
Computers & Graphics 58 (2016) 43–52
Contents lists available at ScienceDirect
Computers & Graphics
http://d
0097-84

n Corr
and UM
journal homepage: www.elsevier.com/locate/cag
Special Issue on SMI 2016
Computing a discrete Morse gradient from a watershed decomposition

Lidija Čomić a, Leila De Floriani c, Federico Iuricich b,n, Paola Magillo c

a Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
b Department of Computer Science and UMIACS, University of Maryland, College Park, MD, USA
c Department of Computer Science, Bioengineering, Robotics, and Systems Engineering, University of Genova, Genova, Italy
a r t i c l e i n f o

Article history:
Received 14 March 2016
Received in revised form
12 May 2016
Accepted 13 May 2016
Available online 18 May 2016

Keywords:
Discrete Morse theory
Watershed transform
Morse–Smale complexes
x.doi.org/10.1016/j.cag.2016.05.020
93/& 2016 Elsevier Ltd. All rights reserved.

espondence to: University of Maryland, Depa
IACS, A.V. Williams Building, College Park (M
a b s t r a c t

We consider the problem of segmenting triangle meshes endowed with a discrete scalar function f based
on the critical points of f . The watershed transform induces a decomposition of the domain of function f
into regions of influence of its minima, called catchment basins. The discrete Morse gradient induced by f
allows recovering not only catchment basins but also a complete topological characterization of the
function and of the shape on which it is defined through a Morse decomposition. Unfortunately, discrete
Morse theory and related algorithms assume that the input scalar function has no flat areas, whereas
such areas are common in real data and are easily handled by watershed algorithms. We propose here a
new approach for building a discrete Morse gradient on a triangulated 3D shape endowed by a scalar
function starting from the decomposition of the shape induced by the watershed transform. This allows
for treating flat areas without adding noise to the data. Experimental results show that our approach has
significant advantages over existing ones, which eliminate noise through perturbation: it is faster and
always precise in extracting the correct number of critical elements.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Forman's discrete Morse theory [1] is a combinatorial coun-
terpart of Morse theory [2]. Used in shape analysis and under-
standing, it has been adopted for shape segmentation, and
homology and persistent homology computation [3]. In particular,
discrete Morse theory is the basis for an efficient and derivative-
free computation of a segmentation of a discretized shape
endowed with a scalar function f . The discrete Morse gradient
fully encodes the topological structure of the function and of its
domain and the regions of influence of the critical points. Also, the
critical net or the Morse–Smale complex can be efficiently
extracted from it, but the whole theory is developed under the
assumption that no flat areas are present in the input data. On the
other hand, flat areas are very common in real-world datasets.
They can be intrinsic to a shape, like in terrains representing lakes,
isolines or other real flat features, or they can be due to the limited
precision of acquisition devices. Currently, most of the approaches
based on discrete Morse theory adopt the idea of Simulation of
Simplicity (SoS) [4] for eliminating flat areas (also called plateaus)
by introducing noise into them. Both when we are analyzing the
morphology of a scalar field, or when we are studying the per-
sistent homology of a shape a fundamental step is computing
rtment of Computer Science
D) 20740, United States.
persistence pairs [5]. Using discrete Morse theory, the computa-
tional complexity of this operation depends on the number of
critical simplexes present in the data. The pipeline resulting from
using SoS is then conceptually misleading. Introducing a number
of spurious critical simplexes we increase the computational
complexity for computing the persistence pairs and we succes-
sively remove the spurious critical simplexes before studying the
actual results.

We propose here a new algorithm that creates a discrete Morse
gradient starting from a watershed decomposition of a triangu-
lated 2D shape in R3 endowed with a scalar function. It permits to
construct a discrete Morse gradient from real data containing flat
areas without perturbing the original function. To do so we first
segment our domain using an existing watershed approach, sub-
dividing the vertices of the input triangulated surface Σ into
regions of influence of the minima of the scalar function f defined
on Σ. Then, our algorithm proceeds in three steps. First, all the
vertices in Σ, with the exception of the minima of f , are paired
with some incident edge. This pairing is induced by the used
watershed algorithm. Second, starting from the boundary of each
basin, triangles that are contained in the basin are paired with
edges. Third, the gradient obtained so far is modified to introduce
critical triangles corresponding to maxima of f and finally, edges
and triangles between basins are paired to produce the final dis-
crete Morse gradient. The discrete Morse gradient extends the
watershed decomposition in the sense that, by navigating the
gradient, we obtain the same regions of influence of the minima as

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2016.05.020
http://dx.doi.org/10.1016/j.cag.2016.05.020
http://dx.doi.org/10.1016/j.cag.2016.05.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.05.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.05.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.05.020&domain=pdf
http://dx.doi.org/10.1016/j.cag.2016.05.020


Fig. 1. (a) A discrete Morse function on a triangle mesh and (b) the corresponding
discrete Morse gradient. Each simplex is labeled by its function value.

L. Čomić et al. / Computers & Graphics 58 (2016) 43–5244
the watershed decomposition. At the same time, it gives a much
more powerful topological description of the function and its
domain since from a discrete Morse gradient all the Morse fea-
tures, including the critical net and the Morse–Smale complex, can
be computed. The fact that the discrete Morse theory subsumes
the watershed approach was experimentally shown in [6] by
comparing their results on input data satisfying the requirement of
having no flat features. Here, we go further and propose a method
to complete the output of a watershed algorithm to a discrete
Morse gradient. The main contributions of our work are:

� a new algorithm for computing a discrete Morse gradient on 2D
scalar fields with flat areas,

� a constructive proof of the equivalence of the techniques based
on discrete Morse theory and watershed,

� experiments showing that our algorithm is faster in computing
the Forman gradient compared to the state of the art techni-
ques, while it preserves the flat areas.

The remainder of the paper is organized as follows. In Section 2,
we review some background notions on discrete Morse theory and
on the watershed transform. In Section 3, we discuss some related
work on these subjects. In Sections 4, 5, 6 and 7, we give an over-
view of our algorithm and we describe and prove the correctness of
its three steps. Experimental results are presented in Section 8, and
concluding remarks are drawn in Section 9.
2. Background notions

We recall here some basic notions on discrete Morse theory [1]
and on the watershed transform [7,8], both in the framework of
triangle meshes. A triangle mesh Σ is a set of triangles such that,
for any pair of distinct triangles σ1 and σ2AΣ, either σ1 and σ2 are
disjoint, or their intersection is a common edge or a common
vertex. Vertices and edges of the triangles in Σ are also considered
as belonging to Σ. Triangles, edges and vertices are also simplexes
of dimensions 2, 1, and 0, respectively. A k-dimensional simplex, or
k-simplex, σ is the convex hull of kþ1 affinely independent points.
The convex hull of any subset of the vertices of σ defines a simplex
γ which is called a face of σ, while σ is a coface of γ. Thus, the faces
of a triangle are its three edges and vertices, and the faces of an
edge are its two extreme vertices. The star of a k-simplex σ in Σ is
the collection of all the cofaces of σ in Σ.

