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Abstract
We propose a family of spatial data structures for the representation and processing of Tri-
angulated Irregular Networks (TINs). We call such data structures Terrain trees. A Terrain 
tree combines a minimal encoding of the connectivity of the TIN with a hierarchical spatial 
index. Connectivity relations are extracted locally at run-time, within each leaf block of the 
hierarchy, based on specific application needs. Spatial queries are performed by exploring 
the hierarchical data structure. We present a new framework for terrain analysis based on 
Terrain trees. The framework, implemented in the Terrain trees library (TTL), contains 
algorithms for morphological features extraction, such as roughness and curvature, and for 
topology-based analysis of terrains. Moreover, it includes a technique for multivariate visu-
alization, which enables the analysis of multiple scalar fields defined on the same terrain. 
To prove the effectiveness and scalability of such framework, we have compared the differ-
ent Terrain trees against each other and also against the most compact state-of-the-art data 
structure for TINs. Comparisons are performed on storage and generation costs and on the 
efficiency in performing terrain analysis operations.
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1  Introduction

Thanks to recent development of remote sensing technologies such as Light Detection and 
Ranging (LiDAR), the amount of available spatial data, represented as raw massive point 
clouds, has been increasing exponentially. LiDAR data is used in a variety of different 
fields, including urban modeling [69], climate study [3], earthquake analysis [47], disaster 
management [43, 75], flood risk mapping [71], forest analysis [12, 37, 74], and coastal 
morphology analysis [65, 73]. Surface models based on LiDAR data enable the extraction 
of features relevant for several applications. As an example, the slope of a terrain is used 
to map seafloor habitats [42], while pairing slope, roughness, and curvature of a terrain is 
used to model coral distribution [17]. Also, the segmentation of a terrain according to its 
critical points (i.e., peaks and pits) provides information about terrain morphology, which 
are fundamental for assessing the risk of landslides or floods. Research in these fields has 
been greatly enhanced by the increasing availability of open data repositories.

A raster representation is often used for modeling a terrain or a surface from airborne 
LiDAR data, mainly because of the availability of a large number of software tools for pro-
cessing raster data in Geographic Information Systems (GISs) and remote sensing. While it 
is always possible to transform a point cloud into a raster representation, this is a computa-
tionally intensive operation, which can account for 70-80% of the time required by the total 
analysis pipeline [1, 6]. Also, artifacts might be created due to the resolution of the raster 
grid, especially if the original point cloud contains noise due to acquisition errors, or if it 
contains missing data, due to the presence of occlusions.

Adaptive alternatives to raster representations are Triangulated Irregular Networks 
(TINs), which are used for encoding irregular distributed data at the cost of a higher mem-
ory consumption with respect to raster-based elevation models (usually called Digital Ele-
vation Models (DEMs)). But compact and widely-used data structures for encoding TINs 
suffer from scalability issues. For instance, using the most compact state-of-art data struc-
ture for triangle meshes, we can process meshes up to 150 million of vertices (300 mil-
lion of triangles) on our workstation with an Intel Xeon E5-2630 v4 CPU at 2.20Ghz and 
64GB of RAM, which is much lower than the size of currently available data sets (see, for 
instance, the OpenTopography repository1).

We propose here a new data structure for in-memory processing of TINs, the Terrain tree, 
which encodes the topology of a triangulated terrain combined with a spatial index built on the 
triangle mesh. We present, discuss and compare three spatial indexes which together form the 
Terrain tree family. By encoding the vertices incident in each triangle as well as the field val-
ues associated with each vertex, we provide the minimum amount of information required for 
extracting the full mesh connectivity and for processing such fields locally. On the other hand, 
the spatial index provides the ability to navigate the triangle mesh at a global scale. These two 
components enable the efficient extraction of connectivity information and guarantee com-
pactness and scalability. Our work builds on a short paper [23] in which we have introduced a 
single spatial index for triangle meshes, using point-based decomposition of the domain, and 
we discuss the extraction of some basic morphological terrain features, as slope, curvature and 
critical points identification. In this work, we have developed a new distributed approach for 
extracting such morphological information on all Terrain trees. Moreover, we have developed 
distributed algorithms for computing and analyzing the topology of a terrain by using discrete 

1  https://​opent​opogr​aphy.​org/

https://opentopography.org/
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Morse theory [30]. Such algorithms require an efficient navigation of a triangle mesh, which 
is a challenging task in hierarchical and modular mesh data structures like the Terrain trees.

Morse theory [52] has been used for computing segmentations of the graph of 2D and 3D 
scalar fields based on the critical points of the field, like the critical net, which consists of the 
critical points and of the separatrix lines connecting them, or Morse decompositions, defined 
by the regions of influence of the critical points. Due to the discrete nature of the problem, 
recent research has focused on discrete Morse theory [29] which is a combinatorial counter-
part of smooth Morse theory [52]. Discrete Morse theory is based on the definition of a dis-
crete vector field, also called a Forman gradient, which emulates the gradient of the original 
function. By means of the Forman gradient, the connectivity of the critical points and the 
Morse decomposition can be extracted, thus providing an efficient and compact representation 
of the terrain topology [15, 38].

It is common in applications to study a terrain in combination with additional fields defined 
on it, and we can find such data in several domains, like forest management, weather predic-
tions and geological sciences [40]. On geological data, such fields usually represent gravity 
and intensity of the magnetic field. In the case of LiDAR point clouds, these fields can be 
either: (i) generated by the instrument used for creating the point cloud (e.g., the elevation of 
each point), (ii) directly derived from the raw data (e.g., the slope or the airborne laser scan-
ning cover), or (iii) computed by a domain expert at run-time (e.g., estimating the curvature 
and roughness values from the elevation of each point). These types of data sets are referred to 
as multifield datasets, and they are formally represented by triangle meshes and collections of 
scalar values at the vertices of the mesh. To analyze such multifield datasets, we have extended 
the strategy defined by Nagaraj et al. [53] for computing a new scalar function capturing the 
relationships among the multifield data.

The remainder of the paper is organized as follows. In Section 2, we review some back-
ground notions on triangle meshes and on discrete Morse theory. In Section 3, we discuss 
related work on connectivity-based data structures for triangle meshes, on spatial indexes for 
triangle meshes and maps, and on techniques from topological data analysis relevant to our 
work. In Section 4, we present the Terrain trees, describing the different subdivision rules and 
how they are generated, and, in Section 5, their encoding structure and how to execute basic 
spatial and topological queries on them. In Section 6, we describe how to extract classical 
morphological terrain features, namely triangle and edge slope, curvature and roughness in 
the Terrain trees framework. In Section 7, we define how to perform topology-based terrain 
analysis on Terrain trees by using a discrete Morse gradient. First, we introduce a distributed 
algorithm for extracting a discrete gradient field, and, then, a distributed procedure for extract-
ing the critical net on the critical points of the gradient. In Section 8, we depict how multivari-
ate visualization is performed in Terrain trees. In Section 9, we provide an experimental evalu-
ation of the Terrain trees by comparing the performances of the different spatial indexes also 
against a state-of-the-art compact data structure for meshes. Finally, in Section 10, we draw 
some concluding remarks and discuss directions for future work.

2 � Background notions

In this Section, we review some background notions on triangle meshes, which are at the 
basis of triangulated terrains, and on Morse and discrete Morse theories, which are at the 
basis of the terrain analysis developed in this work.
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2.1 � Triangulated Irregular Networks (TINs)

A Triangulated Irregular Network (TIN) is a digital terrain model defined by a finite set of 
irregularly distributed points in the plane, each of which has an elevation value associated. 
A TIN consists of a triangle mesh connecting the points in the plane and of a piecewise 
linear interpolating function defined on the triangles of such mesh.

To define a triangle mesh, we need to introduce the concept of a simplex. A k-simplex 
� is the convex hull of k + 1 independent points in the Euclidean space �n (with k ≥ 0 ). k 
is the dimension of � . A 0-simplex is a vertex, a 1-simplex is an edge and a 2-simplex is 
a triangle. An h-facet �′ of a k-simplex � is an h-simplex ( 0 ≤ h < k ) generated by h + 1 
vertices of � . For instance, a triangle has three 0-facets, its vertices, and three 1-facets, its 
edges. The set of all the facets of a simplex defines its boundary. Conversely, the star of a 
simplex � is the set of simplices that have � as a facet. For instance, the star of a vertex is 
the set of triangles and edges incident in it. The link of a simplex � is the set of all the fac-
ets of simplices in the star of � that are not incident in � . A triangle mesh � is a collection 
of vertices (0-simplices), edges (1-simplices), and triangles (2-simplices) such that, given 
any two triangles in � , either they have an empty intersection or they intersect at a com-
mon simplex (edge or vertex).

The incidences and adjacencies among the simplices of a triangle mesh are captured by 
connectivity relations [16]. We distinguish among boundary relations, which relate a sim-
plex to its facets, co-boundary relations, which relate a simplex to the simplices for which 
it is a facet, and adjacency relations, which relate simplices sharing a facet. For instance, 
the Triangle-Vertex (TV) relation is a boundary relation that associates with a triangle t its 
three vertices. The Vertex-Triangle (VT) relation is a co-boundary relation that associates 
with a given vertex the triangles in its star. The Triangle-Triangle (TT) relation is an adja-
cency relation that associates with a triangle t the three triangles sharing an edge with t.

