and the Incidence351

Simplicial (IS) data structures [36] are simplified352

representations of the IG. A comparison among353

IG, SIG and IS is presented in [37], while an im-354

plementation of all these data structures is included355

in the Mangrove Topological Data Structure library356

available in the public domain [38].357

In the case of triangle and tetrahedral meshes,358

adjacency-based data structures are the most359

widely used thanks to their compactness and ef-360

ficiency. The Generalized Indexed data structure361

with Adjacencies (IA∗) [17] generalizes such repre-362

sentations and is capable of encoding non-manifold363

simplicial complexes of any dimension. Recently, a364

topological data structure has been proposed for365

simplicial complexes embedded in the Euclidean366

space in [39], where topological relations can be ef-367

ficiently extracted in parallel on different portions368

of the domain.369

In recent years, new data structures have been370

developed well suited to perform specific tasks. The371

Simplex Tree (ST) [40] has been defined to effi-372

ciently extract boundary relations for computing373

persistent homology. The Simplex Tree encodes all374

simplices in the complex and tends to be more ver-375

bose than the IA∗ data structure, as shown in [39].376

An implementation of the ST is available in the377

Gudhi public domain library [41]. The Maximal378

Simplex Tree (MST) and the Simplex Array List379

(SAL) [42] are optimized versions of the ST . To380

the extent of our knowledge, there are no imple-381

mentations of these data structures. The skeleton382

blocker data structure [43] has been created specif-383

ically to perform edge contraction on a simplicial384

complex, but it can be efficiently initialized only 385

when working with flag complexes. An implemen- 386

tation of the latter is provided in the Gudhi library 387

[41]. 388

3.2. Computing a discrete Morse complex 389

The process of building a discrete Morse com- 390

plex from a simplicial complex typically consists 391

of two steps: (i) computing the Forman gradient 392

and identifying the critical simplices, and (ii) ex- 393

tracting the boundary maps. We can classify al- 394

gorithms for computing a Forman gradient as: un- 395

constrained [44, 45, 46, 47, 11, 48] and constrained 396

algorithms [49, 50, 51, 10, 52, 53, 54, 55]. Uncon- 397

strained algorithms compute a Forman gradient on 398

a cell/simplicial complex when no scalar value is 399

provided. The aim is to create a homologically 400

equivalent representation of the input complex hav- 401

ing as few critical cells as possible. Constrained 402

algorithms start from a cell/simplicial complex en- 403

dowed with a scalar function F0 defined on its ver- 404

tices, and aim at constructing a Forman gradient 405

that best fits F0 [50, 51, 10, 52]. The discrete Morse 406

complex is used in the analysis and visualization of 407

scalar fields as a compact representation of the field 408

behavior. The aim is to obtain a decomposition of 409

the dataset in regions of influence for each critical 410

simplex. Ascending and descending traversal tech- 411

niques [55, 56, 57] for the V -paths of the Forman 412

gradient have been developed for reconstructing the 413

ascending and descending Morse cells, respectively. 414

We refer to [9] for an in-depth description of these 415

methods. When computing persistent homology on 416

a simplicial complex Σ [58, 59, 60], the aim is to ob- 417

tain a complex which is a compact version of Σ and 418

has the same persistent homology [10, 32, 61]. To 419

this aim, the gradient V-paths need to be visited by 420

starting from the critical simplices and by travers- 421

ing the paths in a descending manner. A detailed 422

description of this process is provided in Subsection 423

8.2. 424

4. Encoding a simplicial complex endowed 425

with a Forman gradient 426

In this section, we consider the problem of en- 427

coding a simplicial complex endowed with a dis- 428

crete vector field in a compact way. We start with 429

6

an analysis of existing data structures for simpli-430

cial complexes. Then, driven by the need to iden-431

tify the most efficient data structure to adopt in432

our algorithm, we perform an experimental com-433

parison among them. Finally, we show how we can434

encode a Forman gradient efficiently using a com-435

pact data structure which represents only vertices436

and top simplices. This is particularly challenging437

since a representation for a Forman gradient V on a438

complex Σ requires encoding the pairings between439

two simplices of consecutive dimension for all sim-440

plices in Σ.441

4.1. Encoding a simplicial complex442

We analyze here three data structures for en-443

coding a simplicial complex, namely the Incidence444

Graph (IG) [34], the Simplex Tree (ST) [40, 62],445

and the Generalized Indexed data structure with446

Adjacencies (IA∗ data structure) [17]. The IG is447

the most widely-used data structure for simplicial448

complexes, the ST has been used in topological449

data analysis applications, being implemented in450

the Gudhi library, the IA∗ data structure is a com-451

pact representation for simplicial complexes encod-452

ing only vertices and top simplices. Implementa-453

tions in the public domain exist for all of them, and454

on such implementations we base our experimental455

comparisons.456

The Incidence Graph (IG) for complex Σ de-457

scribes its Hasse diagram [63], i.e., the graphical458

representation of the partially ordered set gener-459

ated by all the simplices of Σ and their incidence460

relations. The IG can be viewed as a directed graph461

GIG = (NIG, BIG ∪ CIG) in which:462

• the nodes in NIG are in one-to-one correspon-463

dence with the simplices of Σ; with abuse of464

notation, we will indicate with σ both a node,465

and its corresponding simplex;466

• a directed arc in BIG (boundary arc) con-467

nects two nodes (τ, σ) in NIG with dim(τ) =468

dim(σ) + 1 if σ is a face of τ ;469

• a directed arc (coboundary arc) in CIG con-470

nects two nodes (σ, τ) in NIG with dim(τ) =471

dim(σ) + 1 if τ is a coface of σ.472

In Figure 6(b), the IG representing the simplicial473

complex Σ depicted in Figure 6(a) is shown. Nodes474

are colored according to the dimension of the475

simplex they represent. Note that, for simplicity, 476

we have shown only one undirected arc for each 477

pair of mutual incident nodes, since if a directed 478

arc exists from τ to σ in BIG, arc (σ, τ) must exist 479

in CIG By storing the incidence relations between 480

simplices of consecutive dimension, the IG is 481

efficient in the retrieval of topological relations, 482

but the large amount of information encoded 483

makes it unsuitable for complexes of large size and 484

of high dimensions [37]. 485

486

The Simplex Tree (ST) [40] encodes also all the 487

simplices of a simplicial complex Σ as the IG, but 488

only a subset of the incidence relations encoded in 489

the IG. The ST is based on a total order selected 490

on the vertices of Σ. Let I(v) be the position in the 491

total order of a vertex v ∈ Σ. Given a k-simplex 492

σ = {v0, ..., vk} in Σ, maxv(σ) = max(I(vi)) is the 493

latest vertex of σ in the total order. The ST can 494

be viewed as a graph GST = (NST , AST) in which: 495

• the nodes in NST are in one-to-one correspon- 496

dence with the simplices of Σ, and a node 497

σ ∈ NST is labeled with I(maxv(σ)); 498

• a directed arc (σ, τ) ∈ AST connects two nodes 499

in NST , if σ is in the immediate boundary of 500

τ , and I(maxv(τ)) > I(maxv(σ)). 501

Nodes corresponding to the vertices of Σ are con- 502

nected to the root of the Simplex Tree. If we select 503

a path from the root to a node σ = {v0, ..., vk}, 504

we have that: (i) labels {l0, ..., lk} are encountered 505

sorted by increasing order along the path and each 506

label appears exactly once; (ii) each label corre- 507

sponds to a vertex of σ, more precisely li = I(vi), 508

for each i = 0, ..., k. 509

In Figure 6(c), we show the Simplex Tree rep- 510

resentation of the simplicial complex depicted in 511

Figure 6(a). The order of the vertices is indicated 512

by the numbers depicted in blue, while the remain- 513

ing numbers indicate the labels of the nodes corre- 514

sponding to the k-simplices, with k > 0. For the 515

sake of clarity, we are not showing the connections 516

between the vertices and the root. Note that the 517

Simplex Tree is order dependent, in the sense that 518

we can have different ST s for the same complex. 519

For example, Figure 6(d) shows the ST obtained 520

for Σ by using a different order for its vertices. 521

From the two graph representations, we see that 522

NIG = NST and that AST ⊂ ACB , since it contains 523

7

(a) (b) (c) (d)

Figure 6: A simplicial complex Σ (a) and its representation through an Incidence Graph (b) and through a Simplex Tree
(c); a Simplex Tree using a different ordering for the vertices (d). Blue dots are associated with the vertices of Σ, green
dots with its edges and red dots with its triangles.

all those arcs (σ, τ) ∈ ACB for which I(maxv(τ)) >524

I(maxv(σ)). The Simplex Tree has been designed525

with the task of efficiently performing only bound-526

ary queries. In order to be able to perform also527

coboundary queries, an extended version of the528

Simplex Tree has been proposed in [40]. This ex-529

tended version contains a circular list linking all the530

nodes having the same label and the same dimen-531

sion and an arc from a node to its parent. This ver-532

sion is not implemented in the Simplex Tree in the533

public domain library Gudhi [41]. In [42], two com-534

pressed optimization of the latter have been pre-535

sented, namely the Maximal Simplex Tree and the536

Simplex Array List, sharing the same functionali-537

ties but reducing the number of nodes encoded. To538

the best of our knowledge, no implementations are539

provided for these latter.540

As mentioned before, more compact representa-541

tions for a simplicial complex can be obtained by542

encoding only the vertices and top simplices. To543

be able to extract boundary, coboundary and ad-544

jacency relations efficiently, the simplest represen-545

tation would encode: (i) for each top k-simplex σ,546

its boundary defined by the references to its k + 1547

vertices, and its adjacencies defined by references548

to the simplices adjacent to σ along a (k − 1)-face;549

(ii) for each vertex v, its star, defined by the the550

list of all top simplices incident in v. It can be551

noticed that storing the entire star of a vertex v552

is not necessary, since the star can be efficiently553

reconstructed by navigating the top simplices inci-554

dent in v through the encoded adjacencies. This555

constitutes the basis for the Generalized Indexed556

data structure with Adjacencies (IA∗) [17].557

We can describe the IA∗ data structure as a558

graph GIA = (NIA, AIA) in which NIA = N0 ∪559

Ntop, with set N0 corresponding to the vertices of 560

Σ, and set Ntop corresponding to the top simplices 561

of Σ. The set of arcs in AIA is the disjoint union of 562

three subsets A(t,0),A(t,t), A(0,t) defined as follows: 563

• A(t,0) (boundary arcs): a directed arc (σ, v), 564

where σ is in Ntop and v in N0, belongs to 565

A(t,0) if v is a vertex of σ; 566

• A(t,t) (adjacency arcs): an undirected arc 567

(σ, τ), where σ and τ are k-simplices in Ntop, 568

belongs to A(t,t) if σ and τ share a (k−1)-face; 569

• A(0,t) (coboundary arcs): a subset of the arcs 570

(v, σ), where v in N0 and σ is in Ntop, such 571

that v is on the coboundary of σ, as defined 572

below. 573

Given a vertex v, we consider the subgraph 574

GIA(v) = (NIA(v), AIA(v)) of GIA where: 575

• NIA(v) consists of all nodes σ ∈ Ntop such that 576

v is a vertex of σ; 577

• AIA(v) consists of all arcs in A(t,t) connecting 578

pair of nodes in NIA(v). 579

Thus, an oriented arc (v, σ) is encoded in A(0,t) 580

for each connected component in GIA(v), where 581

σ is any top simplex in NIA(v) belonging to such 582

component. 583

584

In Figure 7, we show the nodes and the arcs en- 585

coded in the IA∗ data structure (see Figure 7(b)) 586

for the simplicial complex in Figure 7(a). Blue 587

nodes denote vertices, while green and red nodes 588

denote top edge and triangles, respectively. Undi- 589

rected arcs represent adjacency relations among top 590

simplices, i.e., arcs (τ1, τ2) and (σ1, σ2). Boundary 591

8

(a) (b)