2.1. Discrete Morse theory

Discrete Morse theory [1] is defined for simplicial and cell
complexes, but here we introduce it for triangle meshes, which are
a special case of simplicial complexes. Discrete Morse theory [1]
considers functions defined over all the simplexes (vertices, edges,
triangles) of a triangle mesh Σ. A function F defined over all the
simplexes of Σ is called a discrete Morse function, or a Forman
function if, for any k-simplex σ, all the ðk�1Þ-faces of σ have a
lower F value than σ, and all the ðkþ1Þ-cofaces have a higher F
value than σ, with at most one exception. A simplex is critical if
there is no such exception. Fig. 1a shows an example of a discrete
Morse function F . Vertex 0 is critical (minimum), since F has a
higher value on all edges incident to it. Triangle 9 is critical
(maximum), since F has a lower value on all edges incident to it.
Edge 8 is critical (saddle), since F has a higher value on the inci-
dent triangle 9, and lower values on its extreme vertices.

The unique exception to the above rule, which holds for a non-
critical simplex, permits to pair such simplex with either one of its
faces, or one of its cofaces. Thus, a discrete Morse function F on a
triangle mesh Σ induces a collection of pairs ðσ; τÞ, where σ is an
edge and τ is a triangle, or σ is a vertex and τ is an edge, with σ
face of τ. Such pair can be depicted as an arrow going from σ (tail)
to τ (head), as shown in Fig. 1b. An alternative way to introduce
discrete Morse theory is through the notion of Forman gradient.

A collection of pairs ðσ; τÞ defines a discrete vector field V when
each simplex of Σ is in at most one pair of V [1]. A V-path is a
sequence σ1; τ1;σ2; τ2;…; σr ; τr of k-simplexes σi and ðkþ1Þ-sim-
plexes τi, i¼ 1;…; r with rZ1, such that ðσi; τiÞAV , σiþ1 is a face of
τi, and σiaσiþ1. In a triangle mesh, V-paths involve either ver-
tices and edges, or edges and triangles. A V-path with r41 is
closed if σ1 is a face of τr different from σr�1. A discrete vector field
V is called a discrete Morse gradient vector field (or a Forman gra-
dient) if and only if there are no closed V-paths in V . A critical
simplex of V of index k is a k-simplex γ which does not appear in
any pair of V .

There is a correspondence between discrete Morse functions
and discrete Morse gradients [9]. Namely, for each such function F ,
a discrete Morse gradient VF can be constructed. Conversely, for
each discrete Morse gradient V there exists a (non-unique) For-
man function F such that the gradient of F is V . The (negative)
discrete Morse gradient VF of F at a vertex (edge) σ indicates the
direction of a unique coface edge (triangle) τ of σ, in which F is
decreasing. Fig. 1b shows the discrete Morse gradient VF corre-
sponding to the Forman function F in Fig. 1a.

As noted in [1,10], Forman functions are hard to find, and are
unintuitive to work with. Thus, almost all the algorithms available
in the literature focus on computing a discrete Morse gradient.

2.2. The watershed transform

The watershed transform has been first defined for grey-scale
images [7,11–14], and has subsequently been extended to triangle
meshes [15]. It is defined on an undirected labeled graph
H¼ ðNH ;AH ; f Þ, where the nodes in NH , labeled by function f ,
represent the pixels in an image, or the vertices of a triangle mesh,
and the arcs in AH represent the edge-adjacencies between pairs of
pixels or the edges in a triangle mesh. The notion of a discrete
topographic distance is given in terms of minimum-cost paths in H
[7]. The lower slope LSðpÞ at a node p is the maximal slope linking p
to any of its neighbors of lower function value:

LSðpÞ ¼max
f ðpÞ� f ðqÞ
distðp; qÞ ðp; qÞAAH ; f ðqÞo f ðpÞ

�� ��

where distance distðp; qÞ is computed in domain space (i.e., on the
2D plane in case of an image). If no neighbor q exists with
f ðqÞo f ðpÞ, then LSðpÞ ¼ 0. A cost is associated with the arcs in AH

defined in terms of the lower slope. The π-topographic distance
between nodes p and q is the sum of costs of all directed arcs in
path π connecting p and q. The topographic distance Tðp; qÞ
between p and q is the minimum of the π-topographic distances
along all such paths π. The catchment basin of a minimum m of f is
the set of nodes closer to m than to any other minimum of f . Note



L. Čomić et al. / Computers & Graphics 58 (2016) 43–52 45
that the topographic distance is actually a pseudo-distance,
because it is equal to zero on distinct nodes in the same flat area.
3. Related work

We provide here an overview of algorithms for extracting dis-
crete Morse gradients, and catchment basins based on the water-
shed transform.

3.1. Algorithms for discrete Morse gradient

Algorithms based on discrete Morse theory are purely combi-
natorial, dimension-independent and independent of the type of
the discretization of the underlying shape (domain of f ). Algo-
rithms [16–19] are easily parallelizable or have been specifically
developed for distributed computation. Starting from a discrete
scalar function f defined over the vertices of a complex Σ , they
aim at constructing a discrete Morse gradient that best fits func-
tion f . They focus on extracting a minimum number of critical
simplexes [16,20], or they perform a posteriori simplifications to
reduce their number [21,22]. The typical applications for such
algorithms are data analysis and visualization, since a discrete
Morse gradient provides a computationally efficient way for
extracting the regions of influence of the critical points.

The algorithm presented in [16] has been recognized as one of
the most powerful. It has been adapted to triangle and tetrahedral
meshes in [19,23] and an optimized version for computing per-
sistent homology on volumetric images has been developed in
[24]. A function value is defined for each simplex by listing the
field values on its vertices in lexicographic order. The algorithm
processes the lower star of each vertex v in Σ independently,
where the lower star of a simplex σ is the subset of the star of σ
containing only simplexes with a lower function value than σ.
Simplexes are considered in ascending order of function value and
of dimension in such a way that each simplex is considered after
its faces. The simplexes in the lower star of the current simplex are
paired via homotopy expansion. Two simplexes, k-simplex σ and
ðkþ1Þ-simplex τ, are paired when σ has no unpaired coface and τ
has only one unpaired face (i.e., σ). In [16] it has been proven that
up to the 3D case, the critical cells identified are in one-to-one
correspondence with the topological changes in the sub-level sets
of the scalar function defined over the complex.

