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Abstract. Ascending and descending Morse complexes are defined by
the critical points and integral lines of a scalar field f defined on a mani-
fold M . They induce a subdivision of M into regions of uniform gradient
flow, thus providing a compact description of the topology of M and
of the behavior of f over M . We represent the ascending and descend-
ing Morse complexes of f as a graph, that we call the Morse incidence
graph (MIG). We have defined a simplification operator on the graph-
based representation, which is atomic and dimension-independent, and
we compare this operator with a previous approach to the simplifica-
tion of 3D Morse complexes based on the cancellation operator. We have
developed a simplification algorithm based on a simplification operator,
which operates on the MIG, and we show results from this implementa-
tion as well as comparisons with the cancellation operator in 3D.

Keywords: geometric modeling, Morse theory, Morse complexes,
simplification.

1 Introduction

Representing topological information extracted from discrete scalar fields is a
relevant issue in several applications, such as terrain modeling, or analysis and
visualization of static and time-varying 3D scalar fields arising from physical
simulation or describing medical data. Morse theory offers a natural and intu-
itive way of analyzing the structure of a scalar field f as well as of compactly
representing it through decompositions of its domainM into meaningful regions
associated with the critical points of f , giving rise to theMorse andMorse–Smale
complexes. Descending and ascending Morse complexes decompose M into cells
defined by the integral lines of f converging to and originating at critical points
of f , respectively. The Morse–Smale complex decomposes M into cells defined
by integral lines with the same origin and destination. We represent here the
topology of the descending and ascending Morse complexes in arbitrary dimen-
sions as a graph, that we call the Morse Incidence Graph (MIG), in which the

C.L. Luengo Hendriks, G. Borgefors, R. Strand (Eds.): ISMM 2013, LNCS 7883, pp. 13–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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nodes encode the cells of the Morse complexes, and the arcs encode their mutual
incidence relations. The MIG provides also a combinatorial description of the
Morse–Smale complex.

The main issue in the usage of Morse and Morse–Smale complexes in real-
world applications scenarios lies in their storage requirements and computation
costs when extracted from very large data sets describing 2D and 3D scalar
fields, which are common in current applications. Thus, simplification of such
complexes by reducing the number of cells and their mutual relations becomes a
must. A separate, but still related, issue is the presence of noise in the data, which
leads to over-segmentation. In this case as well, we need operators for simplifying
Morse and Morse–Smale complexes and their combinatorial representation.

There have been two approaches in the literature to the simplification of Morse
and Morse–Smale complexes. The approach in [13] is specific for 3DMorse–Smale
complexes and is based on the cancellation operator defined in Morse theory [15].
The major problem with using cancellation is that it may increase the size of the
Morse–Smale complexes when the cancellation does not involve a minimum or
a maximum, thus causing memory problems when dealing with large-size data
sets [11]. The approach in [4,5] is based on an atomic simplification operator,
called remove, which is entirely dimension-independent, never increases the size
of the complexes, and defines a minimally complete basis for expressing any
simplification operator on such complexes.

Here, we report the effect of remove operator on the MIG. We show that its
effect on the MIG is always local, and this is true in any dimension. Moreover,
it is simple to implement in a completely dimension-independent way. We have
also implemented the cancellation operator on the MIG in the 3D case and
compared it with the 3D instances of the remove operator. We show that the
size of the simplified MIG produced by remove is always smaller than that of
the graph produced by cancellation.

The remainder of this paper is organized as follows. In Section 2, we review
some basic notions on Morse theory and Morse complexes, some algorithms for
their computation, and the relation between Morse complexes and the watershed
decomposition. In Section 3, we describe a dual incidence-based graph represen-
tation of the Morse complexes, the Morse Incidence Graph (MIG). In Section
4, we recall the definition of the remove operator on the scalar field and we
describe its effect on the MIG. In Section 5, we describe the effect of the can-
cellation operator in [13] on the MIG. In Section 6, we present experimental
results on the behavior of the simplification algorithm based on remove and on
the cancellation operators, and comparisons between our simplification operator
and cancellation in 3D. Finally, in Section 7, we make some concluding remarks.