Figure 7: A simplicial complex Σ (a) and its representation
through the IA∗ data structure (b). Blue dots correspond
to vertices, green dots correspond to top edges and red dots
to top triangles.

arcs are denoted by arrows, while coboundary arcs592

by dotted arrows.593

The space required by the IA∗ data structure594

depends on the structure on the complex, i.e., the595

number of arcs in A(t,t) and in A(0,t) depends on the596

connectivity of the top simplices. If we restrict our597

consideration to an important subclass of simpli-598

cial complexes, that of simplicial pseudomanifolds,599

we can get some insights for comparing the space600

required by the IA∗ data structure to that of the601

IG. Recall that a simplicial d-pseudomanifold is602

a (d− 1)-connected simplicial d-complex such that603

any (d−1)-simplex is on the boundary of either one604

or two d-simplices.605

If Σ is a d-pseudomanifold, we have that the606

number of arcs in A(t,0) originating from a top k-607

simplex σ is equal to k + 1. The number of arcs608

in A(t,t) originating from a top k-simplex σ is also609

equal to k+1. Thus, |A(t,t)| is equal to |A(t,0)| and,610

thus, the total cost of storing the boundary and the611

adjacency arcs in the IA∗ data structure is equal612

to 2|A(t,0)|. We can observe that c = 2|A(t,0)| is ex-613

actly the cost of storing in the IG all the boundary614

arcs connecting a d-simplex to a (d−1)-simplex plus615

all the dual coboundary arcs connecting a (d− 1)-616

simplex to a d-simplex. In the IA∗ data structure,617

besides c, we have the cost cst of storing some top618

simplices in the star of the vertices. For each vertex619

v, cst is equal to the number of connected compo-620

nents of GIA(v). In the worst case this might be621

equal to the number of d-simplices having v on their622

boundary. However, in the IG we need to take into623

account the cost of encoding the other boundary624

and coboundary arcs which connect k- and (k−1)-625

simplices (with k < d), which will be clearly much626

higher than cst. 627

4.2. Experimental evaluation 628

This subsection provides an experimental com- 629

parison among the IG, the ST and the IA∗ data 630

structure. In our experiments, we have used three 631

kinds of data sets. The first data sets are volume 632

data that have been tetrahedralized. Each ver- 633

tex of the dataset has an associated scalar value. 634

The DTI-scan is a Diffusion Tensor MRI Scan 635

of a human brain, the VisMale dataset is a CT- 636

scan of a man’s head and the Ackley dataset is 637

a synthetic function discretizing Ackley’s function 638

[64]. The datasets in the second group are networks 639

obtained from real data on which cliques have 640

been computed. Two of these datasets (Amazon1, 641

Amazon2) are graphs representing the “Customers 642

Who Bought This Item Also Bought” feature of 643

the Amazon website. If a product i is frequently 644

co-purchased with product j, the graph contains a 645

directed edge from i to j (notice, we are considering 646

the graph undirected). The third graph represents 647

a road network in California where intersections 648

and endpoints are described by nodes and the roads 649

connecting these intersections or road endpoints are 650

described by undirected edges (roadnet). The 651

datasets in the third group are point clouds ex- 652

tracted from a 2-sphere on which a Vietoris-Rips 653

complex has been computed (datasets S1.0, S1.2, 654

S1.3). 655

In our comparisons, we use the Simplex Tree 656

(ST) implementation in the Gudhi library [41], the 657

Incidence Graph (IG) implemented in Perseus [18], 658

which is a public domain tool for computing the 659

discrete Morse complex, and the IA∗ data struc- 660

ture implemented in [65]. Table 1 summarizes the 661

characteristics of the datasets we used and their 662

storage costs using the three data structures. For 663

each dataset, we provide the dimension of the re- 664

sulting simplicial complex (column d), the number 665

of its vertices (column |Σ0|) and of its top simplices 666

(column |Σtop|), the size of the complex (column 667

|Σ|), and the storage cost required by the three data 668

structures, expressed in gigabytes. 669

We can observe that the storage cost of the 670

IG and of the ST increases based on the total 671

number of simplices. The IG implemented in the 672

Perseus library often runs out of memory, while 673

the ST has much higher limits. The storage cost 674

of the IA∗ data structure depends on the number 675

9

Dataset d |Σ0| |Σtop| |Σ| Storage Cost
IA∗ IG ST

DTI-scan 3 0.9M 5.5M 24M 0.97 11.9 2.4
VisMale 3 4.6M 26M 118M 4.7 - 9.7
Ackley4 4 1.5M 32M 204M 6.8 - 12.8
Amazon01 6 0.2M 0.4M 2.2M 0.12 1.6 0.3
Amazon02 7 0.4M 1.0M 18.4M 0.28 9.8 1.5
Roadnet 3 1.9M 2.5M 4.8M 0.8 3.3 1.0
Sphere-1.0 16 100 224 0.6M 0.003 0.9 0.04
Sphere-1.2 21 100 285 26M 0.0032 - 1.5
Sphere-1.3 23 100 382 197M 0.0034 - 11.01

Table 1: Datasets used in the experiments and storage costs
for encoding the corresponding simplicial complex with the
three data structures IA∗, IG and with the ST . The storage
costs are expressed in gigabytes.

of top simplices. This means that simplicial676

complexes in low dimensions (like Roadnet or the677

volumetric datasets) may require comparatively678

more memory than, for example, Sphere-1.3679

(being a 23-simplicial complex composed by less680

than 400 top simplices). It is clear that the IA∗681

data structure is always more compact than the682

ST . The ratio between the storage costs of the683

two data structures roughly depends on the ratio684

between the number of top simplices and the size685

of the complex. The worst-case scenario occurs for686

(Roadnet dataset) where the IA∗ data structure687

requires 20% less memory than the ST , while in688

the case of Sphere-1.3 the storage cost for the689

IA∗ data structure is negligible with respect to the690

11 gigabytes required by the ST .691

692

4.3. Encoding a Forman gradient693

In this subsection, we describe how to encode a694

discrete gradient field, like the Forman gradient V ,695

on the data structures encoding a simplicial com-696

plex Σ.697

If we consider the Incidence Graph G represent-698

ing Σ, we see that the arcs of G describe all the pos-699

sible pairings that can be defined on Σ by consider-700

ing two simplices of consecutive dimension. A For-701

man gradient can be encoded on the IG by adding702

one bit flag to each arc a in CIG indicating whether703

the nodes incident in a are also a valid pair in V .704

Because of this reason, the IG has been selected705

in the Perseus tool [18]. This encoding cannot be706

extended to the Simplex Tree since this latter en-707

codes only a subset of the coboundary arcs of the708

IG.709

Figure 8: Gradient pairs encoded in a triangle. Pair between
vertex v0 and edge (v0, v2) is identified by moving on the
first bit reserved for the 1-simplices (3 positions). We move
forward of one position for each edge preceding (v0, v2) on
the triangle (2 positions). We do not have to move forward
since v0 has position 0 on the edge.

We describe here a new representation which al- 710

lows for a compact encoding of a Forman gradi- 711

ent on the IA∗ data structure and, in general, for 712

any data structure which encodes vertices plus top 713

simplices. In this case, the encoding for the gradi- 714

ent pairs needs to be attached to the top simplices 715

only. The representation that we have defined en- 716

codes, for each top k-simplex τ , a bit-vector of 717

length
∑k
i=1

(
k+1
i+1

)
(i+ 1) representing all the pos- 718

sible pairings on its boundary. The first k + 1 bits 719

encode the pairing between τ and one of its (k−1)- 720

faces. Then, recursively, for each i-face of τ , i + 1 721

bits are stored until, for each 1-face, 2 bits are en- 722

coded storing the pairings with one of its vertices. 723

For example, considering a 2-simplex (triangle), 3 724

bits are reserved for encoding the pairings with the 725

boundary edges. Then, for each of them, 2 bits are 726

reserved for encoding the pairings with the bound- 727

ary vertices (see Figure 8). 728

If two paired simplices ρ and σ are both on the 729

boundary of τ , the resulting pair will be encoded in 730

the bit-vector of τ . Let j and l (with j + 1 = l) be 731

the dimensions of ρ and σ, respectively, we check 732

the bit associated with the corresponding pair com- 733

puting: 734

• the position
∑k
i=l+1

(
k+1
i+1

)
(i+ 1) of the first bit 735

reserved for l-simplices in τ ; 736

• the position of σ on the boundary of τ obtained 737

enumerating the faces of τ ; 738

• the position of the vertex in σ that is not in ρ. 739

For example, in Figure 8, we consider the pairing 740

between the 0-simplex v0 and the 1-simplex v0v2. 741

The bits reserved for the 1-simplices start at posi- 742

tion 3. The position of v0v2 on the boundary of the 743

triangle is 1, so we discard the first two bits. Vertex 744

10

v2 is missing in v0 and its position is 1. Then, the745

bit representing their pairing relation is at position746

3 + (2 · 1) + 1.747

We have implemented a prototype of the gradi-748

ent encoding based on the dynamic bitset provided749

by the Boost C++ library. With such encoding,750

we have been able to represent the gradient frame751

representation up to 40-dimensional simplicial com-752

plexes. Using more involved libraries and architec-753

tures could overcome the current limitations, but it754

might greatly affect computation times.755

5. Reductions and coreductions for discrete756

Morse complexes757

Reduction and coreduction operators [45] are two758

homology-preserving operators used for reducing759

the size of a simplicial complex without affecting760

its homology. For this reason, reduction and core-761

duction operators can be used in a preprocessing762

approach to compute homology, or persistent763

homology of a simplicial complex [32, 45, 46, 47].764

Reduction and coreduction pairs can be fruitfully765

used also in the context of discrete Morse theory766

in order to define a Forman gradient. In this767

section, we present the two methods based on such768

operators, and we propose a new strategy, while769

providing also a theoretical comparison of all these770

techniques.771

772

A reduction on a simplicial complex Σ corre-773

sponds to a deformation retraction of a simplex774

which is the face of only one other simplex in the775

complex. The problem is that, in most situations,776

available reductions are quickly exhausted. In or-777

der to overcome this issue, coreductions have been778

introduced [45], where a coreduction can be viewed779

as the dual operation with respect to a reduction. A780

coreduction is not feasible on a simplicial complex,781

while it is available in the context of S-complexes782

[45]. For the sake of simplicity, we consider an S-783

complex as a simplicial complex in which some sim-784

plices may be not present even if their cofaces are785

in the complex. For instance, all the complexes de-786

picted in Figure 9 are S-complexes. In particular,787

the complexes obtained after performing a coreduc-788

tion operator are examples of S-complexes which789

are not simplicial complexes.790

Given an S-complex Σ, a pair (σ, τ) of elements of791

Σ, such that the coefficient of σ in ∂τ is ±1, is792

(a) (b)