2.2 � Morse theory

Let us consider a domain D ⊆ ℝ
2 and a smooth (i.e., C∞ ) scalar function f defined over D 

[70]. A point p ∈ D is called a critical point of f if and only if the gradient of f vanishes at 
p. The determinant of the Hessian matrix Hessp(f ) of the second order partial derivatives of 
f, evaluated in p, provides additional information about the critical points of f. The number 
of negative eigenvalues of Hessp(f ) , called the index of p, defines the type of the criti-
cal point. A critical point of index 0 is a minimum, a critical point of index 1 is a saddle, 
and a critical point of index 2 is a maximum. For each critical point p, the eigenvectors of 
Hessp(f ) define the directions in which function f decreases. The lines everywhere tangent 
to the gradient of function f are called integral lines. An integral line connecting two criti-
cal points of consecutive index is called a separatrix line.

Morse theory [52] has been developed for smooth functions f such that all the criti-
cal points of f are non-degenerate, i.e., Hessp(f ) ≠ 0 . In such cases f is said to be a Morse 
function. The set of critical points and integral lines define a decomposition of D based on 
the regions of influence of the critical points. If we consider a critical point p of index k, 
the integral lines converging at p form a k-cell, called the descending manifold of p. The 
descending manifold of a maximum is a region, the descending manifold of a saddle is a 
line and that of a minimum, a point. The collection of all descending manifolds form the 
descending Morse complex. Dually, integral lines originating at p form a (2 − k)-cell, called 
the ascending manifold of p. Here, the ascending manifold of a maximum is a point, the 
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ascending manifold of a saddle is a line and that of a minimum a region. The collection of 
the ascending manifolds forms the ascending Morse complex.

Figure  1(a)  shows the critical points of f, namely minima ( ), saddles ( ), or max-
ima ( ). Lines indicate integral lines, while bold lines indicate separatrix lines connecting 
minima to saddles and saddles to maxima. In Fig. 1(b), we depict in red the descending 
manifold defined by the integral lines having destination in the maximum. In Fig. 1(c), we 
depict in yellow the ascending manifold defined by the integral lines having their origin 
at the minimum. The collection of all descending and ascending manifolds defines the 
descending and ascending Morse complexes, respectively, depicted in Fig. 1(d) and (e). In 
this work, we are specifically interested in the critical net that compactly describes the ter-
rain morphology. The critical net is a network having its nodes at the critical points, and as 
arcs the separatrix lines connecting critical points of consecutive indexes. In Fig. 1(a) the 
critical net is depicted as a set of lines in bold connecting critical points.

2.3 � Discrete Morse theory

In the applications we deal with scalar fields sampled at discrete locations within a domain. 
To this aim, the results of Morse theory, defined in the smooth case, have been extended by 
its discrete counterpart, called Discrete Morse Theory [29]. By assuming a scalar function 
F, defined at the vertices of a triangle mesh � , discrete Morse theory allows for the compu-
tation of a combinatorial gradient approximating the gradient of F, also called Forman gra-
dient. The Forman gradient is defined by a collection of simplex pairs such that a k-simplex 

Fig. 1   (a) Minima ( ), saddles ( ), and maxima ( ) and the integral lines connecting them. (b) Descend-
ing manifold corresponding to a maximum. (c) Ascending manifold corresponding to a minimum. (d) 
Descending Morse complex and (e) ascending Morse complex
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of � is paired with a (k − 1)-simplex or a (k + 1)-simplex, and each simplex of � is in at 
most one pair. A k-simplex involved in no pairs is called a critical simplex of index k.

A gradient pair can be viewed as an arrow formed by a head (k-simplex) and a tail 
( (k − 1)-simplex). In a triangle mesh, we have arrows formed by a triangle and an edge 
(triangle-edge pair) and by an edge and a vertex (edge-vertex pair). In a triangle mesh, 
unpaired simplices can be: critical triangles indicating maxima, critical edges indicating 
saddles, and critical vertices indicating minima. Figure  2(b)  shows the Forman gradient 
computed on the triangle mesh shown in Fig. 2(a). Black arrows indicate gradient pairs. 
Red points indicate critical triangles, green points indicate critical edges, and blue points 
indicate critical vertices.

In the same way, critical simplices are the discrete counterpart of critical points, and 
sequences of gradient pairs are the discrete counterpart of the integral lines. We call a 
V-path a sequence of simplices [�0, �0, ..., �i, �i, ..., �q, �q] such that �i and �i+1 are on the 
boundary of �i and (�i, �i) are paired simplices, where i = 0, ..., q . A separatrix V-path is a 
triple (�, �, �) , where � and � are two critical simplices having consecutive indexes and � is 
a V-path connecting � to � . In a triangle mesh � , we have separatrix V1-paths connecting 
a critical edge to a critical vertex and separatrix V2-paths connecting a critical triangle to a 
critical edge. In Fig. 2(c) separatrix V-paths are depicted in red.

V-paths and separatrix V-paths are used to extract features from the Forman gradient, 
including the critical net. Specifically, within the framework of Forman theory, the vertices 
of the critical net are the critical simplices of V. Arcs of the critical net are the separatrix 
V-paths connecting them. A geometrical interpretation of the critical net is given by con-
necting tails and heads of all the arrows in the separatrix V-paths. Figure 2(d) shows in red 
the critical net computed by following the separatrix V-paths.

3 � Related work

In this Section, we review some related work on connectivity-based data structures for tri-
angle meshes, on hierarchical spatial indexes for maps and meshes, and on techniques for 
topological data analysis.

3.1 � Connectivity‑based data structures

Connectivity-based data structures extend graph-based data structures for support-
ing the efficient extraction of connectivity relations (see [16] for a survey). A variety of 

Fig. 2   (a) A TIN with elevation depicted according to a diverging blue-red colormap. (b) Forman gradient, 
(d) separatrix V-paths, and (c) the corresponding critical net
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connectivity-based data structures have been developed in the literature for triangle meshes 
[16]. The most widely used data structures are triangle-based ones, which encode the verti-
ces and the triangles of the mesh but not the edges. The most compact triangle-based repre-
sentation is the indexed data structure, which encodes the vertices and the triangles of the 
mesh, and, for each triangle, the references to its vertices. The Indexed data structure with 
Adjacencies (IA data structure) [55, 59] extends the indexed data structure by explicitly 
encoding the adjacencies between triangles through the Triangle-Triangle relation and, for 
each vertex, the index of a triangle incident into it.

Other triangle-based data structures are the Corner Table (CoT) [61] and the Sorted 
Opposite Table (SOT) [32] data structures, in which the connectivity of the triangles is 
encoded through the concept of corner. Given a triangle t, a corner is a reference to an 
edge-adjacent triangle of t associated with one the vertices of t. Each triangle is thus identi-
fied by three corners. The storage requirement of the CoT data structure is the same that 
of the IA data structure, as shown in [16]. The SOT data structure introduces a compact 
version of the CoT and IA data structures, by encoding only the triangles of the mesh and 
the Triangle-Triangle relation, thus requiring about 50% of the storage of the other two 
representations. However, the SOT data structure is only suited for static meshes and static 
applications, since modifications to the mesh require the global reconstruction of the Trian-
gle-Vertex relation. Edge-based data structures are also used for triangle meshes, but they 
have been shown to be more verbose than triangle-based ones  [16], while providing the 
same computational performances.

3.2 � Hierarchical spatial indexes

Hierarchical spatial indexes use a recursive subdivision of the space on which the objects 
of interest are embedded according to different refinement rules. The main classification 
is between regular refinement and bisection refinement [5]. Regular refinement on rectan-
gular blocks generates quadtrees in 2D space, and octrees in 3D space, while the bisec-
tion refinement of axis-aligned hyper-rectangles bisected by axis-aligned hyperplanes 
generates kD-trees. These decompositions have been originally defined for indexing point 
sets. They subdivide the space either into blocks of equal size, generating Point-Region 
(PR) quadtrees and kD-trees [57] or by using the positions of the points, generating point 
quadtrees and point kD-trees [28]. In the following, we review spatial indexes dealing with 
connected entities and maps (see [63] for an in-depth treatment of the subject).

The class of Polygonal Map (PM)-quadtrees [64] extends the PR-quadtree to repre-
sent polygonal maps in 2D space, considered as collections of segments intersecting only 
at most at their extreme vertices. There are three variants of a PM-quadtree, namely the 
PM1 − quadtree , the PM2 − quadtree and the PM3 − quadtree . These differ in their subdi-
vision rule, but they all maintain a list of edges in their leaf blocks.

The Randomized Polygonal Map (PMR)-quadtree [35, 54] is an index for collection of 
line segments in the plane (not necessarily forming a polygonal map). In a PMR-quadtree, 
if the insertion of an edge causes the number of edges in a leaf block to exceed a given 
threshold, the block is split, but only once, thus generating an order-dependent quadtree 
subdivision. In [45] it has been proven that the number of blocks in a PR-quadtree is pro-
portional to the number of line segments and is independent of the depth of the tree.

A first attempt to extend the PM2-quadtree to index triangle meshes is the 
PM2 − Trianglequadtree(PM2T − quadtree) [13], in which triangles, in place of edges, 
guide the partition into blocks. However, the PM2T-quadtree has two fundamental 
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limitations. The first one is that each block indexes just one vertex, leading to a very 
deep hierarchy. The second limitation is that the spatial index is stored on top of the IA 
data structure, leading to a verbose data structure, which greatly limits its scalability.

Spatial indexes have been widely used for terrain rendering [10, 31], providing 
efficient ways to generate adaptive meshes in in-core and out-of-core environments. 
Such representations are optimized for rendering, but not for geometric processing, as 
required in terrain analysis. We refer an interested reader to [58] for a description of 
such approaches.

3.3 � Methods from topological data analysis

Morse theory [52] has been the basis for extracting topological structures, like Morse 
and Morse-Smale complexes [33]. Morse theory is defined for smooth functions, but 
recently two discrete counterparts have been developed, piecewise linear Morse theory 
[4] and Discrete Morse Theory [30]. In our work we are focusing on this latter, and we 
refer the reader to [15] for a complete analysis of these methods.