2 Background Notions and Related Work

Morse theory [15] captures the relation between the topology of a manifold M
and the critical points of a scalar (real-valued) function f defined on M .

Let f be a C2 real-valued function defined over a closed compact n-manifold
M . A point p is a critical point of f if and only if the gradient∇f = ( ∂f

∂x1
, ..., ∂f

∂xn
)
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(in some local coordinate system around p) of f vanishes at p. A function f is
a Morse function if and only if all its critical points are non-degenerate (i.e.,
the Hessian matrix Hesspf of the second derivatives of f at a point p is non-
singular). The number i of negative eigenvalues of Hesspf at p is called the index
of p, and p is called an i-saddle. A 0-saddle is also called a (local) minimum, and
an n-saddle a (local) maximum. An integral line of f is a maximal path which is
everywhere tangent to ∇f . Each integral line starts and ends at critical points
of f , called its origin and its destination.

Integral lines that converge to a critical point p of index i form an i-cell called
a descending cell, or manifold, of p. Dually, integral lines that originate at p form
its ascending (n− i)-cell. The descending and ascending cells decompose M into
descending and ascending Morse complexes, denoted as Γd and Γa, respectively
(see Figure 1 (a) and (b)). A Morse function f is called a Morse–Smale function
if and only if each non-empty intersection of a descending and an ascending
manifold is transversal. The connected components of the intersection define a
Morse–Smale complex (see Figure 1 (c)).

The decomposition into ascending Morse complexes in 2D is related to the
watershed decomposition, developed for image analysis. If f is a function which
has a gradient ∇f everywhere except possibly at some isolated points, then the
topographic distance TD(p, q) between two points p, q belonging to the domain
D of f is defined as TD(p, q) = inf

P

∫

P

|∇f(P (s))|ds [16,18]. If there is an integral

line which reaches both p and q, then the topographic distance between these
two points is equal to the difference in elevation between them. Otherwise, it is
strictly greater than the difference in elevation. The catchment basin CB(mi) of
a minimum mi is the set of points which are closer (in the sense of topographic
distance) to mi than to any other minimum. The watershed WS(f) of f is the
set of points which do not belong to any catchment basin. When f is a Morse
function, then the catchment basins of the minima of f correspond to the 2-cells
in the ascending Morse complex of f .

Topological watershed [1] is obtained by lowering (until idempotence) some
points of the original image while preserving the connectivity of each lower cross-
section. This operator does not preserve the connected components or holes in a
3D object. The catchment basins and the watershed separating them are com-
posed of pixels (2-cells) in the image, while in the ascending Morse complexes
ascending 2-cells (corresponding to minima) are separated by 1-cells (correspond-
ing to saddles).

Algorithms for decomposing the domain M of f into an approximation of
a Morse, or of a Morse–Smale complex in 2D can be classified as boundary-
based or region-based. In [7,6,14], algorithms for extracting the Morse–Smale
complex from a tetrahedral mesh have been proposed. Discrete methods rooted
in the discrete Morse theory proposed by Forman [9] are computationally more
efficient [10,17]. For a survey, see [2,3]. Alternative region-based techniques for
computing the ascending and descending Morse complexes are based on the
discrete watershed transform (see [18] for a survey).
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(a) (b) (c)

Fig. 1. A portion of an ascending Morse complex in 2D (a); the dual descending Morse
complex (b); the corresponding Morse–Smale complex (c).