Figure 9: (a) Removal of the reduction/coreduction pair
(σ, τ), and (b) corresponding pairing of simplices σ and τ
in the gradient.

called a reduction pair if cbdΣ(σ) = {τ}, a coreduc- 793

tion pair if bdΣ(τ) = {σ}. 794

When simplifying a simplicial complex Σ, the ef- 795

fect of a reduction/coreduction is that of changing 796

the structure of Σ, by removing a pair of simplices 797

without affecting its homology (see Figure 9(a)). 798

When building a Forman gradient V , the same 799

pair is not removed from Σ, but added as a pair to 800

V (see Figure 9(b)). 801

802

A coreduction-based algorithm builds a Forman 803

gradient using coreduction pairs and free simplices 804

[11], where a free simplex is a simplex with an 805

empty boundary. The algorithm works on two sets 806

of simplices: the set of paired simplices V , initial- 807

ized as empty, and the set of non-excised simplices 808

Σ′, initialized as Σ. While Σ′ admits a coreduction 809

pair, the algorithm excises a coreduction pair (σ, τ) 810

from Σ′ and adds it to V . When no more core- 811

duction is feasible, a free simplex is excised from 812

the complex and labeled as critical. The algorithm 813

repeats these steps until Σ′ is empty. Since no 814

simplicial complex admits a coreduction pair, any 815

coreduction-based algorithm performs as its first 816

step the excision of an arbitrary vertex v, which is a 817

free simplex by definition, and declares it as critical. 818

The removal of v turns Σ′ into an S-complex and 819

unlocks the possibility of pairing through a core- 820

duction any vertex u adjacent to v. 821

A reduction-based approach performs reductions 822

and removals of top simplices [48]. We recall that 823

a top simplex is a simplex with an empty cobound- 824

ary. The algorithm works on two sets of simplices: 825

the set of paired simplices V , initialized as empty, 826

and the set of non-excised simplices Σ′, initialized 827

as Σ. While the set of non-excised simplices Σ′ 828

11

admits a reduction pair, the algorithm excises a re-829

duction pair from Σ′ and adds it to V . When no830

more reduction is feasible, a top simplex is excised831

from the complex and labeled as critical. The al-832

gorithm stops when Σ′ is empty. Differently from833

a coreduction-based algorithm, whose first step is834

necessarily the removal of a vertex, the initial step835

in a reduction-based approach can involve the ex-836

cision of a feasible reduction pair or the removal837

of a top simplex. Similarly to the previous case,838

if no reduction pair is available, the approach has839

to label an arbitrary top simplex as critical and to840

remove it from Σ′. After such a removal, the situ-841

ation is analogous to the starting one and, so, the842

same strategy can be applied.843

In order to minimize the size of the discrete844

Morse complex, in both approaches the creation of845

a critical simplex is performed only if no more core-846

duction, or reduction is feasible. Actually, even if847

this condition is not satisfied, the acyclicity of the848

gradient paths is still guaranteed. In the following,849

we refer to this two approaches, also in the case850

in which critical simplices can be created when it851

is not strictly necessary, as coreduction-based algo-852

rithm and reduction-based algorithm, respectively.853

6. Equivalence of reduction and coreduction854

sequences855

In this section, we prove the equivalence between856

the use of reduction and coreduction operators in857

the construction of a (filtered) Forman gradient and858

we introduce another class of methods which could859

operate reductions and coreductions in an inter-860

leaved way. The equivalence among these three861

methods will give us the freedom to choose the one862

that best fits our data structure.863

In order to better understand how the removal864

of a coreduction, or of a reduction pair affects the865

coboundary and the boundary of the simplices of866

a simplicial complex, we first discuss some prelim-867

inary results.868

Remark 1. Let τ be a simplex and let σ be one of869

its faces, then there exists dim(τ)−dim(σ) faces of870

τ in cbdτ (σ).871

Lemma 1. In a coreduction-based algorithm, each872

removal operation does not modify the coboundary873

of the remaining simplices.874

Proof. Let Σ be a simplicial complex on which the 875

coreduction-based algorithm is executed. Clearly, 876

the removal of a free simplex does not modify 877

the coboundary of any remaining simplex. Let us 878

consider only removals of coreduction pairs. Let 879

(σ, τ) be a feasible coreduction pair in the set 880

of non-removed simplices Σ′. The only simplices 881

whose coboundary can be modified by the core- 882

duction pair are those belonging to bdΣ′(τ) and to 883

bdΣ′(σ). Since, for the feasible coreduction pair 884

(σ, τ), bdΣ′(τ) = {σ}, the thesis is obtained by 885

proving that, before performing the coreduction, 886

bdΣ′(σ) = ∅. Suppose that there exists ν ∈ bdΣ′(σ). 887

By Remark 1, there exists in Σ a simplex σ′ 6= σ 888

such that σ′ ∈ bdΣ(τ) and ν ∈ bdΣ(σ′). Since (σ, τ) 889

is a feasible coreduction pair in Σ′, simplex σ′ must 890

have been already removed, i.e., σ′ 6∈ Σ′. Let us 891

proceed by induction. If (σ, τ) is the first coreduc- 892

tion pair performed in the coreduction-based algo- 893

rithm on complex Σ, then σ′ has been removed as 894

a free simplex, but, since ν ∈ bdΣ(σ′) and ν ∈ Σ′, 895

this leads to a contradiction. 896

Assume now that, for any removal of a core- 897

duction pair performed before (σ, τ), the simplex 898

of smaller dimension of the pair is free. Since 899

ν ∈ bdΣ(σ′) and ν ∈ Σ′, σ′ cannot be removed 900

as a free simplex, or by a coreduction pair removal 901

of the kind (ν′, σ′). So, σ′ has been removed by 902

operating a coreduction pair removal of the kind 903

(σ′, τ ′), which leads to a contradiction of the in- 904

ductive hypothesis. 905

Lemma 2. In a reduction-based algorithm, each 906

removal operation does not modify the boundary of 907

the remaining simplices. 908

Proof. Let Σ be a simplicial complex on which 909

the reduction-based algorithm is executed. Clearly, 910

the removal of a top simplex does not modify the 911

boundary of any remaining simplex. Let us con- 912

sider only removals of reduction pairs. Let (σ, τ) be 913

a feasible reduction pair in the set of non-removed 914

simplices Σ′. Similarly to Lemma 1, proving that, 915

before performing the coreduction, cbdΣ′(τ) = ∅ 916

is sufficient. If there exists ν ∈ cbdΣ′(τ), then, 917

by Remark 1, there exist dim(ν) − dim(σ) ≥ 2 918

faces of ν in cbdΣ′(σ). But this leads to a con- 919

tradiction, because (σ, τ) is a reduction and, thus, 920

#cbdΣ′(σ) = 1. 921

We are now ready to formalize and to prove 922

12

the equivalence between the coreduction-based and923

reduction-based algorithms.924

Proposition 1. Given a simplicial complex Σ and925

the Forman gradient V produced by a reduction-926

based algorithm, it is always possible to obtain the927

same Forman gradient through a coreduction-based928

algorithm. The reverse is also true.929

Proof. For the sake of brevity, we only prove that930

the Forman gradient produced by a reduction-931

based algorithm on Σ can be obtained with a932

coreduction-based algorithm. The proof of the re-933

verse is entirely similar (by using Lemma 1). Let934

Σ be a simplicial complex and let935

R1
1, R

1
2, . . . , R

1
i1 , R

2
1, R

2
2, . . . , R

2
i2 , . . . , R

n
1 , R

n
2 , . . . , R

n
in

(1)
be the ordered sequence of reduction pairs and936

top simplices removed during the execution of a937

reduction-based algorithm, where, for 1 ≤ l ≤ n938

and 1 ≤ j ≤ il − 1, Rlj represents a reduction pair939

and, for each 1 ≤ l ≤ n, Rlil represents a top sim-940

plex.941

According to the notation adopted in (1), Fig-942

ure 10(a) depicts the ordered sequence of reduction943

pairs and top simplices removed during the exe-944

cution of a reduction-based algorithm. We want945

to prove that, by using the same removals, it is946

possible to obtain a sequence of coreduction pairs947

and free simplices compatible with a coreduction-948

based algorithm producing the same Forman gra-949

dient. Figure 10(b), for example, shows a sequence950

of coreduction pairs and free simplices compatible951

with a coreduction-based algorithm obtained by re-952

versing the reduction-based sequence depicted in953

Figure 10(a) and producing the same Forman gra-954

dient.955

We consider the following sequence obtained tak-956

ing sequence (1) in reverse order:957

Rnin , R
n
in−1, . . . , R

n
1 , R

n−1
in−1

, . . . , R1
i1 , . . . , R

1
2, R

1
1

(2)
Consider (2) as an ordered list of removal oper-958

ations performed on Σ. The following properties959

hold:960

1. For each 1 ≤ l ≤ n and 1 ≤ j ≤ il − 1, Rlj is a961

feasible coreduction pair.962

2. For each 1 ≤ l ≤ n, Rlil is a free simplex.963

To prove the two properties, we denote with: 964

• Σlj the simplicial complex obtained in (1) after 965

performing all the removal operations up to Rlj 966

included; 967

• Slj the S-complex obtained in (2) after per- 968

forming all the removal operations up to Rlj 969

excluded. 970

We have that, for each value of l and j, 971

Σlj t Slj = Σ (3)