Based on the latter, a new algorithm has been defined in [25]
for computing a discrete Morse gradient based on an input seg-
mentation. Similar to our proposal, the input segmentation is used
for guiding the gradient computation. However, in [25] the seg-
mentation has the purpose of limiting the number of gradient
paths between adjacent regions, while in our case, as we describe
in Section 4, the segmentation helps us to reconstruct the correct
number of critical simplexes.

3.2. Watershed algorithms

Several algorithms have been proposed in the literature for
performing the watershed transform, which are based on the
discrete topographic distance [7], on simulated immersion [11,12], or
on rain falling simulation [15,14].

The approach based on topographic distance directly applies
the definition of catchment basins. The image integration algorithm
by Meyer [26,7] is a variation of the Dijkstra–Moore algorithm [27]
for computing the shortest path, in terms of topographic distance,
from a source node to every other node in a graph. The hill
climbing algorithm [7] is a simplified version of the image inte-
gration approach, which applies to regular grids, since the distance
between two adjacent nodes p and q in domain space is assumed
to be constant.

The intuitive idea behind the simulated immersion approach
[11,12] is that of letting water raise from minima. When applied to
the graph H describing the image or the triangle mesh, the algo-
rithm expands catchment basins by processing the nodes of H by
increasing function values. When a certain level h is reached, all
catchment basins of minima with value h0oh have been started
and contain just nodes with function values lower than h. Pro-
cessing level h will add new nodes to existing basins, and will start
new basins from minima having a function value equal to h. The
expansion of existing basins treats flat areas in a transparent way.

The watershed approaches discussed so far have in common
the idea of growing catchment basins upwards from the minima of
f . The rain falling paradigm [15,14] uses the idea of letting water
fall down from each vertex until it reaches a minimum. The
algorithm descends from each node to its lowest adjacent node
until a minimum is reached. The algorithm in [15] is for triangle
meshes, while the one in [14] is for regular grids. Both of them
allow for the treatment of flat areas. In [15], all such areas are
found in a preliminary step and each of them is treated as a single
node. In [14], flat areas are found as they are encountered during
the descent. An implementation of the rain falling simulation for
triangle meshes has been used in [28].

In the output of watershed algorithms, not all nodes belong to a
catchment basin. In the approaches based on topographic distance
and on simulated immersion, nodes that have the same distance
from different minima, or are reached by water from different
minima, are labeled as belonging to watershed lines (watershed
nodes).

3.3. Removal of flat areas

Simulation of Simplicity (SoS) [4] is the most widely used
method to resolve differentiability in topological analysis in the
discrete case. Given a complex with flat areas, a strictly increasing
ordering of vertices is defined. The new indexes preserve the old
order (induced by function values) for distinct value data and
impose a new ordering for vertices having the same value. The
main drawback of SoS is that it introduces spurious critical points
that are not present in the original data. To mitigate this problem
an improved version of the SoS approach has been introduced in
[22]. Two sorted queues are used for imposing a breadth first visit
of the flat areas. In this manner, no spurious minima are created
but saddles and maxima are still introduced without control. The
algorithm presented in [28] is the only one, to the best of our
knowledge, that address the problem of perturbing data in a such
a way that the modified scalar field does not have missing or extra
critical points. This algorithm works on triangle meshes only. It
iteratively addresses vertices on the boundary of a flat area and
slightly raises or lowers them (according to specific rules), in order
to progressively “erode” each plateau without creating new max-
ima or minima, or deleting existing ones. The method has to use a
priority queue of candidate vertices for the various rules, as each
modified vertex creates new candidates. Moreover, in order to
avoid machine precision errors, it applies a symbolic modification
of height values followed by a final rescaling of all the vertices. For
such reasons, it is rather complicated and intrinsically slower than
using perturbation.
4. Computing the discrete Morse gradient

In this section, we describe our approach, that combines
watershed transform and discrete Morse theory, for computing a
Forman gradient from a scalar field. The input of our algorithm is a



Fig. 3. Pairings inside a plateau minimum. (a) A vertex is chosen as representative
minimum (inside the red circle) and all its adjacent vertices are paired. (b) The
paths are then extended starting from those vertices until all the vertices in the
plateau are paired. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Fig. 2. A triangle mesh representing a terrain, where scalar function f is elevation.
Dots indicate the unpaired or critical simplexes after step 2. All triangles contained
in some basin are paired, while triangles on the boundary of two or more basins are
still unpaired.

L. Čomić et al. / Computers & Graphics 58 (2016) 43–5246
triangle mesh Σ endowed with a scalar function f at its vertices,
together with a partition of the vertices of Σ, produced by a
watershed algorithm (see Section 3). In our implementation we
have used simulated immersion, but any other watershed algo-
rithm can be used as well.

We apply the watershed algorithm to the graph H formed by
the vertices and edges of Σ, where each node of H, which is a
vertex of Σ, is labeled with the corresponding value of f . Recall
that the watershed algorithm applied to H labels the nodes of H as
belonging to catchment basins or to watershed lines. We remove
watershed nodes by assigning them to a basin in the following
way. A queue of watershed nodes having a lower adjacent node
assigned to some basin is built. At each step, a watershed node v is
extracted from the queue, labeled as belonging to the same basin
as its neighbor with lowest function value, and watershed nodes
adjacent to v are inserted into the queue. The process continues
until the queue is emptied. The result of this preprocessing is a
partition of the vertices of Σ into catchments basins.

The discrete Morse gradient V induced by the watershed
algorithm is built in three steps:

1. Vertex–edge pairing: A discrete Morse gradient V 0 is constructed
having only vertex–edge pairs, such that each vertex, which is
not a minimum, is paired in V 0.

2. Edge–triangle pairing inside basins: V 0 is extended to V ″ by
adding edge–triangle pairs in such a way that each triangle
lying completely inside some basin (i.e., such that all three
vertices belong to the basin) is paired (see Fig. 2).

3. Edge–triangle pairing between adjacent basins: The final discrete
Morse gradient V is built from V ″ by determining critical tri-
angles and pairing the remaining edges and (non-critical) tri-
angles whose vertices belong to different basins.