3 The Morse Incidence Graph (MIG)

The topology of complexes Γa and Γd is represented in the form of a graph,
called the Morse Incidence Graph (MIG) G = (N,A, ψ), where N is the set of
nodes, A is the set of arcs, and ψ : A→ N is a labeling function, such that:

1. the set N of nodes is partitioned into n+1 subsets N0, N1,...,Nn, such that
there is a one-to-one correspondence between the nodes in Ni (which we call
i-nodes) and the i-cells of Γd, (and thus the (n− i)-cells of Γa);

2. there is an arc (p, q) joining an i-node p with an (i + 1)-node q if and only
if i-cell p is on the boundary of (i + 1)-cell q in Γd, (and thus q is on the
boundary of p in Γa);

3. each arc (p, q) is labeled with the number ψ(p, q) of times i-cell p (corre-
sponding to i-node p) in Γd is incident into (i + 1)-cell q (corresponding to
(i+1)-node q) in Γd, and thus ψ(p, q) is equal to the number of integral lines
of f connecting i-saddle p to (i + 1)-saddle q.

Each node is labeled with the critical point (or equivalently, the descending
cell) it represents. If f is a Morse–Smale function, then the MIG provides also
a combinatorial representation of the 1-skeleton of its Morse–Smale complex.
Figure 2 illustrates the descending and ascending complexes, and the corre-
sponding MIG for function f(x, y) = cosx cos y.

4 The Remove Simplification Operator

In [4,5], we have introduced a dimension-independent simplification operator
called remove on the Morse complexes and on the MIG representing them.
This operator (together with its inverse one) forms a basis for defining any
operator that updates Morse and Morse–Smale complexes on a manifold M in
a topologically consistent manner. Operator remove has two instances, namely
removei,i+1 and removei,i−1, for 1 ≤ i ≤ n − 1. We describe the effect of the
remove operator on the Morse function f and on the corresponding MIG.
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(a) (b) (c)

Fig. 2. The descending (a) and ascending (b) 2D Morse complex for function
f(x, y) = cosx cos y and the corresponding MIG (c).

4.1 Remove on the Scalar Field

A removei,i+1 operator collapses an i-saddle q and an (i+ 1)-saddle p, that are
connected through a unique integral line. It is defined if i-saddle q is connected to
at most one other (i+1)-saddle p′ different from (i+1)-saddle p. There are two
types of removei,i+1, denoted as removei,i+1(q, p, p

′) and removei,i+1(q, p, ∅),
respectively. Removei,i+1(q, p, p

′) applies when the i-saddle q is connected to
the (i + 1)-saddle p and exactly one other (i + 1)-saddle p′ different from p.
It collapses the i-saddle q and the (i + 1)-saddle p into the (i + 1)-saddle p′.
Removei,i+1(q, p, ∅) deals with the situation in which the i-saddle q is connected
to only one (i+1)-saddle p. It eliminates the i-saddle q and the (i+1)-saddle p
from the set of critical points of the scalar field f .
Removei,i−1(q, p, p

′) operator is dual to the previous one. It collapses an i-
saddle q and an (i − 1)-saddle p that are connected through a unique integral
line. As for removei,i+1, there are two types of removei,i−1 operator, denoted as
removei,i−1(q, p, p

′) and removei,i−1(q, p, ∅), respectively. Removei,i−1(q, p, p
′)

applies when the i-saddle q is connected to the (i− 1)-saddle p and exactly one
other (i − 1)-saddle p′ different from p. It collapses the i-saddle q and (i − 1)-
saddle p into the (i− 1)-saddle p′. Removei,i−1(q, p, ∅) eliminates the i-saddle q
and the unique (i− 1)-saddle p connected to q.

In 2D, we have two remove operators, both deleting a saddle and an ex-
tremum. Remove1,2(q, p, p

′) consists of collapsing a maximum (2-saddle) p and a
saddle (1-saddle) q into a maximum (2-saddle) p′, and remove1,0(q, p, p′) consists
of collapsing a minimum (0-saddle) p and a saddle (1-saddle) q into a minimum
(0-saddle) p′. Remove1,2(q, p, ∅) consists of deleting a maximum (2-saddle) p and
a saddle (1-saddle) q. Dually, remove1,0(q, p, ∅), consists of deleting a minimum
(0-saddle) p and a saddle (1-saddle) q.