972

1. LetRlj = (σ, τ) with 1 ≤ l ≤ n and 1 ≤ j ≤ il−1. 973

We have to prove that it represents a coreduction in 974

the sequence (2), i.e., bdSl
j
(τ) = {σ}. By Lemma 2, 975

in (1), τ cannot be removed before the simplices in 976

bdΣ(τ). So, all the simplices in bdΣ(τ) \ {σ} belong 977

to Σlj . Then, by (3), bdSl
j
(τ) = {σ} and, thus, (σ, τ) 978

is a feasible coreduction in Slj . 979

2. Let Rlil be the simplex σ. We have to prove that 980

it represents a free simplex in the sequence (2), i.e., 981

bdSl
il

(σ) = ∅. Analogously to 1., by Lemma 2, in 982

(1), all the simplices belonging to bdΣ(σ) are in 983

Σlil . Then, by (3), bdSl
il

(σ) = ∅ and, thus, σ is a 984

free simplex in Slil . 985

Sequence (2) satisfies properties 1. and 2. So, it 986

represents a sequence of removals compatible with 987

a coreduction-based algorithm producing on Σ the 988

same Forman gradient of (1). 989

It is interesting to understand if the equivalence 990

between reduction-based and coreduction-based al- 991

gorithms still holds with the further condition that 992

allows for the introduction of a critical simplex 993

only if no reduction [coreduction] pair is available. 994

Proposition 1 ensures that, given a reduction [core- 995

duction] sequence produced on a simplicial complex 996

Σ by an algorithm requiring such a condition, it 997

is always possible to find a coreduction [reduction] 998

sequence inducing the Forman gradient on Σ. In 999

spite of this, Proposition 1 does not guarantee that 1000

a sequence produced by an algorithm satisfying the 1001

condition mentioned above exists. Figure 11 shows 1002

that, in general, this does not hold. The Forman 1003

gradient depicted in Figure 11 can be considered as 1004

produced by a reduction-based algorithm starting 1005

13

(a)

(b)

Figure 10: (a) A sequence of reduction pairs (green arrows) and top simplex removals (red simplices) produced by a
reduction-based algorithm on a simplicial complex and (b) the sequence of coreduction pairs resulting in the same gradient
than (a).

Figure 11: A Forman gradient on a simplicial complex that
cannot be produced by a coreduction-based algorithm in
which critical simplices are introduced only when no more
coreduction pair is feasible.

with the removal of the top simplex τ and introduc-1006

ing critical simplices only when it is strictly neces-1007

sary. This Forman gradient cannot be produced1008

by a coreduction-based algorithm in which critical1009

simplices are introduced only when no more core-1010

duction pair is feasible because such an algorithm1011

applied to this simplicial complex necessarily pro-1012

duces a Forman gradient with just one critical sim-1013

plex of dimension 0 and two critical simplices of1014

dimension 1.1015

7. Interleaving reductions and coreductions1016

A new method to build a gradient field V on a1017

simplicial complex is to execute removals of reduc-1018

tion and coreduction pairs in an interleaved way.1019

We denote as interleaved-based algorithm an algo-1020

rithm producing a discrete vector field by using re-1021

movals of reduction and coreduction pairs, of top1022

simplices and of free simplices. Given a simplicial1023

complex Σ, pairs of simplices are excised from Σ by1024

arbitrarily choosing between reduction or coreduc-1025

tion pairs. When no more pairs can be removed,1026

a free simplex or a top simplex is excised from the 1027

complex and labeled as critical. The algorithm re- 1028

peats these steps until Σ is empty. 1029

Here, we prove that such an algorithm actually 1030

produces a Forman gradient and that all interleaved 1031

methods are equivalent. 1032

Proposition 2. Given a simplicial complex Σ, the 1033

discrete vector field V produced by any interleaved- 1034

based algorithm is a Forman gradient. 1035

Proof. Given two pairs (σ, τ), (σ′, τ ′) in V , we de- 1036

fine (σ, τ) ≤ (σ′, τ ′) if there exists a V -path start- 1037

ing with (σ, τ) and ending with (σ′, τ ′). In order to 1038

prove the thesis, i.e., that V is free of closed V -path, 1039

it is enough to prove that ≤ define a partial order 1040

on V . Consider set V as built in any intermediate 1041

step of the proposed algorithm and let (σ, τ) be the 1042

last pair inserted in V . The following properties 1043

allow to achieve the thesis: 1044

1. (σ, τ) is a minimal element with respect to 1045

the elements already inserted in V originating 1046

from a coreduction pair; 1047

2. (σ, τ) is a maximal element with respect to 1048

the elements already inserted in V originating 1049

from a reduction pair. 1050

Suppose that condition 1 does not hold. Then, 1051

there must exist an already performed coreduction 1052

pair (σ′, τ ′) such that σ ∈ bd(τ ′). This implies that, 1053

at the step in which (σ′, τ ′) has been performed, 1054

σ, σ′ ∈ bd(τ ′). But this is impossible, otherwise the 1055

coreduction pair (σ′, τ ′) could not have been per- 1056

formed. 1057

14

Suppose that condition 2 does not hold. Then,1058

there must exist an already performed reduction1059

pair (σ′, τ ′) such that σ′ ∈ bd(τ) and this implies1060

that, at the step in which (σ′, τ ′) has been per-1061

formed, τ, τ ′ ∈ cbd(σ′). But this is impossible,1062

otherwise the reduction pair (σ′, τ ′) could not have1063

been performed.1064

Having proven that any possible interleaved1065

method leads to a Forman gradient, we are now1066

interested in understanding if these different ap-1067

proaches could produce equivalent results or not.1068

As an immediate consequence of Lemma 1 and1069

Lemma 2, we can claim the following result.1070

Remark 2. In each interleaved-based algorithm,1071

each coreduction pair and free simplex removal can-1072

not make a reduction pair feasible; each reduction1073

pair and top simplex removal cannot make a core-1074

duction pair feasible.1075

Finally, we can prove that all interleaved meth-1076

ods are equivalent.1077

Proposition 3. Given a simplicial complex Σ1078

and the Forman gradient V on it produced by1079

an interleaved-based algorithm, it is always pos-1080

sible to obtain the same Forman gradient with a1081

reduction-based algorithm or, equivalently, with a1082

coreduction-based algorithm.1083

Proof. We prove that the sequence of removals pro-1084

duced by an interleaved-based algorithm on a sim-1085

plicial complex can be also obtained with a se-1086

quence of coreduction pairs and free simplex re-1087

movals. By Remark 2, we can suitably order such a1088

sequence, moving all the coreduction pairs and the1089

free simplices at the beginning, thus creating a new1090

sequence equivalent to the previous one. We apply1091

to the last part, composed only of reduction pairs1092

and top simplices, of this new sequence the same1093

sorting strategy proposed in Proposition 1 to trans-1094

form a reduction-based sequence to a coreduction-1095

based sequence, and in this way, we obtain the the-1096

sis.1097

From both an application and a theoretical point1098

of view, it is interesting to find a method to build1099

a Forman gradient which minimizes the number of1100

critical simplices. It is known that, in general, this1101

problem is NP-hard [66]. The previous results show1102

that, from a theoretical point of view, the use of1103

different simplification operators (such as reduction 1104

and coreduction pairs), or the combination of more 1105

than one, does not actually affect the number of 1106

resulting critical simplices. 1107

For the sake of completeness, let us note that the 1108

results proven in this section still hold when the 1109

above-described approaches are applied to build a 1110

filtered Forman gradient. This is due to the fact 1111

that the satisfaction of the condition required to 1112

guarantee that V is a filtered Forman gradient with 1113

respect to a filtration F does not take into account 1114

if the pairs of V have been created thanks to a 1115

reduction or a coreduction operator. 1116

8. A coreduction-based algorithm for com- 1117

puting a discrete Morse complex 1118

In this section, we describe an algorithm based 1119

on the IA∗ data structure for computing a dis- 1120

crete Morse complex. The algorithm consists of two 1121

steps: (i) computation of a (filtered) Forman gra- 1122

dient through a coreduction-based approach, and 1123

(ii) extraction of the boundary maps defining the 1124

discrete Morse complex. 1125

8.1. Construction of a (filtered) Forman gradient 1126

The theoretical equivalences proven in Section 6 1127

and Section 7 tell us that there is no preferable 1128

homology-preserving operator for computing a For- 1129

man gradient. Here, we introduce a new dimension- 1130

independent algorithm, that can also runs in par- 1131

allel, which uses a representation of the simplicial 1132

complex as an IA∗ data structure and the encoding 1133

of the Forman gradient discussed in Subsection 4. 1134

The basic underlying approach is the 1135

coreduction-based algorithm, introduced in 1136

[11] and implemented there only for regular grids. 1137

We summarize it for simplicial complexes. When 1138

considering simplicial complexes, the coreduction- 1139

based algorithm computes a Forman gradient by 1140

using coreduction pairs starting from the simplices 1141

of lowest dimension. The set of k-simplices of 1142

complex Σ is considered by increasing values of k, 1143

starting from k = 0. As long as a coreduction pair 1144

exists between a k-simplex σ and a (k+ 1)-simplex 1145

τ , pair (σ, τ) is added to the Forman gradient V . 1146

When no k-simplex can be paired, one simplex is 1147

randomly chosen and declared critical. When all 1148

k-simplices have been paired or denoted as critical, 1149

15

the working dimension k is increased by one. Since1150

no coreduction pair is feasible on a simplicial1151

complex, at the first step, an arbitrary vertex v is1152

denoted as critical in V to trigger coreductions.1153

In [32], the coreduction-based approach is used1154

for persistent homology computation, and thus by1155

considering a filtration of the original complex. If1156

each simplex is paired only with another simplex1157

belonging to the same filtration value, the result-1158

ing discrete Morse complex will have the same1159

persistent homology of the original complex.1160

The dimension-independent coreduction-based1161

algorithm proposed here, unlike previous ones, uses1162

a local approach that allows us to work on the stars1163

of the vertices independently, which makes it par-1164

ticularly suitable for a parallel implementation. We1165

define an indexing on the vertices of the input sim-1166

plicial complex Σ, and we extend the indexing to all1167

the simplices in such a way that each simplex in Σ1168

has an index equal to the maximum of the indexes1169

of its vertices. With such indexing, the coreduction1170

pairs can be computed locally to the lower star of1171

each vertex. Given a vertex v, a simplex σ belongs1172

to the lower star of v (denoted as St−(v)) if: (i) σ1173

is a coface of v, and (ii) v has lowest index value1174

among the vertices of σ. Algorithm 1 illustrates the1175

process for computing a Forman gradient on a sim-1176

plicial complex Σ having an indexing F0 defined on1177

its vertices.1178

The algorithm iterates on the vertices of Σ, ex-1179

tracting first the top simplices in the lower star of1180

v, denoted as LTv, which are encoded in a list. For1181

each vertex v, the algorithm iterates on the dimen-1182

sion of the simplices in the lower star of v. The1183

algorithm works, for each dimension, with two sets1184

of simplices: the set of k-simplices that can be de-1185

clared critical, denoted as CRv (row 12), and the1186

set of (k + 1)-simplices to pair (row 14), denoted1187

as STv. CRv and STv have a maximum size equal1188

to the maximum, by varying k, of the number of1189

k-simplices in the lower star of a vertex in Σ, and1190

they are encoded as balanced binary search trees.1191

A candidate simplex is extracted from set STv (row1192

16) and paired with its unique unpaired face (row1193

18). Recall that a simplex τ can be paired with1194

another simplex σ by coreduction if σ is the only1195

unpaired face of τ . If there are no coreductions1196

available (row 21), a new critical simplex is taken1197

from CRv. Every time a simplex is paired or set1198

as critical, it is also removed from STv or CRv, re-1199

Algorithm 1 - FormanGradient(Σ,F0)