In the following three sections, we describe the three steps in
detail, and prove the correctness of each step, and thus of the
whole algorithm. We show that the pairing of cells established by
our algorithm defines a discrete Morse gradient V on Σ such that
there is a one-to-one correspondence between the critical points
of the scalar function f and the critical simplexes of V .

Algorithm 1. vertexEdgeInsideFlatðΣ; f ;VÞ.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20
21:
22

Fig. 4. Pairings inside a non-minimum plateau. (a) Starting from the vertices
belonging to the plateau and already paired (red dots), the other vertices are
progressively paired (b) and (c). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
Input: Σ, triangle mesh
Input: f, scalar function
Input: W, watershed segmentation
Input/Output: V, Forman gradient

for each vertex v in Σ do
if !isPaired(v,V) AND !is-Critical(v,V) then

K←collectPairedInsideFlatAreaðv;VÞ
if K ¼ ∅ then

setCritical(v,V) // v is a minimum
K←adjacentsUnpairedðv;Σ;VÞ
for each u in K do

if ðvÞ ¼ fðuÞ then
setPairðu;uv;VÞ

Q←K // Q is queue
while !Q.isEmpty() do

u←Q :popðÞ
for each w in adjacentsUnpairedðu;Σ;VÞ do

if WðuÞ ¼ WðwÞ AND fðuÞ ¼ fðwÞ then
: setPairðw;uw;VÞ

Q←w
: break
: return V
23
5. Step 1: vertex–edge pairing

We first pair the vertices that do not belong to any flat area. We
construct the vertex–edge pairs directly from the watershed par-
tition. Each vertex v in Σ is paired with its lowest adjacent vertex
u, belonging to the same basin, only if they do not share a flat
edge. A second sweep on the vertices of Σ is used for pairing
vertices inside flat areas (see Algorithm 1). These are exactly those



L. Čomić et al. / Computers & Graphics 58 (2016) 43–52 47
left unpaired after the first sweep (row 7). For each unpaired
vertex we recursively collect the adjacent vertices inside the flat
area. Among them we select those that have been already paired
ðK’collectPairedInsideFlatAreað�ÞÞ. If K ¼∅ the flat area is a mini-
mum and v is set as critical (see Fig. 3a). Each unpaired vertex u,
adjacent to v, is then paired with v if the edge uv is flat (rows 11–
14). After that, plateau minima and non-minima are treated in the
same fashion. We insert the vertices, belonging to the plateau, that
have been already paired, in a queue Q (row 17). Vertices in Q are
recursively paired, in a breadth first manner, with adjacent ver-
tices having the same value of f and belonging to the same basin
(row 20). The latter corresponds to extending the gradient paths
upwards, starting from vertices having gradient paths that exit
from the plateau (see Fig. 4), or from the artificial minimum (see
Fig. 3b) in case of a plateau minimum.

5.1. Correctness of step 1

We have to show that the constructed set of vertex–edge pairs,
that we denote with V 0: (i) has no cycles; (ii) all vertices are paired,
with the exception of the minima of f , and of one artificial mini-
mum for each plateau minimum.

We observe that the input of our algorithm is a correct
watershed output. Distinct minima of function f (including plateau
minima) have different labels, and each other vertex takes its basin
label from one of its lower adjacent vertices.

Properties (i) and (ii) are trivially satisfied for non-flat edges.
For flat edges, let P be the connected set of vertices that form a
plateau, let A be the set of edges in Σ that connect vertices in P and
let An be the set of edges in A that are paired with a vertex in P. The
graph ðP;AnÞ is a spanning forest of the graph ðP;AÞ. The roots of
trees in ðP;AnÞ are vertices paired with an edge connecting it to a
lower neighbor (for non-minimum plateaus) or the artificial
minimum (for plateau minima). Since there are no cycles in a
forest, property (i) is satisfied. Since ðP;AÞ is a connected graph,
each node in P is either a node or a root of some tree, implying
property (ii).
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
6. Step 2: edge–triangle pairing inside basins

We extend the collection V 0 of vertex–edge pairs produced at
step 1 by adding edge–triangle pairs to V 0 for each triangle t where
the three vertices of t belong to the same basin R. In that case, for
short, we say that triangle t is inside R. We denote the extended set
as V ″.

We use a priority queue Q of edge–triangle pairs organized in
descending order of the interpolated function value at the cen-
troids of the edges. Q is initialized with pairs ðe; tÞ, where e is an
unpaired edge on the boundary of R and t is an unpaired triangle
inside R and incident in e. Then, for each edge–triangle pair ðe; tÞ in
Q , if t is already paired the pair is skipped. Note that the pairing of
t might have occurred while processing another edge of t with
Fig. 5. Successive pairings inside a basin and updates of the corresponding cycles. (a) Dis
cycle C. (b) After pairing of unpaired edge ab with triangle abg, edge ab is replaced with
cycle C is split in two, C0 defined by bcdg and C″ by agef . (d) After pairing of unpaired ed
paired with unpaired edge dg.
higher priority than e. Otherwise, edge e and triangle t are paired
in V ″. Each unpaired edge e0 of t, with e0ae, is added to Q together
with the triangle t0 sharing e0 with t only if t0 is inside the same
basin as t. The process continues until Q becomes empty.

The above process progressively erodes the set of unpaired
triangles inside a basin, starting from triangles lying on the
boundary of the set (which are paired first) and then moving into
the basin.

6.1. Correctness of step 2

We have to show that (i) the edge–triangle pairs constructed do
not form cycles, and (ii) all triangles lying inside a basin have been
paired.

Let us consider the set of triangles inside a basin R. This set
consists of one or more connected components, each bounded by
one or more cycles of edges.

Q is initialized using the unpaired edges belonging to such
cycles. Each time a triangle t is paired with one of those edges, the
other (unpaired) edges of t are inserted in the queue. Thus, after
each pairing, we obtain a new set of bounding cycles, which are
contained in the previous ones, until there are no more unpaired
triangles inside R. Property (i) is shown by noting that generated
gradient arrows are always directed from outer boundary (before
the update) to inner boundary (after the update). Fig. 5 shows a
working example; note that a connected component can be split
into two, and in that case each of the two cycles has an edge added
to the queue.