In 3D there are four remove operators, two removei,i+1 and two removei,i−1

operators. Remove2,3(q, p, p
′) collapses a maximum (3-saddle) p and a 2-saddle q

into a maximum (3-saddle) p′, while remove1,2(q, p, p′), collapses a 2-saddle p and
a 1-saddle q into a 2-saddle p′. Dually, remove1,0(q, p, p

′) collapses a minimum (0-
saddle) p and a 1-saddle q into a minimum (0-saddle) p′, while remove2,1(q, p, p′)
collapses a 1-saddle p and a 2-saddle q into a 1-saddle p′. The operators of the
second type delete the two critical points q and p.
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4.2 Remove on the MIG

On a MIG G = (N,A, ψ), the effect of the remove operator is to transform G
into a simplified MIG G′ = (N ′, A′, ψ′) by eliminating two nodes p and q from
N , and reconnecting the remaining nodes in the simplified graph G′ so that
|N ′| = |N | − 2 and |A′| < |A|. Let us consider the effect of removei,i+1(q, p, p

′).
We consider the following sets of nodes in the MIG G = (N,A, ψ):

– Z = {zh, h = 1, .., hmax} is the set of the (i − 1)-nodes connected to the
i-node q;

– S = {sk, k = 1, .., kmax} is the set of the (i + 2)-nodes connected to the
(i+ 1)-node p;

– R = {rj , j = 1, .., jmax} is the set of the i-nodes connected to the (i+1)-node
p (the set R may be empty).

The set S is empty for i = n − 1. For removei,i+1(q, p, ∅) operator, the sets Z,
R and S are exactly the same as for removei,i+1(q, p, p

′).

(a) (b) (c) (d)

Fig. 3. An example of a remove1,2(q, p, p
′) on a MIG in the 2D case (a) and (b). MIG

overlayed on the descending Morse complex before (c) and after (d) remove1,2(q, p, p
′)

in 2D. The label of the arc connecting nodes r1 and p′ is increased to 2, and 1-cell r1
appears two times on the boundary of 2-cell p′ after remove1,2(q, p, p

′).

Figure 3 (a) illustrates remove1,2(q, p, p
′) in 2D, which is a maximum-saddle

operator. The set Z consists of nodes z1 and z2, which correspond to minima.
The set S is empty since the operator involves an extremum. The set R consists
of saddles r1, r2 and r3 connected to the maximum p.
Removei,i+1(q, p, p

′) operator is feasible on a MIG G = (N,A, ψ) if

– i-node q is connected to exactly two different (i+ 1)-nodes p and p′, and
– the label of arc (p, q) is 1 (ψ(p, q) = 1).

The effect of removei,i+1(q, p, p
′) on G is to

– delete nodes p and q,
– delete all the arcs incident in either i-node q or (i+ 1)-node p,
– introduce an arc (p, rj) for each rj ∈ R (if such arc does not already exist),
– set ψ′(p′, rj) = ψ(p′, q) · ψ(p, rj) + ψ(p′, rj).
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(a) (b) (c) (d)

Fig. 4. The MIG, overlayed on the descending Morse complex, before (a) and after
(b) remove2,3(q, p, p

′), and before (a) and after (b) remove1,2(q, p, p
′) in 3D.

The labels of other arcs in the simplified MIG G′ = (N ′, A′, ψ′) remain un-
changed.

In the example illustrated in Figure 3 (a) and (b), remove1,2(q, p, p
′), deletes

nodes p and q, as well as the arcs incident in 1-node q (arcs (q, p), (q, p′), (q, z1)
and (q, z2)). Arcs (p, r1), (p, r2) and (p, r3) are replaced with arcs (p′, r1), (p′, r2)
and (p′, r3).