1: INPUT: Σ, d-dimensional simplicial complex
2: INPUT: F0, indexing of vertices of Σ
3: OUTPUT: V , Forman gradient; C, set of crit-

ical simplices
4: Σ0 := vertices of Σ
5: V := ∅
6: C := ∅
7: for v ∈ Σ0 do
8: k := 0
9: STv := {v}

10: LTv := LowerTop(v,Σ, F0)
11: while k <= d do
12: CRv := STv
13: k := k + 1
14: STv := LowerStar(v,Σ, F0, LTv, k)
15: while CRv 6= ∅ do
16: (σ, τ) := getNextPair(v,Σ, STv, CRv)
17: if (σ, τ) 6= ∅ then
18: addPair(σ, τ, V)
19: Remove(τ, STv)
20: Remove(σ,CRv)
21: else
22: σ = getF irstCritical(CRv)
23: addCritical(σ,C)
24: remove(σ,CRv)
25: end if
26: end while
27: end while
28: end for

spectively. When set CRv is empty, the working 1200

dimension is increased. The algorithm terminates 1201

when all the simplices in the lower star of each ver- 1202

tex v have been paired, or set as critical. 1203

The procedures and the functions, on which Al- 1204

gorithm 1 is based, are: 1205

• Function LowerTop(v,Σ, F0): computes all 1206

the top simplices of Σ belonging to the lower 1207

star of v and encodes such simplices in list LTv. 1208

This is performed by navigating the star of ver- 1209

tex v through the adjacency arcs in the IA∗ 1210

data structure. Thus, it works in time O(tv), 1211

where tv denotes the number of top simplices 1212

in the star of v. 1213

• Function LowerStar(v,Σ, F0, LTv, k): ex- 1214

tracts all the k-simplices belonging to the lower 1215

16

star of v from LTv and encodes such sim-1216

plices in STv. This operation is performed1217

by cycling on the elements of LTv and collect-1218

ing the k-faces of each top simplex that are1219

also incident in v. The extraction of the k-1220

simplices of a top simplex of dimension i is1221

performed in O(
(
i+1
k+1

)
). If we denote as tv,i1222

the number of top simplices of dimension i1223

incident in v, the total number Nk of sim-1224

plices extracted is Nk =
∑d
i=1 tv,i

(
i+1
k+1

)
) in the1225

worst case, since some simplices are contained1226

within the boundary of more than one top sim-1227

plex. Since each of such simplices is inserted in1228

STv, LowerStar(v,Σ, F0, LTv, k) may require1229

O(Nk logNk) time in the worst case.1230

• Procedure addPair(σ, τ, V): adds a new pair1231

to V . Since the gradient pairs are encoded on1232

the top simplices only, we have to find the top1233

simplices incident in both σ and τ . This is1234

done by examining all the top simplices in the1235

star of a vertex of σ and detecting all those1236

having τ on their boundary. For each of these1237

latter, we update the corresponding bit-vector.1238

The operation requires O(tw), where tw de-1239

notes the number of top simplices incident in1240

a vertex w of σ.1241

• Function getNextPair(v,Σ, STv, CRv): iter-1242

ates on the set of unpaired simplices STv se-1243

lecting the first simplex available for a core-1244

duction. For each simplex τ in STv, the sim-1245

plices on the boundary of τ containing v are1246

extracted, and then, for each of such bound-1247

ary simplices σ, the membership of σ to CRv1248

is checked. In the worst case, we will need to1249

check the membership of all the elements in1250

CRv. This leads to a worst-case complexity of1251

O(k|STv||CRv| log |CRv|).1252

• Function getF irstCritical(CRv): returns the1253

first simplex in the set of candidate critical1254

simplices CRv. Since CRv is implemented as1255

a balanced binary search tree, the worst-case1256

time complexity is O(log |CRv|).1257

• Procedure Remove(σ,CRv): eliminates a sim-1258

plex from CRv (or STv). Since both CRv1259

and STv are implemented as a balanced binary1260

search tree, the worst-case time complexity is1261

O(log |CRv|).1262

For each dimension, the computation cost is 1263

dominated by the cost of executing Function 1264

getNextPair(STv, CRv,Σ). If we denote as crm 1265

and as stm the maximum size of CRv and STv, re- 1266

spectively over all dimensions, the time complexity 1267

for a single vertex v is O((d− 1)stmcrm log(crm)). 1268

Note that both crm and stm can be of the order of 1269

the number of k-simplices incident in v. Since the 1270

algorithm computes the Forman gradient locally to 1271

the lower star of each vertex, the approach is easy 1272

to parallelize by running Algorithm 1 on multiple 1273

vertices at a time. Results are shown in Section 9. 1274

We prove the correctness of Algorithm 1 by show- 1275

ing that it is a coreduction-based algorithm ensur- 1276

ing that the generated discrete vector field V is a 1277

filtered Forman gradient. 1278

Proposition 4. Let Σ be a simplicial complex, 1279

F0 : Σ0 → R be an injective function and F be 1280

the filtration of Σ naturally induced by F0. Given 1281

Σ and F0 as input, Algorithm 1 returns a filtered 1282

Forman gradient with respect to F . 1283

Proof. Algorithm 1 processes the lower stars of the 1284

vertices of Σ independently. Without loss of gener- 1285

ality, we can assume that the lower stars are pro- 1286

cessed in a sequence ordered by ascending values 1287

of function F0. In this way, we obtain an ordered 1288

sequence of simplices added to the gradient V and 1289

to the set of critical simplices C. We prove that 1290

this sequence, denoted as S, actually represents a 1291

feasible sequence of coreduction pairs and free sim- 1292

plices for Σ. Let us consider a pair of simplices 1293

(σ, τ) declared as a pair of V during the processing 1294

of the lower star St−(v) of v. Let σ′ be a simplex 1295

in bdΣ τ different from σ. If σ′ ∈ St−(v), then σ′ 1296

has to be already added to V or to C. Otherwise, 1297

if σ′ 6∈ St−(v), then there exists a vertex w of Σ 1298

such that σ′ ∈ St−(w) and F0(w) < F0(v). So, 1299

σ′ has to be already added to V or to C during 1300

the processing of St−(w). In both cases, (σ, τ) can 1301

be considered as a feasible coreduction pair in the 1302

sequence S. Similarly, any simplex σ added to C 1303

during the processing of a lower star can be con- 1304

sidered as a free simplex in the sequence S. So, 1305

Algorithm 1 is a coreduction-based algorithm and 1306

then, thanks to Proposition 2, it returns a Forman 1307

gradient. Moreover, since Algorithm 1 pairs only 1308

simplices belonging to the same lower star and, by 1309

the definition of F , these simplices have the same 1310

17

filtration value. Thus, the returned Forman gradi-1311

ent V is necessarily filtered with respect to F .1312

8.2. Extracting the discrete Morse complex1313

The discrete Morse complexM∗ associated with1314

a (filtered) Forman gradient V on Σ is retrieved1315

by navigating the paths of V . The output consists1316

of the boundary maps ∂̃k : Mk → Mk−1. These1317

latter can be seen as the arcs of a graph in which1318

the nodes correspond to the critical simplices and1319

each arc has a multiplicity which corresponds to a1320

gradient path between two critical simplices.1321

Extracting the boundary maps by visiting the1322

paths of V may cause simplices to be visited more1323

than once, as discussed in [10]. In the worst case,1324

a critical k-simplex may be connected by V -paths1325

to all the k-simplices of Σ (this set is denoted as1326

Σk). Moreover, each k-simplex of this set can be1327

visited, via multiple V -paths, more than once; in1328

the worst case each simplex will be visited O(|Σk|)1329

times. The resulting worst-case complexity for re-1330

trieving the boundary maps of a single critical k-1331

simplex can be quadratic in the number |Σk| of k-1332

simplices of Σ.1333

Even if this is a very rare case, some solutions1334

have been proposed to guarantee lower complex-1335

ity bounds by either using a Boolean function for1336

marking the visited simplices [67, 57], or by us-1337

ing a priority queue [55] for limiting the number of1338

simplices visited more than once. Both approaches1339

have limitations however. The approach in [67] is1340

useful for reconstructing a combinatorial represen-1341

tation for the connectivity of the critical simplices,1342

but it does not visit all the possibile paths, which is1343

necessary for retrieving the correct boundary maps1344

in Z. The approach in [55] can successfully retrieve1345

the correct boundary maps, but it requires a input1346

scalar function to be defined all over the simplices1347

of Σ.1348

The algorithm presented here is based on the1349

general approach outlined in [10].1350

Algorithm 2 illustrates the steps required for1351

traversing the gradient paths in a descending fash-1352

ion. Starting from a critical k-simplex τ , a breadth-1353

first traversal is performed by navigating from τ1354

to its adjacent k-simplices passing through their1355

shared (k − 1)-simplices. The breadth-first traver-1356

sal is supported by a queue Q. Given a k-simplex1357

τ0 extracted from the queue Q (row 8), we examine1358

all the (k − 1)-simplices σ in the boundary of τ01359

Algorithm 2 - BoundaryMaps(Σ,τ ,V)

1: INPUT: Σ, d-dimensional simplicial complex
2: INPUT: τ , critical k-simplex
3: INPUT: V , Forman gradient
4: OUTPUT: M , boundary maps as collections of

arcs
5: Q := ∅
6: Q.enqueue(τ)
7: while Q 6= ∅ do
8: τ0 := Q.dequeue()
9: for σ1 ∈ getBoundary(τ0,Σ) do

10: if isPaired(σ1, V, τ1) then
11: Q.enqueue(τ1)
12: else
13: Add(M, τ1, σ1)
14: end if
15: end for
16: end while