For property (ii), we have to show that Q is initialized with at
least one unpaired boundary edge for each connected component
of (unpaired) triangles inside a basin R. This follows from the fact
that there is, at least, one unpaired edge e in each cycle C bounding
a connected component of triangles inside a basin R in the initial
configuration. Otherwise, there would be a vertex in C that is
paired with more than one edge, or there would be a closed path
in V 0 consisting of vertices and edges in cycle C, which is false (as
we proved in Section 5.1).

Algorithm 2. edgeTrianglePairingðΣ; f ;VÞ.
crete M
edge
ge bg
Input: Σ, triangle mesh
Input: f, scalar function
Input/Output: V, Forman gradient

visited←array½vertices in Σ�
for each vertex v in Σ do
if !visited[v] AND isMaximumðv;Σ; f Þ then

K←collectPlateauVerticesðv;Σ; f Þ
setVisited(K,visited)
t←pickBestTriangleðK;Σ;V; fÞ
if t != ∅ then

setCriticalðt;VÞ
Q←t
orse gradient V 0 with only vertex–edge pairs. Vertices abcdef define edges in
s ag and bg in cycle C. (c) After pairing of unpaired edge de with triangle deg,
with triangle bcg, cycle C0 surrounds a unique triangle cdg, (e) which is then



14:
15:
16:
17:
18:
19:
20
21:
22
23

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:

Fig. 6. A terrain with two minima (cyan) and one maximum (red). (a) Pairs
obtained after the first two steps. (b) The red triangle is defined as a maximum and
the descending paths from its edges to the two green critical edges are created. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 7. A terrain with two minima (cyan) and one maximum (red). (a) Pairs
obtained after the first two steps. (b) The red triangle is defined as a maximum and
the descent from it ends at the green critical edge on the boundary, white triangles
remain unpaired. The descent is restarted from the boundary triangles marked
with circle ending on the other green (critical) edge. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

L. Čomić et al. / Computers & Graphics 58 (2016) 43–5248
while !Q.isEmpty() do
t←Q :popðÞ
for each unpaired edge e in t do
t′←adjacentðe; tÞ
if t′ot then

setPairðe; t′;VÞ
: Q←t′

else
: setCritical(e,V)
: else
: reversePathðΣ;K ; f ;V Þ
24

Algorithm 3. reversePathðΣ;K ; f ;VÞ.

Fig. 8. (a) A basin (yellow) completely contained in another one (pink). The descent
starts from the unpaired triangle having three unpaired edges (marked with red
circles). (b) The set of triangles paired with edges and the new critical (green) edge.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
Input: Σ, triangle mesh
Input: K, vertices in the plateau
Input: f, scalar function
Input/Output: V, Forman gradient

t←pickBestTriangleInsideBasinðK;Σ;V; fÞ
setCriticalðt;VÞ
e←getPairðt;VÞ
t′←adjacentðe; tÞ
while t′ot do
e′←getPairðt′;VÞ
removePairðe; t;VÞ
setPairðe; t′;VÞ
e←e′

t←t′

t′←adjacentðe; t;ΣÞ
setCritical(e,V)
17:

7. Step 3: edge–triangle pairing on basin boundaries

At the end of the second step, all triangles inside each basin are
paired. Unpaired triangles are limited to those on the boundary
between basins, and are organized into triangle strips, as depicted
in Fig. 2 (general view) and in Fig. 6a (detail).

The following step is described in Algorithm 2. We identify
both isolated maxima of f (vertices of Σ having all the adjacent
vertices with a lower function value), and plateau maxima, which
are sets of connected vertices such that all the vertices adjacent to
them have the same or a lower function value. For each maximum,
we pick the corresponding critical triangle (row 10) among those
incident in the maximum vertex, or in one of the vertices of the
plateau maximum. Precisely, the critical triangle is the unpaired
triangle having the maximum number of unpaired edges on its
boundary. If two or more triangles have the same number of
unpaired edges, we pick the one having the centroid with the
highest (interpolated) function value. From maximum triangles,
we start a descending process in which we create new gradient
pairs. We say that t0ot when the third vertex of t0 (not in t) has a
lower function value than the two shared vertices. Let t be the
current triangle (initially, a maximum triangle). We initiate a
descending gradient path from each of its unpaired edges (row
16). We pair each of such edges e with its incident triangle t0 dif-
ferent from t, if t0ot. Otherwise, we declare edge e as critical. A
working example is shown in Fig. 6. Cases exist where maxima lie
inside some basin R instead of lying on its boundary. In this case
the identified critical maximum is surrounded by paired triangles.
In such cases (see Algorithm 3), triangle t is chosen based on the
function value of the centroid and declared critical (rows 6 and 7).
Then, the gradient path originally converging to t is reversed.

7.1. Special cases

The above process may leave unpaired triangles and edges
when the domain has a boundary (see Fig. 7a) or when a basin R1

is completely contained in another basin R2 (see Fig. 8a).
In such cases, we need to find other triangles (and edges) to

restart a descending path. In the first case, an unpaired triangle t
must be adjacent to the boundary of the domain along an unpaired
edge e. In the second case, either there is an unpaired edge e on
the boundary of R2 (it has endpoints in R2, and the third vertex of
the unpaired triangle t incident to e is in R1), or there is a critical
edge c with endpoints in R2, such that there is a gradient V ″-path
starting from an edge e on the boundary of R2 and ending at a



Fig. 9. (a) Our algorithm finds the correct number of critical simplexes, and (b) the
one in [16] finds up to 5.6 times more critical simplexes. Dots mark maxima (red),
minima (blue), saddles (green). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

L. Čomić et al. / Computers & Graphics 58 (2016) 43–52 49
triangle incident to c. In the latter case, we reverse this gradient
path making e unpaired. Among such candidates, we select the
one with the highest interpolated function value on the unpaired
edge e, then we pair e and t, and we restart a descent from each
other unpaired edge of t (as described before). This process con-
tinues until all triangles have been paired. An example involving a
boundary edge is shown in Fig. 7. An example with a basin con-
tained in another basin is shown in Fig. 8.

7.2. Correctness of step 3

Step 3 creates one maximum triangle in the gradient field for
each maximum of function f . We have to show that no cycles are
created during the descent. Since all the gradient paths are built
following a descent on the function value, no closed V-paths can
be obtained.