Among the many algorithms defined for computing a Forman gradient [15], the most 
efficient ones are those computing the gradient from a function sampled at the vertices 
of a triangle or tetrahedral mesh, or of a regular grid. The algorithm described in [41] 
is based on a divide-and-conquer approach and has the main drawback of introducing 
many spurious critical simplices. In [67], a similar approach, based on a weighted dis-
crete function, has been defined for computing a Forman gradient on 2D regular grids. 
The algorithm is well suited for parallelization and significantly reduces the number of 
spurious critical cells. In [60], an algorithm is proposed for 3D regular grids that pro-
cesses the lower star of each vertex independently. The lower star of a vertex v is the set 
of grid cells in the star of v, on which the function values at the vertices different from v 
is lower than the function value at v. This algorithm does not generate spurious critical 
cells. The algorithm has been extended to triangle [24] and tetrahedral meshes [72] by 
using a new implicit encoding of the discrete gradient. It has been shown [44] that for 
triangle meshes, the discrete Forman gradient finds a critical vertex for each piecewise 
linear minimum (i.e., a minimum found by applying piecewise linear Morse theory), 
while piecewise linear saddles and maxima are on the boundary of critical edges and 
critical triangles.

Recently, a great interest arose in the visualization community in the analysis of data-
sets having several scalar values per sampled point, called multifield data. Critical fea-
tures are extracted from such data to highlight information about the scalar fields therein 
defined. Examples of such structures are the Reeb space [20], the Joint Contour Nets 
(JCNs) [7], fiber surfaces [8, 68], the Jacobi set [18] and the Pareto sets [36]. Based 
on discrete Morse theory, a few approaches appeared extending to the multivariate case 
the extraction of a discrete gradient [2]. The first algorithm capable of dealing with real 
data of reasonable size is discussed in [39]. In the case of triangulated terrains, captur-
ing the relationships among the different scalar fields in an “aggregate” value results 
particularly effective as it reduces the problem to a single scalar field visualization prob-
lem. A recent technique proposed by Nagaraj et al. [53] aims at computing an aggregate 
value for the multiple fields, indicating the presence of Jacobi sets [18]. This technique 
will be discussed in Section 8 together with our extension to triangle meshes for multi-
field analysis and visualization on terrains.
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4 � Terrain trees

Terrain trees are a family of spatial data structures for triangulated terrains based on a 
nested subdivision of the terrain domain. Given a set S of data points, with each point 
being characterized by x and y coordinates plus an elevation value), we consider the pro-
jections of the points of S on the plane and we call D the square domain in the plane con-
taining such projections. A Terrain tree built on S consists of: 

1.	 a triangle mesh � connecting the projections on the plane of the points in S;
2.	 a quadtree describing the nested subdivision of the domain D into square blocks in 

such a way that the vertices and triangles of � are associated with the leaf blocks of the 
quadtree subdivision.

The association of the vertices and triangles with a leaf block is defined as follows. A ver-
tex is associated with the only block containing it. A triangle is associated with all leaf 
blocks having a non-empty intersection with it. Note that a block is considered closed at 
the two edges incident in its lower-left corner, and open at the remaining two edges. More 
precisely, a block consists of all points (x, y) such that x1 ≤ x < x2 and y1 ≤ y < y2 , where 
(x1, y1) is the lower-left corner and (x2, y2) is the upper-right corner of the block. Blocks 
having the upper or the rightmost edge on the boundary of D are closed on the correspond-
ing edge.

Similarly to spatial indexes for 2D maps, we have defined different criteria for domain 
subdivision, based only on the TIN vertices, on the TIN triangles and on both vertices and 
triangles. Thus, the Terrain trees family consists of three spatial data structures, namely the 
PR-Terrain tree (PR-T tree), the PM-Terrain tree (PM-T tree) and the PMR-Terrain tree 
(PMR-T tree), which are bucketed versions of the PM3-quadtree, of the PM2-quadtree, and 
of the PMR-quadtree for maps, respectively [54, 55, 64]. As we demonstrate in Section 9, 
bucketing is a crucial aspect for our spatial indexes, since it allows the indexing of much 
larger datasets, compared to existing representations in the literature.

A PR-T tree subdivides the domain D based on the vertices of � . Its subdivision rule 
uses a threshold kV on the number of vertices contained in a leaf block b. If b contains 
more than kV vertices, then b is recursively split into four blocks until this condition is met. 
An example of a PR-T tree is shown in Fig. 3(a). The generation of a PR-T tree is entirely 
guided by the vertices of � , and, thus, the first step in the generation process is exactly the 
same as for the PR-quadtree [62]. Then, each triangle t of � is added to all the leaf blocks 
intersecting t, without affecting the spatial decomposition.

A PM-T tree uses the same subdivision rule defined for the vertices of � as the PR-T 
tree. A splitting rule on the triangles is also defined, based on a threshold kT on the number 
of triangles per leaf block, as follows: 

(1)	 a block b containing up to kT triangles is a leaf block;
(2)	 a block b that contains more than kT triangles is a leaf block if and only if all triangles 

intersecting b are incident in the same vertex v, which can be either inside or outside 
b;

(3)	 otherwise, the block is recursively split until either condition (a) or (b) is met.

An example of the subdivision obtained with the PM-T tree is shown in Fig.  3(b). 
Note that a PM-T tree extends the PM2 quadtree defined for maps, by adding bucketing 
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thresholds kV and kT for both vertices and triangles. The generation of the initial hier-
archical decomposition in a PM-T tree is entirely guided by the vertices, like in PR-T 
trees. Then, each triangle t in � is added to a leaf block b intersecting t, if and only if b 
contains less than kT triangles. Otherwise, b is split until either condition (1) or (2) is 
met.

A PM-T tree is a sort of bucketed version of the PM2T-quadtree with some funda-
mental differences. The PM-T tree has a bucketing threshold for both vertices and tri-
angles. The lack of a bucketing threshold in the PM2T-quadtree produces much deeper 
decompositions with a number of leaf blocks that is at least four times the number of 
vertices in � (see [14] for details). The PM-T tree uses a simple indexed representation 
encoding only Triangle-Vertex relations while the PM2T-quadtree encodes the triangle 
mesh through the IA data structure (see Section 5).

The subdivision strategy for the PMR-T tree is driven only by the triangles of � . It 
extends to triangle meshes the subdivision approach defined for sets of segments in the 
plane in [54]. A leaf block b is split if b intersects more than kT triangles, where kT is a 
user-defined threshold, but b is split only once, not recursively. The decomposition and, 
thus, the shape of the tree depends on the insertion order of the triangles. In [54] it has been 
proven that in a PMR quadtree built on the edges of a map, the number of edges intersected 
by a leaf block cannot exceed the sum of the splitting threshold and of the depth of the leaf 
block. For a PMR-T tree this result still holds and, thus, the number of triangles in a leaf 
block of a PMR-T tree can be at most equal to db + kT , where db is the depth of the leaf 
block and kT is the splitting threshold. An example of PMR-T tree is shown in Fig. 3(c). 
For instance, in leaf block b there are three triangles indexed by it (i.e., triangles 2, 6 and 
8), but no split operation is triggered, as the space is decomposed once when inserting tri-
angle 8. Also condition db + kT is verified as b is at depth 3. Notice that the split condition 
may trigger unnecessary splits. For example, in Fig. 3(c) the insertion of triangles 7 and 8 
causes unnecessary split operations on the vertices sharing these two triangles.

A PMR-T tree is generated as follows. For each triangle t, and for each leaf block b 
intersecting t, t is added to b if and only if b contains less than kT triangles. Otherwise, b 
is split and its triangles are distributed to the newly generated leaf blocks (i.e., the chil-
dren of b). Triangle t is also added to the children of b intersecting it.

(a) PR-T subdivision (b) PM-T subdivision (c) PMR-T subdivision

Fig. 3   Given the triangle mesh of Fig. 4, a vertex threshold k
V
= 2 and a triangle threshold k

T
= 2 , the Fig-

ure shows the spatial subdivision obtained with a PR-T Tree (a), a PM-T Tree (b) and a PMR-T Tree (c). In 
black are highlighted the spatial decomposition caused by the vertices threshold, while in red those caused 
by the triangles one. For the PMR-T tree we also highlight the triangle insertion order that drives the spatial 
decomposition (note that k

T
 is not a bucketing threshold for the PMR-T tree)
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5 � Implementation of Terrain trees

In this section, we describe the implementation of the Terrain trees in the Terrain trees 
library (TTL). The kernel of the tool contains the implementation of the three Terrain trees, 
the PR-Terrain tree (PR-T tree), the PM-Terrain tree (PM-T tree) and the PMR-Terrain tree 
(PMR-T tree), plus their generation algorithms and algorithms for answering basic spa-
tial and connectivity-based queries. Other functions currently implemented and discussed 
in the following sections are the extraction of morphological features (see Section 6), the 
extraction of topology-based features (see Section 7), and the analysis of multivariate ter-
rain data (see Section 8).

The encoding of the triangle mesh � in a Terrain tree consists of two arrays �V and 
�T , storing the vertices and the triangles of � , respectively. Each vertex v and triangle t is 
represented by a unique index iv , and it within arrays �V and �T , respectively. �V encodes 
the geometry of the terrain � by storing the longitude, latitude, and elevation and the other 
field value(s) associated with each vertex v in � . �T encodes the connectivity of each trian-
gle by storing its three vertex indexes (see Fig. 4(b)).