Figure 3 (c) and (d) illustrates the effect of remove1,2(q, p, p
′) in 2D, which

is a saddle-maximum removal. Before remove1,2(q, p, p
′), 1-node r1 is connected

to 2-nodes p and p′, and the labels of arcs (p, r1) and (p′, r1) are equal to 1
(ψ(p, r1) = ψ(p′, r1) = 1). After remove1,2(q, p, p

′), the label of arc (p′, r1) is
equal to 2 (ψ′(p′, r1) = ψ(p′, q) · ψ(p, r1) + ψ(p′, r1) = 1 · 1 + 1 = 2). The labels
of other arcs in the graph are equal to 1.

Figure 4 (a) and (b) illustrates the effect of remove2,3(q, p, p
′) in 3D, which

performs the removal of a 2-saddle and a maximum. Nodes p and q are deleted
as well as all the arcs incident in 2-node q. Arcs (p, r1), (p, r2), (p, r3), (p, r4)
and (p, r5) are replaced with arcs (p′, r1), (p′, r2), (p′, r3), (p′, r4) and (p′, r5).

Figure 4 (c) and (d) shows the effect of remove1,2(q, p, p
′) in 3D, which is

a 1-saddle-2-saddle removal. Nodes p and q are deleted, as well as all the arcs
incident in 1-node q, and arcs connecting 2-node p to 3-nodes s1 and s2. Arcs
(p, r1), (p, r2) and (p, r3) are replaced with arcs (p′, r1), (p′, r2) and (p′, r3). The
dual removei,i−1(q, p, p

′) operator can be expressed as a modification of the
graph G = (N,A, ψ) in a completely dual fashion.

5 Operator i-Cancellation

The cancellation operator [13], that we call i-cancellation, is a simplification
operator defined in Morse theory [15]. It eliminates i-saddle q and (i+1)-saddle
p connected through a unique integral line, but it does not impose any constraints
on the number of (i + 1)-saddles connected to q, or on the number of i-saddles
connected to p. We define here the i-cancellation(q, p) operator on the MIG.
We denote as T = {tl, l = 1, ..., lmax} the set of (i + 1)-nodes different from
(i + 1)-node p and connected to i-node q. R = {rj , j = 1, .., jmax} is the set of
i-nodes (i-saddles) connected to p and different from q.
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An i-cancellation(q, p), 0 ≤ i ≤ n− 1, is feasible on a MIG G = (N,A, ψ) if

– i-node q is connected to (i+ 1)-node p, and
– the label of arc (p, q) is 1 (ψ(p, q) = 1).

The effect of i-cancellation(q, p) is to

– delete i-node q and (i+ 1)-node p,
– delete all the arcs incident in either i-node q or (i+ 1)-node p,
– introduce an arc (tl, rj) for each tl ∈ T and each rj ∈ R (if such arc does

not already exist),
– set ψ′(tl, rj) = ψ(tl, q) · ψ(p, rj) + ψ(tl, rj).

The labels of the other arcs in the simplified MIG G′ = (N ′, A′, ψ′) are the
same as the labels of those arcs in G.

In the 2D case, remove1,2(q, p, p
′) is the same as the maximum-saddle 1-

cancellation(q, p), and remove1,0(q, p, p
′) is the same as the minimum-saddle

0-cancellation(p, q). In 3D, remove2,3(q, p, p
′) operator involving an extremum

(maximum-2-saddle) is exactly the same as the 2-cancellation(q, p). Dually,
remove1,0(q, p, p

′) operator involving an extremum (minimum-1-saddle) is ex-
actly the same as the 0-cancellation(p, q). In general, removen−1,n(q, p, p

′) and
remove1,0(q, p, p

′) operators involving an extremum p are the same as the (n−1)-
cancellation(q, p) and 0-cancellation(p, q), respectively.