(row 11). For each (k− 1)-simplex σ, if σ is paired 1360

with a k-simplex τ1 (row 12), τ1 is added to the 1361

queue (rows 15 and 16). If σ is a critical simplex, 1362

then σ is stored as on the boundary of τ . 1363

In Figure 12(a), we show an example of the de- 1364

scending traversal performed by starting from crit- 1365

ical triangle τ . For each edge on the boundary of 1366

τ , the paired triangle is visited and enqueued (indi- 1367

cated in red in Figure 12(b)). The process contin- 1368

ues recursively for each new triangle (Figure 12(c)) 1369

until the entire region associated with τ has been 1370

covered. When a critical edge σ is encountered, 1371

the relation with τ is stored in the boundary maps 1372

(Figure 12(d)). 1373

The procedures and the functions, on which Al- 1374

gorithm 2 is based, are: 1375

• Function getBoundary(τ,Σ): returns the im- 1376

mediate boundary of k-simplex τ , i.e., its (k− 1377

1)-faces. Extracting the immediate boundary 1378

is performed by taking all the combinations of 1379

the k vertices of τ , and it is a linear process in 1380

the number of vertices of τ . 1381

• Function isPaired(σ, V, τ1): returns the value 1382

True if (k − 1)-simplex σ is paired with a k- 1383

simplex in V and the value False otherwise. In 1384

the former case it returns the paired simplex 1385

τ1. This is done by considering all the top sim- 1386

plices in the star of a vertex w of σ and visiting 1387

18

(a) (b) (c) (d)

Figure 12: Descending traversal starting from τ . Expanding the gradient V -paths the critical edge σ is encountered and
stored as connected to τ .

the gradient encoding of those top simplices1388

which are incident in σ. The time complex-1389

ity is O(tw) in the worst case, where tw is the1390

number of top simplices incident in vertex w.1391

Algorithm 2 is executed for each critical sim-1392

plex in the Forman gradient. For each k-simplex1393

τ popped from Q, the for loop is performed up1394

to k times. For each simplex σ on the boundary1395

of τ we check whether it is paired or not O(tw).1396

Then, we can conclude that each iteration of the1397

while loop takes O(ktm), where tm is the maxi-1398

mum of the number of top simplices tk considered1399

in isPaired at the varies of σ. The algorithm has1400

O(qktm) worst-case time complexity, where q is the1401

number (counted with multiplicity) of k-simplices1402

of Σ inserted in the queue Q.1403

9. Experimental results1404

In this section, we evaluate the performances of1405

the coreduction-based algorithm for Forman gra-1406

dient computation and of the algorithm for com-1407

puting the boundary maps that give a Morse com-1408

plex, described in Section 2.3, which are based on1409

the encoding of the original simplicial complex as1410

an IA∗ data structure. As described in Section1411

8, computing the Forman gradient focusing on the1412

lower star of each vertex is an operation well suited1413

for distributed, or parallel implementation. To test1414

the gain in performances of such an approach, we1415

have implemented also a parallel version of our gra-1416

dient computation algorithm based on OpenMP.1417

We compare our two implementations (sequential1418

and parallel) with the implementation provided by1419

Perseus which computes the Morse complex using1420

Dataset |Σ| |C| IA∗ IA∗p IG

DTI-scan 24M 0.14M (171x) 3.1m 0.7m 77.3h
VisMale 118M 0.94M (125x) 29.2m 6.5m -
Ackley4 204M 0.01M (104x) 1.1h 19.7m -
Amazon1 2.2M 0.16M (13.7x) 14.5s 3.7s 20.9h
Amazon2 18.4M 0.37M (49.7x) 281.9s 68.3s >200h
Roadnet 4.8M 0.75M (6.4x) 15.8s 6.06s >200h
S1.0 0.6M 16 (105)x 56.8s 22.1s 61.7s
S1.2 26M 12 (107)x 4.2h 1.8h -
S1.3 197M 7 (108)x 173h 74.3h -

Table 2: Compression factor achieved by using the discrete
Morse complex instead of the original simplicial complex.
Column |C| indicates the number of critical simplices, as
opposed to the number of simplices |Σ|, for each dataset.
Columns IA∗, IA∗

p and IG indicate the timings required for
computing the discrete Morse complex with our sequential
implementation, the multi-thread implementation, and the
Perseus tool, respectively.

an IG for encoding the input simplicial complex. 1421

To the extent of our knowledge, there are no im- 1422

plementations of the discrete Morse complex on a 1423

Simplex Tree. 1424

In our experiments, we consider both real and 1425

synthetic datasets. The hardware configuration 1426

used is an Intel i7 3930K CPU at 3.20Ghz with 1427

64GB of RAM. The data sets used in our experi- 1428

ments are described in Table 1. There are tetrahe- 1429

dralized volume data sets, and data sets obtained 1430

from networks and point clouds. Networks and 1431

point clouds have no filtration provided as input. 1432

In Table 2, we show first information about the 1433

size of the obtained discrete Morse complex (i.e., 1434

the number of cells), with respect to the origi- 1435

nal simplicial complex. The compression factor 1436

depends on the homological changes in the filtra- 1437

tion of a dataset and on the dataset. Volumet- 1438

ric datasets benefit from a compression of about 1439

19

two orders of magnitude, network datasets are com-1440

pressed by a factor of ten, while higher-dimensional1441

complexes are compressed by five to eight orders of1442

magnitude. This shows the advantage of using the1443

Morse complex instead of the original one for com-1444

puting homological information.1445

By comparing the timings, we see that our ap-1446

proach (based on the IA∗ data structure) always1447

outperforms Perseus (based on the IG). When the1448

number of simplices is low (dataset Sphere-1.0),1449

the two implementations require a similar amount1450

of time but, as soon as the number of simplices1451

increases, our approach is faster by two or three1452

orders of magnitude. With the increasing of the di-1453

mension of the complex, we see that the complexity1454

of computing the discrete Morse complex reaches1455

its limits taking also 173 hours to complete for1456

dataset Sphere-1.3. In our multi-threaded imple-1457

mentation, we have been able to use eight threads1458

on our machine configuration, processing 8 vertices1459

at a time. The speed up gained varies between a1460

2x and a 5x.1461

Figure 13 shows three evaluations. In the first1462

graph, we are evaluating the memory used for rep-1463

resenting the simplicial complex Σ (in blue) and1464

the Forman gradient V (in red). We can notice1465

that for the first three data sets, the complex is1466

the entity requiring the highest amount of mem-1467

ory. For the remaining data sets, we notice that1468

when the dimension increases, the storage cost de-1469

creases. For example, when comparing Ackeley41470

and S1.0, the total number of simplices is almost1471

the same (see Table 2, column |Σ|), while memory1472

consumption is dramatically reduced, being dataset1473

S1.3 stored with less than 3.4MB compared to the1474

7.9GB required by Ackeley4. This is again due1475

to the use of the IA∗ data structure and to the en-1476

coding for the Forman gradient based on the top1477

simplices.1478

While extracting the lower star in Algorithm 1,1479

the k-simplices are recursively extracted from the1480

IA∗ data structure and explicitly represented. This1481

operation causes the main increase in the memory1482

consumption at runtime. This is documented in the1483

remaining graphs of Figure 13. We are indicating1484

in green the static overhead required for storing the1485

simplicial complex and the Forman gradient and in1486

purple the amount of memory used at runtime.1487

As we can notice (column IA∗), the difference1488

between the static overhead and the dynamic over-1489

head is larger when working on datasets in higher 1490

dimensions, while it becomes negligible when work- 1491

ing in two or three dimensions. This fact is intrinsi- 1492

cally related to the dimension d of the original sim- 1493

plicial complex. When d is small, the lower star of 1494

each vertex is also small. When working on higher 1495

dimensional complexes, the number of simplices in 1496

the lower star grows exponentially, since the num- 1497

ber of simplices on the boundary of any k-simplex 1498

is exponential in k. In the worst-case scenario of 1499

our experiments (S1.3), the encoding of the star 1500

occupies 1.8GB at runtime, while storing the sim- 1501

plicial complex and the gradient requires less than 1502

100MB. 1503

The implementation in Perseus, based on the IG, 1504

does not present a difference between static and dy- 1505

namic overhead, since all the simplices are already 1506

represented at the beginning and progressively sim- 1507

plified during the computation. Thus, the max- 1508

imum peak is reached before starting the reduc- 1509

tion algorithm. As a result, the IG presents seri- 1510

ous limitations when the dimension of the complex 1511

increases. 1512

If we considering our parallel implementation 1513

(column IA∗p), we see that the maximum peak of 1514

memory is higher, since all threads run on the same 1515

machine. Looking at the graphs in the first column 1516

(DTI-scan, VisMale, Ackley4), we recognize 1517

that the runtime overhead of this version is still 1518

comparable to the one of the single-thread imple- 1519

mentation. This is an expected result since these 1520

are low dimensional data sets with a fairly small 1521

lower star for each vertex. With the increasing in 1522

the data set dimension (second column), the over- 1523

head required by the parallel implementation starts 1524

to be relevant. In the worst case, we have expe- 1525

rienced a memory overhead up to 6 times larger 1526

than the single thread implementation (third col- 1527

umn data set S1.3). These results suggest that 1528

the whole framework is promising for a distributed 1529

environment, where each process has its dedicated 1530

amount of memory. 1531

10. Concluding remarks 1532

We have studied different strategies to endow a 1533

simplicial complex with a Forman gradient through 1534

the use of homology-preserving operators and to 1535

extract the corresponding discrete Morse complex. 1536

20

Figure 13: Storage cost required by computing and storing the Forman gradient and the discrete Morse complex. The
first graph on the left indicates the amount of memory in GB required for storing the simplicial complex (blue bars) and
the Forman gradient (red bars). The remaining graphs indicate, for each dataset, the amount of memory in GB used
for storing the complex and the Forman gradient (green bars), and the overhead required at runtime for computing the
gradient (purple bars). Results are presented comparing the IA∗ data structure, the IG, and the parallel implementation
based on the IA∗ data structure (indicated as IA∗

p). Missing columns represent experiments that exceeded the maximum
amount of memory available.