We use a pointer-based representation for the hierarchy describing the nested subdivi-
sion of a Terrain tree (see Fig. 4(c)). Each internal block of a Terrain tree contains a refer-
ence to its parent block and a reference to its children. Each leaf block contains a reference 
to its parent block plus the information about the vertices and triangles, or only the trian-
gles in the case of a PMR-T trees.

To encode the information associated with the leaf blocks, we use the compact encoding 
proposed in [27] for an arbitrary-dimensional connectivity-based data structure for sim-
plicial complexes based on a vertex clustering. Such encoding uses the sequential range 
encoding (SRE), a variant of the run-length encoding [34], that represents a run of con-
secutive indexes using two integers. The first (negative) index encodes the starting index of 
the run, while the second encodes the number of remaining elements of the run. The effec-
tiveness of this compression increases with longer runs. This is exploited by representing 
all vertices inside a leaf block with a single run. Once we obtain the spatial decomposi-
tion, a single tree traversal is sufficient to reindex the vertices. The vertices indexed into 
the same leaf block get a contiguous range of indexes in the reindexed vertices array �V . 
Within each leaf block, this range is represented as a pair of integers. Exploiting the spatial 

(a) PR-T tree (b) Mesh (c) Spatial hierarchy

Fig. 4   (a) Triangle mesh and PR-Tree as encoded in a Terrain tree. (b) The mesh topology is organized 
by encoding, for each triangle, the boundary relation with its vertices. (c) The PR-T represents a hierarchy 
where each leaf block encodes the list of vertices contained in the block and the list of triangles intersecting 
the block



	 GeoInformatica

1 3

coherence for the triangles is more involved. The reindexing and compression of triangles 
is performed in such a way that, at the end, triangles indexed by the same set of leaves have 
contiguous indices in �T . To obtain this representation, we traverse first the tree to extract, 
for each triangle t, the tuple of leaf blocks indexing t. Then, we extract the dual relation, 
i.e., we associate the list of triangles with each tuple of leaf blocks. Given this inverted 
relation, we extract a coherent ordering for the triangles of �T , where triangles indexed by 
the same leaf tuple have contiguous indexes. Once we have this spatial ordering on the tri-
angles, we apply it to the triangle list of each leaf block, and we compress this list by using 
the SRE compression. Finally, we update �T to be consistent with this spatial ordering.

5.1 � Spatial and connectivity‑based queries in a Terrain tree

We have developed algorithms on Terrain trees for answering two fundamental spatial que-
ries, namely a point location and a window query, and for extracting connectivity-based 
relations (described in Section 2), which enable the local traversal and processing of the 
underlying mesh. The point location query consists of finding the triangle (or triangles) 
containing a given query vertex, while the window query consists of finding all the trian-
gles which intersect an axis-aligned rectangular window.

We have implemented algorithms for connectivity-based queries which extract the con-
nectivity relations discussed in Section 2. Since the indexed TIN representation underlying 
a Terrain tree encodes the TIN vertices and triangles, extracting the vertices and edges of 
a triangle (these latter being expressed as vertex pairs) does not require the use of the tree 
structure unless we combine the extraction of such information with a window query when 
focusing on portions of the TIN. Extracting co-boundary relations at the vertices of the 
mesh efficiently and massively, as our experiments show, are fundamental for computing 
morphological features, the discrete Forman gradient estimators, and the critical net (see 
Sections 6 and 7). We describe here how we extract some fundamental co-boundary rela-
tion, namely the Vertex-Triangle (VT), the Vertex-Vertex (VV), and the Vertex-Edge (VE) 
relations, and the Edge-Triangle (ET) relation, as well as the Edge-Vertex (EV) relation 
inside a leaf block of the Terrain tree. These are used in the terrain analysis algorithms 
presented in the following sections.

Extracting the VT relations in a block b requires knowing the set of vertices contained in 
b. The range of indexes of the vertices contained in any given block b is explicitly encoded 
in the PR-T and PM-T trees. A PMR-T tree encodes only the triangles indexed by a block 
b. In this case, the set of vertices in b are extracted by performing a point-in-block test for 
each of the bounding vertices of the triangles in b. Then, the VT relation for the vertices in 
block b is extracted by cycling over the set of triangles in b. For each triangle t, the algo-
rithm iterates through the vertices of t. For each vertex v of t, if v is indexed by b, t is added 
to the list of triangles incident in v. The strategy for extracting the Vertex-Vertex (VV) and 
Vertex-Edge (VE) relations in a block b combines the VT relation with either the Triangle-
Vertex (TV) relation, which provides the list of the vertices of a given triangle, or the Trian-
gle-Edge (TE) relation, which provides the list of the edges of a given triangle. For the VV 
relation, for each vertex v of a triangle t, if v is indexed by b, we add the other two vertices 
in the boundary of t, namely v i  and v j , to the set of vertices adjacent to v. Similarly, for the 
VE relation of v, we pair v i  and v j with v to get the two edges of t that are incident in v.

Extracting the Edge-Triangle (ET) relations in a block b is slightly more involved, since 
the edges are not explicitly encoded in a Terrain tree. The algorithm iterates over the trian-
gles in a block b and extracts the edges on their boundary provided by the TE relation. An 
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edge e belonging to the boundary of a triangle t is considered internal to b if it has at least 
one vertex indexed by b. Each internal edge e is encoded in a local associative array having 
as key e and as value a pair containing the index of the two triangles in the co-boundary 
of e. These two triangles are identified during a single iteration on the triangles in b. The 
strategy for extracting the Edge-Vertex (EV) relation in a block b is similar to the one for 
extracting the ET relation. The algorithm iterates over the triangles of b and extracts their 
edges. Since each edge is encoded as a pair of vertex indices, we add those edges having at 
least one vertex indexed by b to the output.

6 � Morphological terrain features

We have developed and implemented in the Terrain trees library algorithms which extract 
classical morphological terrain features, namely triangle and edge slope, curvature and 
roughness. An experimental comparison among the various Terrain trees and the IA data 
structure in computing such features is presented in Section 9.

The slope of an edge or a triangle in a TIN represents the steepness and the direction of 
its extent, where the steepness is the absolute value of the slope. A zero value of the slope 
indicates horizontality. The direction is increasing if the slope is positive and decreasing if 
the slope is negative. Specifically, the edge slope of an edge e is the angle between e and its 
projection on the horizontal plane defined by the z-coordinate of its lowest endpoint. In 
other words, given vi = {vix , viy , viz} and vj = {vjx , vjy , vjz} the endpoints of e. Let vi the end-
point of e with the minimum z-value, we consider the projection v′

j
 of vertex vj on the plane 

z = viz . The slope of edge e is the angle v̂jviv′j . For computing edge slopes, we need to 
extract the edges as pair of vertices, by using the TV relation, since the edges are not 
explicitly encoded. Extracting the edges requires an auxiliary data structure. The decompo-
sition of the mesh defined by the blocks becomes computationally relevant, since the auxil-
iary data structure is created in each block independently and discarded after processing 
the block. This makes it possible to compute slopes in a region of interest without iterating 
through the entire domain.

In a similar way, the triangle slope is defined as the angle between the normal to the 
plane to which the triangle belongs and a vector aligned with the z-axis. The computation 
of triangle slopes requires only the Triangle-Vertex (TV) relation for each triangle, which is 
stored in the triangle array of a Terrain tree.

We approximate the curvature at the vertices of a TIN by using a discrete approach. In 
our previous work [49, 50], we have developed three discrete curvature approximations of 
Gaussian and mean curvature, and compared and evaluated them in [48] for curvature esti-
mation on a TIN. Our results showed that all curvature estimators provide similar results, 
also when used as the basis for TIN segmentation, and that concentrated curvature is the 
least sensitive to noise.

We consider a TIN � and a vertex v of � . Let t1, ...., tn the triangles incident in v. Let 
vi and v′

i
 the two vertices in the triangle ti , different from v. The concentrated curvature is 

defined as Kc(v) = 2� − �v , for internal vertices, and Kc(v) = � − �v , for boundary verti-
ces, where �v =

∑n

i=1
v̂ivv

�
i
.

The computation of curvature requires extracting, for each vertex v of the TIN, the set 
of triangles incident at v, i.e., extracting the Vertex-Triangle relation, which is performed 
as discussed in Section 5.1. As the internal vertices and boundary vertices have different 
equations for estimating concentrated curvature, a preprocessing step to identify boundary 
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vertices is performed. For each vertex v, we check the number of edges |e| and the number 
of triangles |t| in the boundary of the star of v. A vertex is on the boundary when 2|e| ≠ 3|t|
.

There are several ways to define surface roughness, and the most commonly used is the 
standard deviation of local elevation at each vertex, evaluated based on the neighbors of the 
vertex itself [66]. We have extended the definition that is given for raster grids to TINs by 
considering the vertices adjacent to a vertex v, which are the ones sharing an edge with v. 
Based on that definition, the roughness at a vertex v in a TIN is computed as:

where m is the number of vertices adjacent to v plus v itself, z1 , z2 , ..., zm are the elevations 
at such vertices, and z is the average of those elevations. From (1), the roughness computa-
tion requires the extraction of the VV relation of v (see Section 5.1 for details).

7 � Topology‑based terrain segmentation

The basis for terrain analysis is a segmentation of the terrain based on its critical points, 
their regions of influence and how they are connected together in the critical net. The 
approach we consider here is rooted in discrete Morse Theory, which supports an efficient 
computation of a discrete gradient on large meshes and the efficient computation of topo-
logical descriptors like the Morse decompositions and the critical net.

In Section 7.1, we present the general strategy for computing a discrete Morse (Forman) 
gradient and a distributed approach based on Terrain trees. In Section 7.2, we discuss how 
to compute the critical net and present an algorithm for Terrain trees.