The i-cancellation involving only saddles (which are not extrema) is more
complex. As an example, let us consider the 1-cancellation of a 1-saddle and a
2-saddle in 3D. This operator has been implemented in [12,11] on the 1-skeleton
of the Morse–Smale complex (which is combinatorially equivalent to the MIG
of the corresponding Morse complexes). The 1-cancellation(q, p) of 1-node q and
2-node p is feasible on the MIG G = (N,A, ψ) if nodes q and p are connected,
and the label of arc (p, q) is 1 (ψ(p, q) = 1). Let G′ = (N ′, A′, ψ′) be the graph
after 1-cancellation(q, p). The effect of 1-cancellation(q, p) consists of deleting
nodes p and q, as well as all the arcs incident in nodes p and q, and adding one
arc for each pair (rj , tl) where rj belongs to R and tl belongs to T . Thus, the
1-cancellation operator deletes two nodes fromN , but it increases the number of
arcs connecting 1-nodes to 2-nodes in the graph by deleting |R|+ |T |+1 of such
arcs, but adding |R| ∗ |T | of them. Thus, it is not a simplification operator, since
it does not reduce the size of the graph. In [11], this issue has been discussed at
length, since it can cause computational problems and, more importantly, make
the application of i-cancellation operator unfeasible on large-scale data sets.
Several strategies are proposed in [11], which aim at postponing an i-cancellation
that would introduce a number of arcs greater than a predefined threshold, or
vertices with valence greater than a predefined threshold. On the contrary, the
remove operator always reduces the size of the graph.

6 Experimental Results

We have performed experiments on the simplification of Morse complexes by
using six data sets describing 2D scalar fields, and eight data sets describing 3D



A Dimension-Independent Graph-Based Representation 21

Table 1. Comparison of cancellation and remove operators

Name N Simpl Nodes Arcs Cost (MB) Time (sec.)

Neghip 3K 11512 0.17 -
i-cancellation 1200 700 2621 0.04 0.68

remove 1200 700 2395 0.03 0.62

Hydrogen - 23K 65961 1.0 -
i-cancellation 7000 9K 35123 0.53 25.1

remove 7000 9K 23091 0.35 17.86

Bucky - 46K 157984 2.4 -
i-cancellation 7000 32K 128231 1.95 73.5

remove 7000 32K 84487 1.23 33.4

Aneurism - 125K 1015724 15.49 -
i-cancellation 10000 105K 748192 11.41 233.28

remove 10000 105K 435910 6.65 70.54

VisMale - 900K 3588570 54.75 -
i-cancellation 10000 880K 3513889 53.61 37.12

remove 10000 880K 3107124 47.41 9.43

Foot - 1550K 7178384 109.5 -
i-cancellation 45000 1460K 6137199 93.64 2882.1

remove 45000 1460K 5413683 82.6 1187.3

scalar fields on a 3.2GHz processor with 2.0Gb memory. The MIG representing
the Morse complexes is extracted using the algorithm described in [17].

We have developed a simplification algorithm for Morse complexes in arbitrary
dimensions based on the removei,i+1 and removei,i−1. A persistence value is as-
sociated with any remove operator by considering the function values of the two
critical points p and q deleted by the operator. Intuitively, the persistence of a
pair of critical points measures the importance of the pair and is equal to the ab-
solute difference in function values between the two points [8]. The objective of the
simplification algorithm is to reduce the size of the Morse complex by removing
critical points which are due to the presence of noise or which are not relevant for
the need of a specific application. Simplification is also applied when the size of
the original Morse complex is too large for the computation resources available.

The simplification algorithm starts by computing all feasible simplifications,
evaluates their persistence and inserts them in an ordered queue in increasing
order of persistence. At each step, a simplification is removed from the queue
and applied to the current MIG. The process terminates when either a cer-
tain number of simplifications has been performed or when a specified value of
persistence is reached.

We have also implemented a 3D version of the simplification algorithm based
on cancellation. In this case, the number of critical nodes is reduced at each step,
but not necessarily the number of arcs.