In the special cases, we have to show that at least one triangle–
edge pair exists as a candidate to restart the descent. In case where
an unpaired triangle is on the boundary of the domain, the
boundary edge must be unpaired, because it could only be paired
with the triangle itself. In case where one basin R1 is completely
contained in another basin R2, if an unpaired edge e exists on the
boundary of R2 that is incident to an unpaired triangle t in the
triangle strip between R1 and R2, we are done. Otherwise, let us
consider the simplicial complex ΣR defined by connected com-
ponent of triangles in R2 that encloses R1 and all the incident edges
and vertices, together with the restriction V ″

R of V ″ to ΣR. Note that
each two vertices in ΣR are connected through a V ″

R-path. Since ΣR

has a hole corresponding to R1 and V ″
R is a discrete Morse gradient,

there must be at least one critical edge c in ΣR incident to two
triangles t1 and t2 in ΣR. Since all triangles in ΣR are paired, there
is a gradient V ″

R-path p1 starting at an edge e1 on the boundary of
R2 and ending at t1, and similarly for t2. Such gradient paths define
triangle strips, i.e., each two consecutive triangles in the path
share an edge that is paired with one of the two triangles. The two
edges e1 and e2 must be on two different cycles of boundary edges
of R2, because otherwise the union of triangles in the two paths p1
and p2 would disconnect the vertices in ΣR, i.e., the endpoints of c
would not be connected through a gradient path in ΣR. For similar
reasons, such gradient paths for two different critical edges cannot
start at edges belonging to the same two cycles. Thus, for each
Table 1
Results obtained from 11 triangle meshes. The first six represent terrain datasets, where
function defined on them is mean curvature. The columns show, for each mesh, the num
for performing steps 1, 2 and 3, and the total computation time of our approach includin
of critical simplexes obtained while applying simulation of simplicity (SoS) and the impr
time for the homotopy expansion algorithm (timings are expressed in seconds). Blue and
interpretation of the references to color in this figure caption, the reader is referred to
basin R1 enclosed in R2 there must be an edge e on the boundary of
R2 that is incident to a triangle t with the third vertex in R1, such
that there is a gradient V ″-path starting at e and ending at some
triangle in R2 incident to a critical edge c. The reversal of this
gradient path will pair e with t, and step 3 of the algorithm can
proceed from the remaining two edges of t. From the discussion
above, it follows that path reversal and the pairing of triangles
between R1 and R2 will not create closed gradient V-paths. Thus,
the gradient field V , built by our algorithm, is a discrete Morse
gradient on Σ: it is defined by vertex–edge and edge–triangle
the scalar function is elevation. The last five are freeform surfaces, and the scalar
ber of vertices, triangles, critical simplexes, the computation times for our algorithm
g the preprocessing step computing the input watershed segmentation, the number
oved version described in [22] (SoSþþ). The last column shows the computational
red values indicate the lowest and highest value for each column, respectively. (For
the web version of this paper.)



Fig. 10. The 953 critical simplexes, connected through a discrete Morse gradient, computed on the Crater dataset (a) using our algorithm. Using the algorithm in [16] and SoS
1761 critical points are found (b). Red, blue and green dots mark maxima, minima and saddles, respectively. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Fig. 11. (a) The Rim01 dataset enriched with the mean curvature for each vertex. Our method identifies 57,320 critical points (b) while using the algorithm in [16] and SoS,
83,722 critical points are found (c). Red, blue and green dots mark maxima, minima and saddles, respectively. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

L. Čomić et al. / Computers & Graphics 58 (2016) 43–5250
pairs, each element of Σ is in at most one pair and there are no
closed V-paths.
8. Results and discussion

The presented approach is based on the idea of introducing a
single critical vertex or triangle wherever there is a minimum or
maximum in the dataset in the piecewise-linear sense (see [29]).
We have proved that no vertices and triangles (other than those
associated with minima and maxima, respectively) remain
unpaired after applying our algorithm and, thus, the number of
critical minima and maxima is correct. We checked that also the
number of critical edges found is always correct by exploiting the
Euler formula and the known Euler characteristic of the domain of
our test meshes.

In this section we compare the results obtained using our
approach with those combining Simulation of Simplicity (SoS) [4],
or its improved version (SoSþþ) [22], with the algorithm for
Forman gradient computation based on homotopy expansion in
[16]. For encoding the triangle mesh and representing the Forman
gradient we are using the efficient representation described in
[19]. Experiments have been performed on a MacBook Pro with a
2.8 GHz processor and 16 GB of memory. The segmentation algo-
rithm used in our experiments is the watershed by simulated
immersion [11].

Tests have been performed on a variety of triangle meshes
representing both terrain datasets and 3D shapes (closed trian-
gulated surfaces). The results are shown in Table 1. For each
dataset, we present the number of vertices ðjV j Þ, triangles ðjT j Þ
and the total number of critical points ðjCP j Þ of the scalar field.
Note that this latter is equal to the total number of critical sim-
plexes of the discrete Morse gradient extracted by our algorithm.
The timings required by the new algorithm are shown separately
for each step. We can notice that the time required by step 1 is
generally less than that required by step 2, since steps 1 and
2 cycle over vertices and triangles, respectively, and there are
twice as many triangles as vertices in any triangle mesh. For the
same reason, step 3 requires about the same time as step 2 since it
cycles over the triangles for a second time. Column Tot indicates
the time required by the algorithm including also the computation
of the watershed segmentation. Columns SoS and SoSþþ in
Table 1 show the number of critical points obtained imposing a
total order on the vertices based on the respective methods. We



L. Čomić et al. / Computers & Graphics 58 (2016) 43–52 51
can notice the drawback of introducing noise for perturbing the
input function around flat areas. When the input function has
large flat areas, the number of spurious critical simplexes found by
the algorithm increases up to a maximum of 46% of the total
number of critical simplexes found by our algorithm. SoSþþ
solves only partially the problem and for some datasets more than
40% of the critical simplices identified are still spurious. Fig. 9
shows this behavior on three toy examples; Figs. 10 and 11 show it
on two real datasets. On the left, we show the critical simplexes
extracted by our algorithm, on the right those extracted by the
algorithm in [16] after SoS is applied. The last column in Table 1
presents the time required for computing the Forman gradient
using the algorithm described in [16]. Notice that the latter does
not include the time required for creating the total order with SoS
or SoSþþ . By comparing the timings of the two algorithms, we
see that our method takes less time in general, being up to
2.1 times faster. The algorithm in [16], however, is dimension
independent, while our algorithm is designed for triangle meshes
only, and does not extend to higher dimensions in a straightfor-
ward manner. Another approach could be to eliminate plateaus
with the method in [28] and then compute a discrete Morse gra-
dient with the algorithm in [16]. However, the results presented in
Table 1 make such a comparison unnecessary, because our method
is already faster than [16] alone.
9. Concluding remarks