7.1 � Forman gradient computation

We consider a triangle mesh � and an elevation function f ∶ �V ⟶ ℝ defined on the 
vertices of � . The algorithm for computing the Forman gradient is based on the extension 
to TINs of the algorithm proposed for regular grids [60]. It consists of three major steps, 
which are described below and illustrated by referring to Fig. 5.

Step 1 (Indexing)  The first step requires computing a total order I on the vertices of � . 
The total order will serve as guiding schema for the subdivision of the triangles, edges 
and vertices of � in independent sets. This is done by Simulation of Simplicity [21], i.e., 
by sorting the vertices of � in ascending order and by assigning a unique index to each of 
them. In Fig. 5(a) we indicate the index in I of each vertex of a triangle mesh. On Terrain 
trees, Step 1 is executed by sorting the vertices stored in the global vertex array.

Step 2 (Partition)  � is then subdivided by associating each vertex v with the set of edges 
and triangles having the same value of I as v. I is extended to the edges and triangles of Σ 
via I(�) ∶= maxv∈� I(v) , where � is either an edge or a triangle of � and v is a vertex on the 
boundary of � . For each edge or triangle � , we denote as v the vertex of � with maximum 
value of I. For this reason, this set of triangles and edges associated with v is called the 
lower star of v according to I and denoted LI(v) . It can be proved that each triangle or edge 

(1)R(v) =

�∑m

i=1
(zi − z)2

m
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in � belongs to exactly one lower star. Then, the lower stars associated with the vertices 
form a partition of � and thus they can be processed in parallel. In Fig. 5(a) the lower star 
of vertex 6 is depicted with bold lines.

On Terrain trees, Step 2 is implemented through a tree traversal where each leaf block b 
is processed once. In a leaf block b, the algorithm extracts the lower star LI(v) for each ver-
tex v in b by retrieving the set of triangles incident in v (Vertex-Triangle (VT) relation) and 
the set of edges (Vertex-Edge (VE) relation), and by computing their values of I at runtime.

Step 3 (Pairing)  Pairings of edges and vertices, and edges and triangles are computed 
through a process called homotopy expansion on each lower star. Recall that the discrete 
gradient is a collection of vertex-edge and edge-triangle pairs.

We initialize a set LS with LI(v) . If LS = {v} , v is declared as a critical vertex. Oth-
erwise the pair (v, e) is created by pairing v with the edge e in LS having minv∈e I(v) . In 
Fig. 5(b) edge (6, 1) is selected to be paired with vertex 6.

Then, for each triangle t in LS, we compute the number of unpaired edges on the bound-
ary of t, which are also in LS. We are interested in two cases:

–	 if t has no unpaired edges on its boundary, then it is classified as critical,
–	 if t has exactly one unpaired edge e on its boundary, then it is paired with e

If by cycling over all triangles in LS, no triangle is paired, at the end of the cycle a new 
edge is classified as critical, and we start again.

Fig. 5   Homotopy expansion [60] computed on the simplices belonging to the lower star of vertex 6
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In Fig. 5(c), triangle (6, 3, 1) is paired with its unique unpaired boundary edge (6, 3). 
In Fig. 5(d), no triangle has either zero or exactly one unpaired edge, then edge (6, 4) is 
declared as critical. In Fig.  5(e), triangle (6,  5,  4) gets paired with its unique unpaired 
boundary edge (6, 5). Figure 5(f) shows the discrete gradient computed within the lower 
star of vertex 6.

On Terrain trees, Step 3 is performed by considering each leaf block independently, and 
performing computation locally to the block on the lower stars of the vertices which belong 
to the block.

7.2 � Extracting the critical net

Computing the critical net means visiting all the separatrix V1-paths connecting critical ver-
tices and edges, and all the separatrix V2-paths connecting critical edges and triangles (see 
Section 2.3). The geometrical representation of the critical net is computed by connecting 
the barycenters of the triangles and edges visited in the separatrix V-paths. For the vertices 
of the triangle mesh, we consider the points themselves.

Extracting separatrix vertex‑edge paths (V1‑paths)  Given a critical edge, the two ver-
tices in its boundary are first extracted. For each vertex, we extract its paired edge and 
we insert such edges into a stack Q. The stack is used to implement a depth-first traversal 
of the path. At each iteration, we extract an edge e from Q and we compute its boundary 
vertices. For each vertex v, we compute its paired edge e′ and we add e′ to Q if e′ ≠ e . This 
retrieves the connections of critical edges with the critical vertices. The lines of the critical 
net reconstructed at this stage are obtained by connecting the barycenters of each edge with 
the boundary vertices.

Figure 6 shows the extraction of the critical net limited to a critical edge and two criti-
cal vertices. Starting from the critical edge (Fig. 6(a)) the two vertices in its boundary are 
extracted and connected with the critical edge. Edges paired with such vertices are inserted 
in the stack Q. In Fig.  6(b), edge e1 is extracted from the stack and connected with its 
boundary vertex v1 . In Fig. 6(c), the other vertex on the boundary of e1 (i.e., v2 ) is con-
nected to e1 and its paired edge e2 is added to the stack Q. The depth-first traversal contin-
ues in the same manner until two critical vertices are encountered (Fig. 6(d)).

Fig. 6   Reconstruction of a portion of the critical net connecting a critical saddle with two critical minima. 
(a) Starting from a critical edge, the boundary vertices are connected with the edge. (b) The edge e

1
 paired 

with v
1
 is added to the stack. (c) The edge e

1
 is extracted from the stack, connected with its paired vertex v

1
 . 

The other vertex on the boundary of e
1
 (i.e., v

2
 ) is retrieved and its paired edge e

2
 is added to the stack. (d) 

The portion of the critical is reconstructed repeating the same steps until both paths reach critical vertices 
(minima)
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Extracting separatrix edge‑triangle paths (V2‑paths)  Given a critical edge, all the trian-
gles in its co-boundary are extracted. For each such triangle, we extract its paired edge and 
we insert the edge into a stack Q. Each time we extract an edge e from Q, we compute the 
triangles in its coboundary. For each of such triangles t, we compute the edge e′ paired with 
t and we enqueue e′ if e′ ≠ e . The lines of the critical net reconstructed at this stage are 
obtained by connecting the barycenters of each triangle with the barycenters of the bound-
ary edges encountered during the visit.

Figure 7 shows the extraction of the critical net limited to a critical edge and a criti-
cal triangle. Starting from a critical edge (Fig.  7(a)) the triangle t1 in its coboundary is 
retrieved. The edge e1 paired with t1 is inserted in the stack Q. In Fig. 7(b), the edge e1 is 
extracted from the stack and connected with the triangle paired with it (i.e., triangle t1 ). In 
Fig. 7(c), the next triangle on the coboundary of e1 (i.e., t2 ) is connected to e1 and its paired 
edge e2 is added to the stack Q. The depth first traversal continues in the same manner until 
a critical triangle is encountered (Fig. 6(d)).

As the extraction of the separatrix V-paths involves an intense mesh traversal, the leaf 
blocks of Terrain trees need to be visited multiple times. Thus, for efficiency, we use an 
auxiliary cache for encoding a subset of the connectivity relations required. Extracting 
separatrix V1-paths, which are composed of edges and vertices, requires the Edge-Vertex 
(EV) relation. Extracting separatrix V2-paths, which are composed of edges and triangles, 
requires the Edge-Triangle (ET) relation. The cache uses a Least-Recent-Used replace-
ment policy (LRU-cache) which let us improve processing times with a negligible storage 
overhead.

Within each leaf block b of a Terrain tree, we execute the following steps: 

1.	 expand the leaf block representation by computing and storing in the block the con-
nectivity relations required, as discussed above;

2.	 extract the separatrix V-paths in b;
3.	 save in cache the connectivity relations of b.

During the computation of the separatrix V-paths, it can happen that a V-path will go out-
side of the leaf block b currently processed. To deal with this situation, we introduced the 
notion of dangling path, where a dangling path is a V-path whose continuation is outside 
the block currently processed. Our strategy uses the dangling paths for postponing the 

Fig. 7   Reconstruction of a portion of the critical net connecting a critical saddle with a critical maxima. (a) 
Starting from a critical edge, the coboundary triangle (i.e., t

1
 ) is visited. (b) The traversal starts by adding 

the edge e
1
 , paired with t

1
 , to the stack. (c) The edge e

1
 is extracted from the stack and connected with its 

paired triangle t
1
 . The other triangle in the coboundary of e

1
 (i.e., t

2
 ) is extracted and its paired edge e

2
 is 

added to the stack. (d) The portion of the critical is reconstructed repeating the same steps until a critical 
triangle (maximum) is reached
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construction of certain V-paths, thus limiting the number of times we have to enter and exit 
a leaf block.

The extraction of the gradient V-paths within a leaf block b is performed as follows:

–	 the new V-paths starting from the critical edges indexed by b are visited. Notice that 
an edge could be shared by two blocks. To process each critical edge once, we use the 
following convention: a critical edge is indexed by b if and only if b indexes the vertex 
with the higher label value in the vertex array �;

–	 the dangling paths that are entering b are then expended. Each time a dangling path is 
expanded, the corresponding entry in the auxiliary data structure storing dangling paths 
is removed. In this way, the storage requirement of this structure is kept negligible dur-
ing the extraction process.

Notice that the visit of a V-path can be interrupted several times, as it can cross multiple 
leaf blocks. Once the visit of the V-paths in b is terminated, the connectivity relations com-
puted are saved into the cache.