In the experiments, we have used different thresholds on persistence value:
1% of the max persistence value for light noise removal, 10% for stronger noise
removal, and 20% or greater for consistently reducing the complexity of the
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MIG. The storage cost of the simplifiedMIG using these three different thresh-
olds is equal to 95%, 65% and 35% of the cost of the MIG at full resolution.

We have also analyzed the statistics on the operators involved in the sim-
plification process for some 3D data sets. We have noticed that saddle-saddle
simplification operators are likely to be performed early in the simplification
process. If the simplification algorithm is based on persistence, this means that
a large number of arcs will be introduced in the MIG early in the simplification
process, influencing both the efficiency (speed) of the algorithm and its versatil-
ity (the number of feasible simplifications). This result underlines the importance
of having an efficient operator for simplifying saddles.

In Table 1, we show the results obtained by comparing the remove operator
with the cancellation operator. For each 3D data set, we show in the first row
the number of nodes and arcs in the full resolution MIG. In the second and
third rows, we show the statistics related to cancellation and remove operators,
respectively: the number of simplifications applied, the number of nodes and
arcs in the simplified MIG, the cost of the data structure encoding the MIG
(in MB), and the time (in sec) needed to perform the simplifications.

The number of arcs in the graph simplified with cancellation always exceeds
the number of arcs in the graph simplified with the same number of remove.
Such behavior influences the efficiency of the whole algorithm, doubling the time
needed to manage and enqueue a larger number of arcs (and thus, a greater
number of possible simplifications) for large data sets.

When the data set is small and the number of simplifications is high com-
pared to the total number of nodes the two methods are quite similar (Neghip).
With the growth of the dimension of the data set the two methods start to
differ (Hydrogen): by using remove we can get a 20% more compressed MIG
in about half the time than by using cancellation. In particular, the remove
operator is particularly useful in the first simplifications performed on a data set
(simplifications that can be interpreted as noise removal). On many data sets
we have noticed that by using cancellation the number of arcs remains approx-
imately the same while by using remove their number immediately decreases
(V isMale). In general, the cost of the MIG is reduced by 10% to 20% by using
remove instead of cancellation and the same number of simplifications can be
performed in half the time.

In Figure 5, we illustrate the result of our simplification algorithm on a 3D
Buckyball data set (Figure 5 (a)), which represents the electron density inside a
C-60 Buckminsterfullerene. The full-resolution MIG is shown in Figure 5 (b).
The MIGs after 11K and 12K simplifications are shown in Figure 5 (c) and (d),
respectively.

7 Concluding Remarks

We have described two simplification operators on the MIG representing the
topology of the Morse complexes of a scalar field f . The remove operator always
reduces the size of the MIG, both in terms of the number of nodes and of the
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(a) (b) (c) (d)

Fig. 5. The field behavior for the Buckyball data set (a). The MIG at full resolution
(b), the MIG after 11K (c) and after 12K simplifications (d).

number of arcs in theMIG. The i-cancellation operator is guaranteed to reduce
only the number of nodes in the MIG, but in the general case it increases the
number of its arcs, thus increasing the total size of the MIG.

We have designed and implemented a simplification algorithm based on the
two simplification operators on the MIG, and we have performed experiments
to compare the two operators. We have shown that the number of arcs in the
simplifiedMIG obtained through the i-cancellation operator always exceeds the
number of arcs in the simplified MIG obtained through the remove operator.
The large number of arcs in the MIG influences not only the storage cost of
the data structure for encoding it and the time required for performing the
simplifications, but it also reduces the number of feasible simplification and thus
the flexibility of the simplification algorithm.

Based on the remove operator, we have designed and implemented a multi-
resolution model for the Morse complexes represented as a MIG that we call
the Multi-Resolution Morse Incidence Graph (MMIG) [5]. It encodes a large
number of topological representations of the Morse complexes at both uniform
and variable level of detail.
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