We have proposed a new algorithm that constructs a discrete
Morse gradient on triangulated surfaces endowed with a scalar
field by starting from a watershed decomposition of their set of
vertices. The first property of our approach is that the discrete
Morse gradient computed maintains the vertex classification
inferred by the watershed decomposition, since the vertex–edge
pairs are built in the same way as in the watershed decomposition.
By combining an algorithm for watershed decomposition as a
preprocessing step and the algorithm proposed here, we are able
to process scalar fields that are not generic, i.e., that have adjacent
vertices with same function value. This opens up to the use of
discrete Morse theory in real applications where flat areas are
common, such as in terrain modeling but not only. Our method is
preferable to other approaches based on simulation of simplicity
[4,22], since it preserves the original number of topological fea-
tures. We have discussed the soundness of the new method and
have demonstrated the importance of properly handling flat areas
when dealing with morphological analysis of terrains and shapes.
Also we have provided a fair comparison between our algorithm
and the state of the art in computing a discrete Morse gradient
starting from a given scalar field in 2D. We are currently working
on a parallel implementation of our algorithm. In particular the
vertex–edge pairing (Section 5) and the edge–triangle pairing
(Section 6) can be parallelized improving time efficiency. We think
that extending the computation of a discrete Morse gradient to
functions with flat areas will strongly encourage the wider use of
topological tools in shape analysis. The source code is publicly
available (〈https://github.com/IuricichF/FormanGradient2D〉).
Acknowledgements

All the datasets used are courtesy of the Aim@Shape repository
[30] and the Virtual Terrain Project [31]. This work has been par-
tially supported by the US National Science Foundation under
grant number IIS-1116747. The support of the Hungarian Academy
of Sciences through the DOMUS project (number 5706/11/2015/
HTMT) is also acknowledged.
References

[1] Forman R. Morse theory for cell complexes. Adv Math 1998;134:90–145.
[2] Milnor J. Morse theory. New Jersey: Princeton University Press; 1963 ISBN 0-

691-08008-9.
[3] De Floriani L, Fugacci U, Iuricich F, Magillo P. Morse complexes for shape

segmentation and homological analysis: discrete models and algorithms.
Comput Graph Forum 2015;34(2):761–85. http://dx.doi.org/10.1111/cgf.12596.

[4] Edelsbrunner H, Mücke EP. Simulation of simplicity: a technique to cope with
degenerate cases in geometric algorithms. ACM Trans Graph 1990;9(1):66–
104. http://dx.doi.org/10.1145/77635.77639.

[5] Edelsbrunner H, Letscher D, Zomorodian A. Topological persistence and sim-
plification. Discret Comput Geomet 2002;28(4):511–33. http://dx.doi.org/
10.1007/s00454-002-2885-2.

[6] De Floriani L, Iuricich F, Magillo P, Simari P. Discrete Morse versus watershed
decompositions of tessellated manifolds. In: Image analysis and processing—
ICIAP 2013: 17th international conference, Naples, Italy; September 9–13,
2013. Proceedings, Part II. Berlin, Heidelberg: Springer; 2013, p. 339–48. ISBN
978-3-642-41184-7.

[7] Meyer F. Topographic distance and watershed lines. Signal Process
1994;38:113–25. http://dx.doi.org/10.1016/0165-1684(94)90060-4.

[8] Najman L, Schmitt M. Watershed of continuous functions. Signal Process
1994;38(1):99–112.

[9] Forman R. Combinatorial vector fields and dynamical systems. Math Z
1998;228:629–81. http://dx.doi.org/10.1007/PL00004638.

[10] Forman R. A user's guide to discrete Morse theory. Sémin Lothar Combinat
2002;48:35.

[11] Vincent L, Soille P. Watershed in digital spaces: an efficient algorithm based on
immersion simulation. IEEE Trans Pattern Anal Mach Intell 1991;13(6):583–
98. http://dx.doi.org/10.1109/34.87344.

[12] Soille P. Morphological image analysis: principles and applications. Berlin,
New York: Springer-Verlag; 2004 ISBN 3540429883.

[13] Roerdink J, Meijster A. The watershed transform: definitions, algorithms, and
parallelization strategies. Fundam Inform 2000;41:187–228.

[14] Stoev SL, Strasser W. Extracting regions of interest applying a local watershed
transformation. In: Proceedings of the IEEE visualization'00. ACM Press; IEEE
Computer Society Press, Los Alamitos, CA, USA, 2000. p. 21–8. ISBN 1-58113-
309-X.

[15] Mangan A, Whitaker R. Partitioning 3D surface meshes using watershed
segmentation. Trans Vis Comput Graph 1999;5(4):308–21. http://dx.doi.org/
10.1109/2945.817348.

[16] Robins V, Wood PJ, Sheppard AP. Theory and algorithms for constructing
discrete Morse complexes from grayscale digital images. IEEE Trans Pattern
Anal Mach Intell 2011;33(8):1646–58. http://dx.doi.org/10.1109/
TPAMI.2011.95.

[17] Shivashankar N, Maadasamy S, Natarajan V. Parallel computation of 2D
Morse–Smale complexes. IEEE Trans Vis Comput Graph 2012;18(10):1757–70.
http://dx.doi.org/10.1109/TVCG.2011.284.

[18] Shivashankar N, Natarajan V. Parallel computation of 3D Morse–Smale com-
plexes. Comput Graph Forum 2012;31(3):965–74. http://dx.doi.org/10.1111/
j.1467-8659.2012.03089.x.

[19] Weiss K, Iuricich F, Fellegara R, De Floriani L. A primal/dual representation for
discrete Morse complexes on tetrahedral meshes. Comput Graph Forum
2013;32(3):361–70. http://dx.doi.org/10.1111/cgf.12123.

[20] Gyulassy A, Bremer P, Pascucci V. Computing Morse–Smale complexes with
accurate geometry. IEEE Trans Vis Comput Graph 2012;18(12):2014–22. http:
//dx.doi.org/10.1109/TVCG.2012.209.

[21] King H, Knudson K, Mramor N. Generating discrete Morse functions from
point data. Exp Math 2005;14(4):435–44 〈http://projecteuclid.org/euclid.em/
1136926974〉.

[22] Gyulassy A, Bremer PT, Hamann B, Pascucci V. Practical considerations in
Morse-Smale complex computation. In: Topological methods in data analysis
and visualization: theory, algorithms, and applications. Mathematics and
visualization. Heidelberg: Springer-Verlag; 2011. p. 67–78. http://dx.doi.org/
10.1007/978-3-642-15014-2_6.