8 � Multifield visualization

Multifield data are scientific data characterized by multiple field values. An example of this 
type of data is airborne LiDAR data where, for each point, multiple measures are recorded 
such as the intensity of the laser pulse, the point classification (i.e., ground, canopy, water, 
etc.), RGB bands, scan angle, and direction.

Extracting and visualizing descriptive information for multifield data is a major chal-
lenge. The technique implemented in this work relates to the notion of Jacobi set [19]. The 
Jacobi set of a collection of real-valued Morse functions defined on a common manifold is 
the set of all points where the function gradients are linearly dependent, which is directly 
related to the rank of the Jacobian matrix. This definition inspired numerical techniques 
aimed at rendering a single function built out of the multiple scalar fields in a way compat-
ible with the relationships among scalar fields. In [53], a comparative measure is defined as 
measure for the evaluation of the local coherence among different scalar fields based on the 
gradient of the fields.

Given a point v, we can write the matrix of partial derivatives as follows:

The multifield comparison measure in [53] is defined as the norm of such matrix 
�F(v) = ||dF(v)|| . To speed up the computation, the estimation of �F(v) is reduced to the 
root of the maximum eigenvalue of the matrix (dF(v))T (dF(v)) . To compute �F(v) , when 
v is a vertex of a TIN, we need to estimate partial derivatives at v. In [46] several methods 
have been analyzed, and the best method has been shown to be the Average Gradient on 
Star (AGS) method [51], which is both accurate and efficient. In AGS, the gradient at a 
vertex v is approximated by taking the average of the gradients estimated at the triangles 
incident in v.

dF(v) =

⎡⎢⎢⎢⎣

�f1
�x1

(v) ⋯
�f1
�xn

(v)

⋮ ⋱ ⋮
�fm
�x1

(v) ⋯
�fm
�xn

(v)

⎤
⎥⎥⎥⎦
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In particular, given a scalar function f defined on the vertices of a TIN � , the gradient at 
a triangle t of � , denoted as ▿ft , is calculated as follows:

where ⊥ denotes the 90 degrees rotation of a vector, At is the area of the triangle t, vi, vj, vk 
are the three vertices of t, and pi, pj, pk are vectors representing the x- and y- coordinates of 
vi, vj and vk , respectively.

To compute the gradient at vertex v, we need to compute the so-called mixed area [51]. 
Let t be a triangle and pi, pj, pk the vectors of coordinates of its three vertices. If t is non-
obtuse, the contribution of t to the mixed area is 1

8
(|pipk|2cot∠pj + |pipj|2cot∠pipk) . If t is 

obtuse, there are two cases: if the angle at v is obtuse, the mixed area will be half of the 
triangle area, while if the angle at v is not obtuse, then the area will be a quarter of the tri-
angle area. Then, the gradient at v is the weighted average of gradients computed at each 
triangle incident in v weighted by the corresponding mixed area.

Since the computation of the gradient at vertex v relies on the gradients at all the trian-
gles intersecting at p, the computation of such gradient in the Terrain trees requires extract-
ing the Vertex-Triangle (VT) relation, as discussed in Section 5.1.

9 � Experimental results

In this section, we study the performances of the Terrain trees family. TINs used are computed from 
LiDAR point clouds by means of a Delaunay triangulation algorithm from the CGAL library [9].

The characteristics of each TIN are reported in Table 1. We have used a total of seven 
TINs with a number of vertices ranging from 34 million to 193 million. Great smokey 
mountain, Canyon lake gorge and Big creek are three datasets provided by the Open-
Topography repository [56]. For each of them we have computed a single TIN. The origi-
nal Sonoma county dataset includes more than 60 billion points. We created four different 
datasets by subsampling the original point cloud at four different resolution levels. For each 
point cloud obtained we have computed a TIN that is used in our experiments.

Our experimental evaluation addresses five aspects: (i) calibration of the thresholds 
guiding the construction of Terrain trees, (ii) evaluation of the requirements for initializing 
Terrain trees, (iii) extraction of connectivity-based relations, (iv) computation of morpho-
logical and topology-based features, and (v) analysis and visualization of multifield data. 
The hardware configuration used for these experiments is a dual Intel Xeon E5-2630 v4 

▿ft
= (f (vj) − f (vi)) ×

(pi − pk)
⊥

2At

+ (f (vk) − f (vi)) ×
(pj − pi)

⊥

2At

Table 1   Overview of experimental datasets. For each terrain, we list the number of vertices |�
V
| and trian-

gles |�
T
|

Terrain

great 
s. mount.

canyon 
lake

sonoma 
county 1

sonoma 
county 2

big creek sonoma 
county 3

sonoma 
county 4

|�
V
| 34M 49M 105M 135M 151M 154M 193M

|�
T
| 68M 98M 210M 271M 303M 309M 386M
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CPU at 2.20Ghz, and 64GB of RAM. The source code of the Terrain trees library imple-
menting the Terrain trees is available at [26]. The source code of the LibTri library imple-
menting the IA data structure is available at [25].

9.1 � Selection of thresholds for Terrain trees generation

Terrain trees are generated based on, at most, two input values. One is the maximum num-
ber of vertices per leaf block, denoted as kv . The second one is the maximum number of 
triangles per leaf block, denoted as kt . Since the number of triangles in a TIN is about twice 
the number of its vertices, in the following, we set kt = 2kv . To efficiently calibrate such 
thresholds, we performed a preliminary evaluation to identify non-optimal values, that cre-
ate either too deep or too coarse hierarchies. This evaluation also established an initial test 
range such that each leaf block contains between 1 millionth and 10 millionth of vertices 
of the TIN. For each dataset, we create a total of 20 spatial indexes within this test range. 
All triangle meshes are generated over irregularly distributed LiDAR point clouds. Since 
the observed performance trend is similar on all datasets, in this section, we show just the 
plots from great smokey mountain dataset to evaluate the experimental results on thresh-
old selection. We provide the plots describing the performance trends of other datasets in 
Appendix A. In order to evaluate the effects of varying kv and kt , we analyze the follow-
ing parameters: (i) storage costs, (ii) time requirements for generating a Terrain tree, and 
(iii) time requirements for answering the most common connectivity-based query, i.e., the 
extraction of Vertex-Triangle relation.

Since all Terrain trees encode the TIN with the same indexed representation, we focus 
only on the storage costs of the hierarchical index without considering the storage costs 
for encoding information on the vertices and on the triangle connectivity. Figure 8 shows 
these results. The storage costs show a sharp decrease with smaller thresholds, while they 
remain nearly constant with larger ones. The differences in storage costs among the three 
indices are more noticeable when the thresholds are small, while the costs become nearly 
identical for larger ones. The storage cost of the hierarchical index is closely related to the 
number of nodes in a Terrain tree. When using larger thresholds (i.e., kV greater than 550), 
Terrain trees have the same number of nodes, and this means that the spatial index is losing 
its effectiveness at decomposing the embedding space. This latter result highlights that the 
threshold on the triangles is the one guiding the spatial decomposition when both thresh-
olds become larger.

Fig. 8   The Storage costs for storing the hierarchical index of the Terrain trees on Great smokey mountain 
dataset using different values of k

v
 and k

t
 . The x-axis shows the threshold value on the vertices
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Figures 9(a) shows the time required for generating the spatial decomposition of a Ter-
rain tree on great smokey mountain dataset. Generation times decrease for all types of 
Terrain trees when using larger thresholds since each leaf block can contain more vertices 
and triangles, and the spatial decomposition is obtained by executing fewer split opera-
tions. Also, since the subdivision rule for the PMR-T tree is not recursive, its construction 
is always faster than the other two rules, that, on average, have similar generation times.

We evaluate now how different thresholds affect the extraction of the Vertex-Triangle 
(VT) relation. This relation is key to most of the applications defined in our framework. 
Figure 9(b) summarizes the results we have obtained. We notice that the larger the thresh-
old used, the faster the extraction of the VT relation is. The larger time drop is notice-
able on smaller thresholds, while for larger thresholds the time difference becomes smaller. 
Since PR-T and PM-T trees explicitly encode the range of vertices, they show similar per-
formances, and are always faster than PMR-T trees, using from 30% to 70% less time, as 
the latter has to compute such vertex ranges at run-time.

These results highlight how the performances of Terrain trees are affected by the two 
user-defined thresholds. By considering only the storage requirements and generation tim-
ings, we see that by using larger thresholds, we reduce such quantities, since the decompo-
sition is coarser and the compressed encoding becomes more effective. However, for larger 
values of kV and kT , the spatial index becomes less efficient, being more similar to a global 
representation. For such thresholds, leaf blocks encode more entities, leading to a reduced 
speedup gain and to higher storage requirements for encoding application-specific auxil-
iary data structures. Based on the results and evaluations above, we choose thresholds that 
generate trees having a number of nodes between 300K and 500K, as we have noticed that 
such spatial indices are neither too coarse nor too deep, with overall good performances at 
generating and encoding Terrain trees and answering connectivity queries.

9.2 � Terrain trees evaluation

In this section, we compare the storage costs and timings for generating the spatial indices 
of Terrain trees and IA data structure, as well as their performance at extracting the Vertex-
Triangle (VT) relations.

(a) Generation time (b) VT extraction time

Fig. 9   Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in 
Terrain trees on Great smokey mountain dataset using different values of k

v
 and k

t
 . The x-axis shows the 

vertex threshold value
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We generate a PR-T tree, a PM-T tree, and a PMR-T tree for each TIN. A single value 
for kv and kt is selected for each dataset according to the results discussed in Section 9.1. 
Table 2 shows the thresholds selected and the total number of internal and leaf nodes of 
each Terrain tree. Notice that PR-T trees and PMR-T trees use only one threshold value 
(i.e., kv and kt , respectively), while PM-T trees use both. As shown in Table 2, the number 
of nodes in a PM-T tree and a PMR-T tree of the same dataset is always similar, which 
leads to comparable storage costs. The number of nodes in a PR-T tree is always smaller 
than in the other two trees. These results match the ones of Section 9.1, which show that a 
PR-T tree always has a lower storage cost compared to the other two Terrain trees.