We have formally proven the theoretical equiva-1537

lence of such methods which allow for reducing1538

the complexity of the computation through reduc-1539

tions and coreductions. We have developed and1540

implemented algorithms to efficiently build a dis-1541

crete Morse complex based on coreductions, on a1542

space-efficient representation of the simplicial com-1543

plex and on a compact encoding of the Forman gra-1544

dient, also implementing a parallel version of the1545

latter.1546

Based on the results obtained from the parallel1547

implementation, we are currently working on a dis-1548

tributed version of Algorithm 1. Since the process1549

is localized within the star of each vertex, by dis-1550

tributing the computation on different machines,1551

we expect to get a boost on timings without affect-1552

ing memory consumption.1553

We are also considering the application of this1554

work in single-parameter and multi-parameter per-1555

sistent homology computation, as the basis for tools1556

for shape understanding and retrieval, and in seg-1557

mentation of time-varying 3D scalar fields in the1558

context of scientific data visualization.1559

The best implementation currently available in1560

the literature for computing persistent homology1561

[28] on high-dimensional complexes is based on an- 1562

notations and on the Simplex Tree and it represents 1563

all the simplices of the simplicial complex explicitly 1564

[62]. This is also the case for any persistent ho- 1565

mology computation algorithms based on boundary 1566

map reduction, because of the need to represent all 1567

the simplices explicitly. This puts practical limita- 1568

tions when working on large complexes. In these 1569

cases, our approach is particularly useful since the 1570

Morse complex is a simpler structure sharing the 1571

same persistent homology as the original simplicial 1572

complex. 1573

Multi-parameter persistent homology (also called 1574

multi-dimensional persistent homology) is an ex- 1575

tension of persistent homology for data character- 1576

ized by multiple parameters, like multi-field data 1577

sets. In this case, not a single filtration but mul- 1578

tiple filtrations are considered. To date, the ap- 1579

proaches proposed in the literature for computing 1580

multi-parameter persistent homology are at a pi- 1581

oneering level and are not able to deal with the 1582

complexity and the size of real datasets. Recently, 1583

an interesting connection between multi-parameter 1584

persistent homology and discrete Morse theory has 1585

been pointed out in [14]. A formal proof is given 1586

21

of the equivalence between the multi-parameter1587

persistent homology of the Morse complex defined1588

by a Forman gradient compatible with the multi-1589

filtration and that of the underlying simplicial com-1590

plex is provided. An algorithm has been proposed1591

by Allili et al. [15] for computing a Forman gradi-1592

ent on a vector-valued function, but its implemen-1593

tation is limited to triangle meshes of very small1594

size. Based on the dimension-independent encod-1595

ing for the Forman gradient described in this pa-1596

per, we are planning to develop a new algorithm1597

that works independently of the dimension of the1598

domain (the underlying simplicial complex) and of1599

the codomain (the number of filtrations provided).1600

A parallel implementation will be also at the center1601

of future studies for empowering the computation1602

of multi-parameter persistent homology.1603

In scientific visualization, extremum graphs have1604

been defined as topological tools to understand and1605

visualize the structure of 3D scalar fields, i.e., scalar1606

fields defined at points in the three-dimensional Eu-1607

clidean space [13]. The extremum graph is a sub-1608

graph of the graph representing the boundary maps1609

of the Morse complex. We recall that the boundary1610

maps encode all the incidence relations between a1611

critical k-simplex and a critical (k−1)-simplex, for1612

1 ≤ k ≤ d = dim(Σ). The extremum graph only1613

represents the boundary maps between critical d-1614

simplices and (d−1)-simplices and between critical1615

1-simplices and 0-simplices. For each pair of criti-1616

cal simplices, it also encodes the chain of simplices1617

that connects the two critical ones. In [13], a vi-1618

sualization technique, called topological spines, has1619

been developed specifically for extremum graphs1620

not only of static 3D scalar fields, but also of time-1621

varying fields, which can be regarded as 4D scalar1622

fields. The algorithms described in Section 8 can1623

be suitably adapted to efficiently compute the ex-1624

tremum graphs of a scalar field. Using the scalar1625

function as a filtering function, we can compute the1626

Forman gradient V using Algorithm 1. The gradi-1627

ent paths of V now describe the behavior of the in-1628

put scalar field. Using Algorithm 2, we can extract1629

the incidence relations between critical simplices1630

by starting the descending traversal from critical1631

d-simplices and from critical 1-simplices. Our ap-1632

proach will make the computation of extremum1633

graphs [68] (and topological spines) feasible for 4D1634

fields, but also for 3D fields defined on a tetrahe-1635

dral mesh (as needed for complex 3D domains),1636

while the current approach [13] works only works 1637

on scalar fields defined on cubic grids. 1638

Acknowledgments 1639

This work has been partially supported by the 1640

US National Science Foundation under grant num- 1641

ber IIS-1116747. The authors wish to thank Davide 1642

Bolognini, Emanuela De Negri and Maria Evelina 1643

Rossi for their helpful comments and suggestions. 1644

References 1645

[1] V. De Silva, R. Ghrist, Homological sensor 1646

networks, Notices of the American Mathemat- 1647

ical Society 54. 1648

[2] R. Fellegara, U. Fugacci, F. Iuricich, L. De Flo- 1649

riani, Analysis of geolocalized social net- 1650

works based on simplicial complexes, in: 9th 1651

ACM SIGSPATIAL International Workshop 1652

on Location-Based Social Networks (LSBN), 1653

ACM, 2016. 1654

[3] S. Martin, A. Thompson, E. A. Coutsias, J.-P. 1655

Watson, Topology of cyclo-octane energy land- 1656

scape, Journal of Chemical Physics 132 (23) 1657

(2010) 234115. 1658

[4] R. van de Weygaert, G. Vegter, H. Edelsbrun- 1659

ner, B. J.-T. Jones, P. Pranav, C. Park, W. A. 1660

Hellwing, B. Eldering, N. Kruithof, E. Bos, 1661

et al., Alpha, Betti and the Megaparsec uni- 1662

verse: on the topology of the cosmic web, in: 1663

Transactions on Computational Science XIV, 1664

Springer, 2011, pp. 60–101. 1665

[5] M. K. Chung, P. Bubenik, P. T. Kim, Per- 1666

sistence diagrams of cortical surface data, in: 1667

Information Processing in Medical Imaging, 1668

Springer, 2009, pp. 386–397. 1669

[6] R. Forman, Morse theory for cell complexes, 1670

Advances in Mathematics 134 (1) (1998) 90– 1671

145. 1672

[7] P. Frosini, M. Pittore, New methods for reduc- 1673

ing size graphs, International Journal of Com- 1674

puter Mathematics 70 (3) (1999) 505–517. 1675

22

[8] A. J. Zomorodian, The tidy set: a minimal1676

simplicial set for computing homology of clique1677

complexes, in: Proceedings of the 2010 An-1678

nual Symposium on Computational Geometry,1679

ACM, 2010, pp. 257–266.1680

[9] L. De Floriani, U. Fugacci, F. Iuricich, P. Mag-1681

illo, Morse complexes for shape segmentation1682

and homological analysis: discrete models and1683

algorithms, Computer Graphics Forum 34 (2)1684

(2015) 761–785.1685

[10] V. Robins, P. J. Wood, A. P. Sheppard, The-1686

ory and algorithms for constructing discrete1687

Morse complexes from grayscale digital im-1688

ages, IEEE Transactions on Pattern Analysis1689

and Machine Intelligence 33 (8) (2011) 1646–1690

1658.1691

[11] S. Harker, K. Mischaikow, M. Mrozek,1692

V. Nanda, Discrete Morse theoretic algorithms1693

for computing homology of complexes and1694

maps, Foundations of Computational Mathe-1695

matics 14 (1) (2014) 151–184.1696

[12] S. Harker, K. Mischaikow, M. Mrozek,1697

V. Nanda, H. Wagner, M. Juda, P. D lotko,1698

The efficiency of a homology algorithm based1699

on discrete Morse theory and coreductions,1700

in: Proceedings 3rd International Workshop1701

on Computational Topology in Image Context1702

(CTIC 2010). Image A, Vol. 1, 2010, pp. 41–1703

47.1704

[13] C. Correa, P. Lindstrom, P.-T. Bremer, Topo-1705

logical spines: a structure-preserving visual1706

representation of scalar fields, IEEE Transac-1707

tions on Visualization and Computer Graphics1708

17 (12) (2011) 1842–1851.1709

[14] M. Allili, T. Kaczynski, C. Landi, Reducing1710

complexes in multidimensional persistent ho-1711

mology theory, Journal of Symbolic Computa-1712

tion 78 (2017) 61 – 75.1713

[15] M. Allili, T. Kaczynski, C. Landi, F. Ma-1714

soni, Algorithmic construction of acyclic par-1715

tial matchings for multidimensional persis-1716

tence, Springer, 2017, pp. 375–387.1717

[16] U. Fugacci, F. Iuricich, L. De Floriani, Ef-1718

ficient computation of simplicial homology1719

through acyclic matching, in: Symbolic and1720

Numeric Algorithms for Scientific Computing 1721

(SYNASC), 2014 16th International Sympo- 1722

sium on, 2014, pp. 587–593. 1723

[17] D. Canino, L. De Floriani, K. Weiss, IA∗: 1724

an adjacency-based representation for non- 1725

manifold simplicial shapes in arbitrary dimen- 1726

sions, Computers & Graphics 35 (3) (2011) 1727

747–753. 1728

[18] V. Nanda, The Perseus software project for 1729

rapid computation of persistent homology. 1730

URL http://www.math.rutgers.edu/ 1731

~vidit/perseus/index.html 1732

[19] A. T. Lundell, S. Weingram, The topology of 1733

CW complexes, Van Nostrand Reinhold Com- 1734

pany, 1969. 1735

[20] H. Edelsbrunner, D. G. Kirkpatrick, R. Sei- 1736

del, On the shape of a set of points in the 1737

plane, IEEE Transactions on Information The- 1738

ory 29 (4) (1983) 551–559. 1739

[21] E. W. Chambers, V. De Silva, J. Erickson, 1740

R. Ghrist, Vietoris-Rips complexes of planar 1741

point sets, Discrete & Computational Geome- 1742

try 44 (1) (2010) 75–90. 1743

[22] A. Hatcher, Algebraic topology, Cambridge 1744

University Press, 2002. 1745

[23] A. J. Zomorodian, Fast construction of the 1746

Vietoris-Rips complex, Computer and Graph- 1747

ics (2010) 263–271. 1748

[24] V. De Silva, G. Carlsson, Topological estima- 1749

tion using witness complexes, in: Proceedings 1750

of the First Eurographics Conference on Point- 1751

Based Graphics, 2004, pp. 157–166. 1752

[25] V. De Silva, A weak definition of Delaunay 1753

triangulation, arXiv preprint cs/0310031. 1754

[26] L. J. Guibas, S. Y. Oudot, Reconstruction us- 1755

ing witness complexes, Discrete & Computa- 1756

tional geometry 40 (3) (2008) 325–356. 1757

[27] T. K. Dey, F. Fan, Y. Wang, Graph induced 1758

complex on point data, in: Proceedings of the 1759

Twenty-ninth Annual Symposium on Compu- 1760

tational Geometry, SoCG ’13, 2013, pp. 107– 1761

116. 1762

23

http://www.math.rutgers.edu/~vidit/perseus/index.html
http://www.math.rutgers.edu/~vidit/perseus/index.html
http://www.math.rutgers.edu/~vidit/perseus/index.html
http://www.math.rutgers.edu/~vidit/perseus/index.html
http://www.math.rutgers.edu/~vidit/perseus/index.html
http://www.math.rutgers.edu/~vidit/perseus/index.html