[23] Fellegara R, Iuricich F, De Floriani L, Weiss K. Efficient computation and sim-
plification of discrete Morse decompositions on triangulated terrains. In:
SIGSPATIAL’14 Proceedings of the 22nd international conference on advances
in geographic information systems; 2014. p. 223–32. http://dx.doi.org/10.1145/
2666310.2666412.

[24] Günther D, Reininghaus J, Wagner H, Hotz I. Efficient computation of 3D
Morse–Smale complexes and persistent homology using discrete Morse the-
ory. Vis Comput 2012;28(10):959–69. http://dx.doi.org/10.1007/
s00371-012-0726-8.

[25] Gyulassy A, Günther D, Levine JA, Tierny J, Pascucci V. Conforming Morse–
Smale complexes. IEEE Trans Vis Comput Graph 2014;20(12):2595–603. http:
//dx.doi.org/10.1109/TVCG.2014.2346434.

[26] Meyer F, Beucher S. Morphological segmentation. J Vis Commun Image
Represent 1990;1:21–45. http://dx.doi.org/10.1016/1047-3203(90)90014-M.

https://github.com/IuricichF/FormanGradient2D
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref1
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref1
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref2
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref2
http://dx.doi.org/10.1111/cgf.12596
http://dx.doi.org/10.1111/cgf.12596
http://dx.doi.org/10.1111/cgf.12596
http://dx.doi.org/10.1145/77635.77639
http://dx.doi.org/10.1145/77635.77639
http://dx.doi.org/10.1145/77635.77639
http://dx.doi.org/10.1007/s00454-002-2885-2
http://dx.doi.org/10.1007/s00454-002-2885-2
http://dx.doi.org/10.1007/s00454-002-2885-2
http://dx.doi.org/10.1007/s00454-002-2885-2
http://dx.doi.org/10.1016/0165-1684(94)90060-4
http://dx.doi.org/10.1016/0165-1684(94)90060-4
http://dx.doi.org/10.1016/0165-1684(94)90060-4
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref8
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref8
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref8
http://dx.doi.org/10.1007/PL00004638
http://dx.doi.org/10.1007/PL00004638
http://dx.doi.org/10.1007/PL00004638
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref10
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref10
http://dx.doi.org/10.1109/34.87344
http://dx.doi.org/10.1109/34.87344
http://dx.doi.org/10.1109/34.87344
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref12
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref12
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref13
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref13
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref13
http://dx.doi.org/10.1109/2945.817348
http://dx.doi.org/10.1109/2945.817348
http://dx.doi.org/10.1109/2945.817348
http://dx.doi.org/10.1109/2945.817348
http://dx.doi.org/10.1109/TPAMI.2011.95
http://dx.doi.org/10.1109/TPAMI.2011.95
http://dx.doi.org/10.1109/TPAMI.2011.95
http://dx.doi.org/10.1109/TPAMI.2011.95
http://dx.doi.org/10.1109/TVCG.2011.284
http://dx.doi.org/10.1109/TVCG.2011.284
http://dx.doi.org/10.1109/TVCG.2011.284
http://dx.doi.org/10.1111/j.1467-8659.2012.03089.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03089.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03089.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03089.x
http://dx.doi.org/10.1111/cgf.12123
http://dx.doi.org/10.1111/cgf.12123
http://dx.doi.org/10.1111/cgf.12123
http://dx.doi.org/10.1109/TVCG.2012.209
http://dx.doi.org/10.1109/TVCG.2012.209
http://dx.doi.org/10.1109/TVCG.2012.209
http://dx.doi.org/10.1109/TVCG.2012.209
http://projecteuclid.org/euclid.em/1136926974
http://projecteuclid.org/euclid.em/1136926974
dx.doi.org/10.1007/978-3-642-15014-2_6
dx.doi.org/10.1007/978-3-642-15014-2_6
dx.doi.org/10.1145/2666310.2666412
dx.doi.org/10.1145/2666310.2666412
http://dx.doi.org/10.1007/s00371-012-0726-8
http://dx.doi.org/10.1007/s00371-012-0726-8
http://dx.doi.org/10.1007/s00371-012-0726-8
http://dx.doi.org/10.1007/s00371-012-0726-8
http://dx.doi.org/10.1109/TVCG.2014.2346434
http://dx.doi.org/10.1109/TVCG.2014.2346434
http://dx.doi.org/10.1109/TVCG.2014.2346434
http://dx.doi.org/10.1109/TVCG.2014.2346434
http://dx.doi.org/10.1016/1047-3203(90)90014-M
http://dx.doi.org/10.1016/1047-3203(90)90014-M
http://dx.doi.org/10.1016/1047-3203(90)90014-M


L. Čomić et al. / Computers & Graphics 58 (2016) 43–5252
[27] Dijkstra EW. A note on two problems in connexion with graphs. Numer Math
1959;1:269–71. http://dx.doi.org/10.1007/BF01386390.

[28] Magillo P, De Floriani L, Iuricich F. Morphologically-aware elimination of flat
edges from a TIN. In: Proceedings of the 21th ACM SIGSPATIAL international
conference on advances in geographic information systems; 2013. p. 244–53.
http://dx.doi.org/10.1145/2525314.2525341.
[29] Banchoff T. Critical points and curvature for embedded polyhedral surfaces.
Am Math Mon 1970;77(5):475–85.

[30] Aim@shape. 〈http://visionair.ge.imati.cnr.it/ontologies/shapes/〉; 2016.
[31] Virtual Terrain Project. 〈http://vterrain.org〉; 2016.

http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
dx.doi.org/10.1145/2525314.2525341
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref29
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref29
http://refhub.elsevier.com/S0097-8493(16)30063-2/sbref29
http://visionair.ge.imati.cnr.it/ontologies/shapes/
http://vterrain.org

	Computing a discrete Morse gradient from a watershed decomposition
	Introduction
	Background notions
	Discrete Morse theory
	The watershed transform

	Related work
	Algorithms for discrete Morse gradient
	Watershed algorithms
	Removal of flat areas

	Computing the discrete Morse gradient
	Step 1: vertex–edge pairing
	Correctness of step 1

	Step 2: edge–triangle pairing inside basins
	Correctness of step 2

	Step 3: edge–triangle pairing on basin boundaries
	Special cases
	Correctness of step 3

	Results and discussion
	Concluding remarks
	Acknowledgements
	References