Table 3 shows the storage costs of the Terrain trees and of the IA data structure. Since 
both Terrain trees and IA data structure encode an indexed representation of the TIN, we 
represent this storage requirement separately, and thus, the storage costs shown in Table 3 
consider only the requirements for encoding the spatial index in a Terrain tree, and for 
encoding adjacency and coboundary relations (i.e., Triangle-Triangle and partial Vertex-
Triangle relation) in the IA data structure. The total storage requirements can be easily 
computed by adding the storage cost of the TIN to the corresponding Terrain trees or IA 
data structure overhead cost. Note that the overhead cost of Terrain Trees is between 1% 
and 3% of the overhead cost of the IA data structure. When considering also the cost of the 
underlying indexed TIN representation, a Terrain tree can encode the same dataset using, 
on average, 36% less storage than IA data structure. The differences between the three Ter-
rain trees are minimal. The PR-T tree is the most compact since it generates fewer leaf 
blocks compared to the other two.

Figure 10 shows the time requirements for generating a Terrain tree or the IA data struc-
ture. The generation times do not consider the time needed to load the TIN from file, but 
only the time for generating the corresponding data structure. The generation times for the 
IA data structure are about 10% of those of Terrain Trees. This is expected since the IA 
computes only the adjacencies between triangles and a partial VT relation. Terrain Trees, 
instead, are created by first computing the spatial decomposition and then compressing its 
representation, as described in Section  5. Also in this case, the differences between the 
three Terrain trees are minimal, and the generation of a PMR-T tree is always 20% faster 
than that of the other two, which is consistent with the findings in Section 9.1.

As shown in Fig. 11, Terrain trees can always extract VT relations faster than the IA 
data structure. PR-T and PM-T trees use from 57% to 72% less time than the IA data struc-
ture. PMR-T trees use, on average, from 30% to 70% more time compared to the PR-T and 
PM-T trees, still saving at least 30% time compared to IA data structure. The differences 
among Terrain Trees are due to the encoding of the vertex ranges. In PR-T and PM-T trees, 
such ranges are explicitly encoded, while in PMR-T trees, they are computed at run-time on 
a block-by-block basis.

9.3 � Computing morphological features

In this section, we evaluate the performances for computing morphological features, as 
described in Section 6. Results are shown in Figs. 12, 13, and 14.

Computing the triangle slope requires the Triangle-Vertex relation, while computing the 
edge slope requires the (dual) Vertex-Triangle relation. Since both Terrain trees and the IA 
data structure store the Triangle-Vertex relation explicitly we only compare their perfor-
mances in computing the edge slope.
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As edges are not explicitly encoded neither in Terrain trees nor in the IA data structure, 
we have to use an auxiliary lookup table in both implementations for encoding the slope 
values without duplicates. Terrain trees enable the usage of a local data structure within 
each leaf block, and this reduces both the cost of encoding and accessing the lookup table. 
As shown in Fig. 12, the slope estimation benefits by the use of a spatial index and a modu-
lar structure. We notice that computing edge slopes on Terrain trees requires from 37% to 
45% less time and less memory than by using the IA data structure (considering also that 

Table 3   Comparison of storage, expressed in megabytes (MB) and gigabytes (GB), for the underlying TIN, 
Terrain trees and IA data structure. O.O.M. stands for Out Of Memory

great s. canyon sonoma sonoma big sonoma sonoma

mount. lake county 1 county 2 creek county 3 county 4

PR-T 21.5MB 20.7MB 21.4MB 33.7MB 28.4MB 31.4MB 33.4MB
PM-T 26.6MB 23.2MB 23.3MB 36.1MB 31.4MB 33.9MB 34.7MB
PMR-T 26.6MB 23.2MB 23.3MB 36.1MB 31.4MB 33.9MB 34.7MB
IA 908.0MB 1.31GB 2.80GB 3.62GB 4.04GB 4.12GB O.O.M.
TIN 1.56GB 2.24GB 4.80GB 6.20GB 6.93GB 7.06GB 8.83GB

Fig. 10   Comparison of total timings, expressed in minutes (m), for generating a Terrain tree or the IA data 
structure

Fig. 11   Comparison of total timings, expressed in minutes (m), for extracting the VT relations
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the IA data structure goes out of memory five times). The difference among the three Ter-
rain Trees is limited, since the extraction time for the VT relation accounts for a small por-
tion of the overall slope computation time.

As discussed in Section  6, estimating the curvature requires visiting the star of each 
vertex (i.e., extract the Vertex-Triangle relation). As in Fig. 13, the implementation based 
on Terrain trees is always faster than the one based on the IA data structure, as it requires 
from 25% to 30% less time. Both Terrain trees and the IA data structure require the same 
amount of space for encoding curvature values, while the size of the auxiliary data struc-
tures is negligible. The performances of the three Terrain trees are similar. This shows that 

Fig. 12   Comparison of total timings, expressed in minutes (m), for extracting edge slopes

Fig. 13   Comparison of total timings, expressed in minutes (m), for extracting concentrated curvatures

Fig. 14   Comparison of total timings, expressed in minutes (m), for extracting roughness values
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extracting the vertices in a block at run-time does not affect significantly the performances 
of the spatial index.

Estimating roughness requires computing the Vertex-Vertex relation. In Terrain trees, 
the roughness computation is pretty efficient (see Fig. 14), being from 36% to 55% faster 
than the corresponding procedure on the IA data structure. On larger datasets, PMR-T trees 
are always slower than PR-T and PM-T trees, since they are less efficient at extracting the 
VV relation.

9.4 � Computing topology‑based segmentations

In this section, we evaluate the performances in computing the Forman gradient, and in 
extracting the critical net.

9.4.1 � Forman gradient computation

As discussed in Section  7, computing the discrete gradient on a Terrain tree requires 
extracting the star of each vertex of the TIN, i.e., the Vertex-Triangle relation. As shown in 
Fig. 15, Terrain trees are always faster than the IA data structure requiring about 20% less 
time. PMR-T trees are usually slightly faster than PR-T and PM-T trees, but overall the time 
difference between the three Terrain trees is small.

Since Terrain trees have lower storage requirements than the IA data structure, they can 
complete the Forman gradient computation on all datasets, i.e., there is enough memory 
for encoding the discrete gradient and the auxiliary data structures used in the process. 
This does not apply to the IA data structure, which goes out of memory on the two larger 
datasets.

9.4.2 � Critical net extraction

In a Terrain tree, the extraction of the critical net requires an intense navigation of the 
spatial index, and the extraction at run-time of connectivity relations that, in the IA data 
structure, are either explicitly encoded (Triangle-Triangle relation) or efficiently extracted 
(Vertex-Vertex relation). This application represents an interesting worst-case scenario for 
Terrain trees.

Both Terrain trees and the IA data structure use auxiliary data structures for extract-
ing the critical net. The IA data structure uses a global stack to perform the TIN traversal. 

Fig. 15   Comparison of total timings, expressed in minutes (m), for computing the Forman gradient vector
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Conversely, a Terrain tree uses a cache of leaf blocks with expanded connectivity informa-
tion as well as a list of dangling paths, plus a local stack within each leaf block (see Sec-
tion 7.2). As shown in Fig. 16, thanks to the lower storage requirements of Terrain trees, 
such auxiliary structures can be effectively encoded in memory, while the IA data structure 
goes out of memory on the three larger datasets.

Comparing timings, PR-T and PM-T trees have comparable performances with respect 
to the IA data structure, and use up to 10% more time, while PMR-T trees perform sig-
nificantly worse being up to 8 times slower than the IA data structure. Comparing Terrain 
trees, PR-T and PM-T trees have similar performances and are at least 5 times faster than 
PMR-T trees. As we have already observed with the other applications, this speedup is due 
since a PMR-T tree has to compute the range of vertices at run-time.

9.5 � Multifield data visualization

We evaluate the performances of Terrain Trees for computing the multifield measure 
described in Section 8. We test our implementation for a visual analysis on two small data-
sets (shown in Figs. 17 and 18), and for a performance analysis against the IA data struc-
ture on three different areas of the sonoma county dataset. Each dataset has a total of five 
scalar fields: elevation, a color field (encoded as a RGB triple), and roughness.

First, we visually analyze the algorithm performance on an area with few trees and some 
human artifacts (a fence and a small building). Figure 17 presents the raster image of this 
area (Fig. 17(a)), and three output images obtained with our algorithm in which we used 
as input scalar fields: (i) the RGB values (Fig. 17(b)), (ii) the green band paired with the 
elevation (Fig. 17(c)), and (iii) the RGB values paired with the elevation (Fig. 17(d)). Just 
using the RGB values, the algorithm can identify the boundary of the buildings and their 
shadows clearly, but it does not highlight precisely the trees. Pairing the green band with 
the elevation improves the identification of trees, while the human artifacts result smoothed 
and less clear. Lastly, if we pair the three RGB values and the elevation, the algorithm can 
correctly highlight both trees and human artifacts.