[28] H. Edelsbrunner, J. Harer, Persistent homol-1763

ogy - a survey, Contemporary Mathematics1764

453 (2008) 257–282.1765

[29] A. J. Zomorodian, Topology for computing,1766

Cambridge University Press, 2005.1767

[30] R. Ghrist, Barcodes: the persistent topology1768

of data, Bulletin of the American Mathemati-1769

cal Society 45 (1) (2008) 61–75.1770

[31] R. Forman, A user’s guide to discrete Morse1771

theory, Séminaire Lotharingien de Combina-1772

toire 48 (2002) 35.1773

[32] K. Mischaikow, V. Nanda, Morse theory for1774

filtrations and efficient computation of persis-1775

tent homology, Discrete & Computational Ge-1776

ometry 50 (2) (2013) 330–353.1777

[33] L. De Floriani, A. Hui, Data structures for1778

simplicial complexes: an analysis and a com-1779

parison, in: M. Desbrun, H. Pottmann (Eds.),1780

Proc. 3rd Eurographics Symposium on Geom-1781

etry Processing, 2005, pp. 119–128.1782

[34] H. Edelsbrunner, Algorithms in combinatorial1783

geometry, Springer, 1987.1784

[35] L. De Floriani, D. Greenfieldboyce, A. Hui, A1785

data structure for non-manifold simplicial d-1786

complexes, in: Proceedings of the 2004 Eu-1787

rographics/ACM SIGGRAPH Symposium on1788

Geometry processing, ACM, 2004, pp. 83–92.1789

[36] L. De Floriani, A. Hui, D. Panozzo, D. Canino,1790

A dimension-independent data structure for1791

simplicial complexes, Proceedings of the1792

19th International Meshing Roundtable (2010)1793

403–420.1794

[37] D. Canino, L. De Floriani, Representing1795

simplicial complexes with Mangrove, Pro-1796

ceedings of the 22nd Iinternational Meshing1797

Roundtable (2013) 465–483.1798

[38] D. Canino, The Mangrove TDS Library: a1799

C++ tool for fast prototyping of topological1800

data structures (2012).1801

URL http://mangrovetds.sourceforge.1802

net1803

[39] R. Fellegara, K. Weiss, L. De Floriani, The 1804

Stellar tree: a compact representation for sim- 1805

plicial complexes and beyond, arXiv preprint 1806

arXiv:1707.02211. 1807

[40] J.-D. Boissonnat, C. Maria, The Simplex Tree: 1808

an efficient data structure for general sim- 1809

plicial complexes, Algorithmica 70 (3) (2014) 1810

406–427. 1811

[41] C. Maria, J.-D. Boissonnat, M. Glisse, 1812

M. Yvinec, The GUDHI library: simpli- 1813

cial complexes and persistent homology, in: 1814

H. Hong, C. Yap (Eds.), Mathematical Soft- 1815

ware ICMS 2014, Springer, 2014, pp. 167–174. 1816

[42] J.-D. Boissonnat, K. C. S., S. Tavenas, 1817

Building efficient and compact data struc- 1818

tures for simplicial complexes, in: L. Arge, 1819

J. Pach (Eds.), 31st International Symposium 1820

on Computational Geometry, 2015, pp. 642– 1821

656. 1822

[43] D. Attali, A. Lieutier, D. Salinas, Efficient 1823

data structure for representing and simplify- 1824

ing simplicial complexes in high dimensions, 1825

in: Proceedings of the 27th ACM Symposium 1826

on Computational Geometry, 2011, pp. 501– 1827

509. 1828

[44] T. Lewiner, H. Lopes, G. Tavares, Optimal dis- 1829

crete Morse functions for 2-manifolds, Compu- 1830

tational Geometry 26 (3) (2003) 221 – 233. 1831

[45] M. Mrozek, B. Batko, Coreduction homology 1832

algorithm, Discrete & Computational Geome- 1833

try 41 (1) (2009) 96–118. 1834

[46] M. Mrozek, T. Wanner, Coreduction homol- 1835

ogy algorithm for inclusions and persistent ho- 1836

mology, Comput. Math. Appl. 60 (10) (2010) 1837

2812–2833. 1838

[47] P. D lotko, T. Kaczynski, M. Mrozek, T. Wan- 1839

ner, Coreduction homology algorithm for regu- 1840

lar CW-complexes, Discrete & Computational 1841

Geometry 46 (2) (2011) 361–388. 1842

[48] B. Benedetti, F. H. Lutz, Random discrete 1843

Morse theory and a new library of trian- 1844

gulations, Experimental Mathematics 23 (1) 1845

(2014) 66–94. 1846

24

http://mangrovetds.sourceforge.net
http://mangrovetds.sourceforge.net
http://mangrovetds.sourceforge.net
http://mangrovetds.sourceforge.net
http://mangrovetds.sourceforge.net
http://mangrovetds.sourceforge.net
http://mangrovetds.sourceforge.net
http://mangrovetds.sourceforge.net

[49] F. Cazals, F. Chazal, T. Lewiner, Molecular1847

shape analysis based upon the Morse-Smale1848

complex and the Connolly function, in: Proc.1849

9th Annual Symposium on Computational Ge-1850

ometry, 2003, pp. 351–360.1851

[50] H. King, K. Knudson, N. Mramor, Generat-1852

ing discrete Morse functions from point data,1853

Experimental Mathematics 14 (4) (2005) 435–1854

444.1855

[51] A. Gyulassy, P.-T. Bremer, B. Hamann,1856

V. Pascucci, Practical considerations in1857

Morse-Smale complex computation, in:1858

V. Pascucci, X. Tricoche, H. Hagen, J. Tierny1859

(Eds.), Topological Methods in Data Analysis1860

and Visualization: Theory, Algorithms, and1861

Applications, Mathematics and Visualization,1862

Springer, 2011, pp. 67–78.1863

[52] A. Gyulassy, P.-T. Bremer, V. Pascucci, Com-1864

puting Morse-Smale complexes with accurate1865

geometry, IEEE Transactions on Visualization1866

and Computer Graphics 18 (12) (2012) 2014–1867

2022.1868

[53] D. Günther, J. Reininghaus, H. Wagner,1869

I. Hotz, Efficient computation of 3D Morse-1870

Smale complexes and persistent homology us-1871

ing discrete Morse theory, The Visual Com-1872

puter 28 (10) (2012) 959–969.1873

[54] N. Shivashankar, S. Maadasamy, V. Natara-1874

jan, Parallel computation of 2D Morse-Smale1875

complexes, IEEE Transactions on Visualiza-1876

tion and Computer Graphics 18 (10) (2012)1877

1757–1770.1878

[55] N. Shivashankar, V. Natarajan, Parallel com-1879

putation of 3D Morse-Smale complexes, Com-1880

puter Graphics Forum 31 (3) (2012) 965–974.1881

[56] R. Fellegara, F. luricich, L. De Floriani,1882

K. Weiss, Efficient computation and simpli-1883

fication of discrete Morse decompositions on1884

triangulated terrains, in: Proceedings of the1885

22Nd ACM SIGSPATIAL International Con-1886

ference on Advances in Geographic Informa-1887

tion Systems, SIGSPATIAL ’14, 2014, pp.1888

223–232.1889

[57] K. Weiss, F. Iuricich, R. Fellegara, L. De Flori-1890

ani, A primal/dual representation for discrete1891

Morse complexes on tetrahedral meshes, Com- 1892

puter Graphics Forum 32 (3) (2013) 361–370. 1893

[58] A. J. Zomorodian, G. Carlsson, Computing 1894

persistent homology, Discrete & Computa- 1895

tional Geometry 33 (2) (2005) 249–274. 1896

[59] U. Bauer, M. Kerber, J. Reininghaus, H. Wag- 1897

ner, PHAT - Persistent Homology Algorithms 1898

Toolbox, in: H. Hong, C. Yap (Eds.), Math- 1899

ematical Software ICMS 2014, Vol. 8592 of 1900

Lecture Notes in Computer Science, Springer, 1901

2014, pp. 137–143. 1902

[60] U. Bauer, M. Kerber, J. Reininghaus, Dis- 1903

tributed computation of persistent homology, 1904

in: Proceedings of the Meeting on Algorithm 1905

Engineering & Expermiments, 2014, pp. 31– 1906

38. 1907

[61] P. D lotko, H. Wagner, et al., Simplification 1908

of complexes of persistent homology computa- 1909

tions, Homology, Homotopy and Applications 1910

16 (1) (2014) 49–63. 1911

[62] J.-D. Boissonnat, T. K. Dey, C. Maria, The 1912

compressed annotation matrix: an efficient 1913

data structure for computing persistent coho- 1914

mology, Algorithmica 73 (3) (2015) 607–619. 1915

[63] S. Pemmaraju, S. Skiena, Computational Dis- 1916

crete Mathematics: combinatorics and graph 1917

theory with Mathematica, Cambridge Univer- 1918

sity Press, 2003. 1919

[64] D. H. Ackley, A connectionist machine for ge- 1920

netic hillclimbing, Kluwer Academic Publish- 1921

ers, 1987. 1922

[65] F. Iuricich, The IA∗, an indexed-based data 1923

structure with adjacencies for encoding sim- 1924

plicial complexes. 1925

URL https://github.com/IuricichF/ 1926

IAstar 1927

[66] M. Joswig, M. E. Pfetsch, Computing opti- 1928

mal Morse matchings, SIAM J. Discret. Math. 1929

20 (1) (2006) 11–25. 1930

[67] D. Günther, J. Reininghaus, I. Hotz, H. Wag- 1931

ner, Memory-efficient computation of persis- 1932

tent homology for 3D images using discrete 1933

Morse theory, in: 24th SIBGRAPI Conference 1934

25

https://github.com/IuricichF/IAstar
https://github.com/IuricichF/IAstar
https://github.com/IuricichF/IAstar
https://github.com/IuricichF/IAstar
https://github.com/IuricichF/IAstar
https://github.com/IuricichF/IAstar
https://github.com/IuricichF/IAstar
https://github.com/IuricichF/IAstar

on Graphics, Patterns and Images, 2011, pp.1935

25–32.1936

[68] V. Narayanan, D. M. Thomas, V. Natarajan,1937

Distance between extremum graphs, in: 20151938

IEEE Pacific Visualization Symposium (Paci-1939

ficVis), 2015, pp. 263–270.1940

26

	Introduction
	Background
	Simplicial complexes
	Simplicial and persistent homology
	Discrete Morse theory

	Related work
	Topological data structures for simplicial complexes
	Computing a discrete Morse complex

	Encoding a simplicial complex endowed with a Forman gradient
	Encoding a simplicial complex
	Experimental evaluation
	Encoding a Forman gradient

	Reductions and coreductions for discrete Morse complexes
	Equivalence of reduction and coreduction sequences
	Interleaving reductions and coreductions
	A coreduction-based algorithm for computing a discrete Morse complex
	Construction of a (filtered) Forman gradient
	Extracting the discrete Morse complex

	Experimental results
	Concluding remarks