In order to understand the performance of our strategy in distinguishing forest areas 
from other land cover types (like rivers or streets), a region with higher tree density has 
been used (see Fig. 18). We compare the visualization results when using just the RGB 
values (Fig. 18(b)), and when pairing them with roughness (Fig. 18(c)). In this case, we 
pair the RGB values with roughness instead of the bare elevation, since roughness has been 
proven to be a better estimator for identifying surface deformations in a terrain [66]. The 

Fig. 16   Comparison of total timings, expressed in minutes (m), for computing the critical net
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(a) Satellite

(b) RGB (c) Elevation+Green (d) Elevation+RGB

Fig. 17   The satellite map and the visualization of the multifield comparison measure on an area with few 
trees and some human artifacts. Figures show the satellite image (a), the multifield measure based on red, 
green and blue values (b), based on elevation paired with green values (c), and based on elevation paired 
with RGB values (d)

(a) Satellite

(b) RGB (c) Roughness+RGB

Fig. 18   The satellite map and the visualization of the multifield comparison measure on an area with high 
tree density. Figures show the satellite image (a), the multifield measure based on red, green and blue values 
(b), and based on roughness paired with RGB values (c)



GeoInformatica	

1 3

visual comparison of the outputs shows that the multifield strategy is more precise in high-
lighting the different cover types, when also a geometric field is added to the identification 
procedure. Pairing roughness with the color values enables the identification of both the 
road crossing the forest and areas of low vegetation (Fig.  18(c)), that cannot be clearly 
identified by just using the color (Fig. 18(b)). Also, a narrow band representing the road in 
the forest can be identified clearly only if we include roughness values in our input fields.

The visual analysis of the results shows that the multifield strategy can be effectively 
used for highlighting key areas in satellite datasets, and that the identification improves 
when pairing a geometric attribute with other scalar fields that are not spatial or geometric.

Finally, we compare the performance of Terrain trees and IA data structure at extract-
ing the multifield measure on three datasets based on sonoma county. Results are reported 
in Fig. 19. Overall, the timing performances of the Terrain trees and IA data structure are 
very similar, even if we notice that Terrain trees are about 5% faster than the IA data struc-
ture. The performance difference is minimal if we compare the Terrain trees. Thanks to the 
initial lower storage requirements, Terrain trees can compute the multifield measure on all 
three datasets, while the IA data structure goes out of memory on the largest one.

10 � Concluding remarks

We have presented a family of spatial data structures, the Terrain trees, for the efficient 
representation, analysis and visualization of triangulated terrains. A Terrain tree combines 
a minimal connectivity-based encoding of the underlying triangle mesh with a hierarchi-
cal spatial index, thus implicitly encoding other connectivity relations. Terrain trees con-
sist of three spatial indexes that use different bucketed subdivision rules. By borrowing an 
idea presented in [27] for a distributed data structure for simplicial complexes in arbitrary 
dimensions, we use spatial coherence to reorder the indexed data, thus achieving the com-
pression of both vertex and triangle information inside the spatial index. This enables high 
storage reduction and optimized algorithms.

We have proven the effectiveness of our proposal by designing and implementing state-
of-the-art morphological estimators for terrain analysis, like slope, curvature, and rough-
ness, as well as a distributed technique based on discrete Morse theory for topology-based 

Fig. 19   Comparison of total timings, expressed in minutes (m), for computing the multifield measure
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segmentation of such terrains. Lastly, as it is common to study a terrain in combination 
with additional fields attached to it, we have defined a distributed strategy for visualizing 
multifield data.

We have experimentally demonstrated how the bucketing thresholds on the Terrain 
trees affect generation times, storage requirements, and performances in extracting a basic 
connectivity relation. This has enabled the optimal identification of the most appropriate 
threshold ranges. We have then experimentally demonstrated the efficiency of our data 
structure by comparing it against the most common and compact connectivity-based data 
structure, the IA data structure. Terrain trees require always less storage, they generally 
perform better than the IA data structure, and their effectiveness increases with the dataset 
size. Conversely, the difference in performances among the three Terrain trees is minimal. 
We have noticed, however, that spatial indexes explicitly encoding the vertices in each leaf 
block have shown better performances at computing those estimators which require the 
efficient extraction of the triangles incident in a vertex. The source code of Terrain trees 
library and of the library implementing the IA data structure, called LibTri, are available in 
the public domain [25, 26].

The experimental results showed that encoding the triangle meshes has a relevant impact 
on the storage cost. As future work, we will consider distributing the global arrays across the 
leaf block of the Terrain trees. Also, we plan to design an algorithm for computing the TIN at 
runtime, locally within each leaf block, and discard it when no longer needed. This will fur-
ther reduce the memory footprint and enable the handling of even larger point clouds.

For topology-based analysis of the terrain, we are currently extending our tool with 
algorithms for geometric and topology-based simplification. Simplification algorithms 
have been developed for reducing the size of a TIN based on the edge contraction operator, 
but the major problem with TIN simplification algorithms is that they can create or remove 
critical points in an uncontrolled way. Topology-aware operators [38] have been defined to 
solve this issue by coarsening a TIN without affecting its topology. While effective, exist-
ing algorithms are sequential in nature and are not scalable enough to perform well with 
large terrains. We are currently developing a simplification algorithm in the Terrain Trees 
using the topology-aware edge contraction operator first introduced in [38]. Thanks to the 
compact and distributed representation of Terrain trees, this algorithm will improve both 
the memory and time requirements of the simplification procedure. Furthermore, we plan 
to investigate a new parallel topology-aware simplification algorithm that takes advantage 
of the spatial domain decomposition at the basis of Terrain trees.

Algorithms for geometric and topology-based simplification intensively update both the 
TIN and the Terrain tree. Currently, we are defining an update procedure that keeps the Ter-
rain tree up-to-date after a simplification, in such a way that performances are not largely 
affected. In the future, we plan to extend this procedure to support also generic updates 
to the TIN, like adding new points or removing TIN vertices. The generic mechanism to 
update the Terrain tree is similar to the process performed after a simplification, but it 
might be more challenging if larger portions of the TIN would need to be re-triangulated.

The morphology of a terrain, represented by the critical net, can also be simplified by 
modifying the underlying discrete gradient [29]. Simplification strategies for the discrete 
gradient have been defined for reducing noise and for obtaining clearer and accurate repre-
sentations of the critical net [22]. We plan to implement a simplification algorithm for the 
discrete gradient. This will result in more robust descriptions of the terrain morphology.

Lastly, we are currently studying an extension of the Terrain trees for distributed frame-
works like Apache Spark [76] or MPI [11]. The distributed environment will increase the 
scalability of our approach dramatically. The hierarchical representation of the Terrain 
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trees is well suited to be organized in the distributed framework. The challenge here is 
defining a distributed algorithm for constructing the TIN in such context.

Appendix A

Figures 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31.

Fig. 20   The storage costs for storing the hierarchical index of the Terrain trees on canyon lake gorge data-
set using different values of k

v
 and k

t
 . The x-axis shows the threshold value on the vertices

(a) Generation time (b) VT extraction time

Fig. 21   Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in 
Terrain trees on canyon lake gorge dataset using different values of k

v
 and k

t
 . The x-axis shows the vertex 

threshold value
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Fig. 22   The storage costs for storing the hierarchical index of the Terrain trees on sonoma county 1 dataset 
using different values of k

v
 and k

t
 . The x-axis shows the threshold value on the vertices

(a) Generation time (b) VT extraction time

Fig. 23   Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in 
Terrain trees on sonoma county 1 dataset using different values of k

v
 and k

t
 . The x-axis shows the vertex 

threshold value

Fig. 24   The storage costs for storing the hierarchical index of the Terrain trees on sonoma county 2 dataset 
using different values of k

v
 and k

t
 . The x-axis shows the threshold value on the vertices
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(a) Generation time (b) VT extraction time

Fig. 25   Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in 
Terrain trees on sonoma county 2 dataset using different values of k

v
 and k

t
 . The x-axis shows the vertex 

threshold value

Fig. 26   The storage costs for storing the hierarchical index of the Terrain trees on big creek dataset using 
different values of k

v
 and k

t
 . The x-axis shows the threshold value on the vertices

(a) Generation time (b) VT extraction time

Fig. 27   Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in 
Terrain trees on big creek dataset using different values of k

v
 and k

t
 . The x-axis shows the vertex threshold 

value
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Fig. 28   The storage costs for storing the hierarchical index of the Terrain trees on sonoma county 3 dataset 
using different values of k

v
 and k

t
 . The x-axis shows the threshold value on the vertices

(a) Generation time (b) VT extraction time

Fig. 29   Timings for generating the spatial decomposition of Terrain trees and extracting the VT relation in 
Terrain trees on sonoma county 3 dataset using different values of k

v
 and k

t
 . The x-axis shows the vertex 

threshold value

Fig. 30   The storage costs for storing the hierarchical index of the Terrain trees on sonoma county 4 dataset 
using different values of k

v
 and k

t
 . The x-axis shows the threshold value on the vertices
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we discuss the extraction of few local terrain features, such as the slope, curvature, and critical points, these 
latter by using a standard way of computing them on a TIN. This has shown the potentials in terms of 
processing times of the Terrain tree approach. In this manuscript, besides discussing algorithms for extracting 
morphological features implemented in the Terrain trees library, namely roughness, slope, curvature, we 
also present algorithms for topology-based segmentation on Terrain trees, namely the Forman gradient 
computation, critical features, and critical network extraction. Moreover, we discuss a multivariate measure 
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representation based on a modular data structure with minimal connectivity information. In this manuscript, 
we have performed an extensive evaluation of the three indexes in the Terrain trees family. Five aspects are 
considered in the experimental evaluation in the new manuscript: (i) calibration of the thresholds guiding the 
construction of Terrain trees, (ii) evaluation of the requirements for initializing Terrain trees, (iii) extraction 
of connectivity-based relations, (iv) computation of morphological features, (v) computation of topology-
based segmentation, and (v) analysis and visualization of multifield data.
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