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ABSTRACT

Light Detection and Ranging (LiDAR) sensors generate dense point

clouds that can be used to map forest structures at a high spatial

resolution level. In this work, we consider the problem of identi-

fying individual trees in a LiDAR point cloud. Existing techniques

generally require intense parameter tuning and user interactions.

Our goal is defining an automatic approach capable of providing

robust results with minimal user interactions.

To this end, we define a segmentation algorithm based on the

watershed transform and persistence-based simplification. The pro-

posed algorithm uses a divide-and-conquer technique to split a

LiDAR point cloud into regions with uniform density. Within each

region, single trees are identified by applying a segmentation ap-

proach based on watershed by simulated immersion. Experiments

show that our approach performs better than state-of-the-art al-

gorithms on most of the study areas in the benchmark provided

by the NEW technologies for a better mountain FORest timber mo-

bilization (NEWFOR) project. Moreover, our approach requires a

single (Boolean) parameter. This makes our approach well suited

for a wide range of forest analysis applications, including biomass

estimation, or field inventory surveys.
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1 INTRODUCTION

Identifying individual trees composing a forest is a crucial step for

characterizing forest structures and to forecast their changes [16].
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Historically, forest inventories were completed manually by expen-

sive and time-consuming field surveys [21]. Light Detection and

Ranging (LiDAR) technologies, such as Airborne Laser Scanning

(ALS), provided new efficient ways for such inventories. Still, iden-

tifying single tree structures presents multiple challenges due to

noise, occlusions, and the diverse structure characterizing different

types of forest.

In the last decade, different methods have been developed for

segmenting ALS point clouds. According to Koch et al. [12], these

can be classified as: raster-based, point-based, or combined strategies.

Raster-based methods are by far the most common type of ap-

proach. The idea at the base of these methods is that of computing

and segmenting a raster product generated from points such as

the Canopy Height Model (CHM) [3, 10, 18]. Raster-based methods

force the discretization of data points on a grid which can cause a

loss of information especially in those area where point density is

low. Point-based methods have been introduced to overcome this

limitation by working on the input point cloud directly. Point-based

methods identify single trees by analyzing the geometric structure

of the point cloud by means of clustering techniques such as k-

means [9], or mean-shift [7, 8]. Both raster-based and point-based

methods often fail in identifying smaller trees covered by the crown

of higher trees. To this end, combined methods have been developed

by combining the strengths of raster and point-based approaches

[2, 5, 17].

Despite the effort, a general approach capable of producing satis-

factory results on a large variety of forests is still lacking. Moreover,

state-of-the-art approaches make use of many parameters that a

user needs to fine-tune in time-consuming trial and error phases.

We propose a new approach for individual tree segmentation

requiring minimal user interactions. The key idea is to create two

distinct segmentations of the forest point cloud. One segmentation

aims at identifying single trees focusing on treetops. The second

segmentation identifies single trees based on their bottoms (i.e.,

tree trunk). All parameters used by our approach are automatically

tuned by the algorithm and only one Boolean input is needed from

the user to produce the final segmentation.

We evaluate our approach on 14 study areas released in the

NEW technologies for a better mountain FORest timber mobilization

(NEWFOR) benchmark [6]. Our approach outperform state-of-the-

art algorithms on 10 over 14 study areas while achieving comparable

performances on the remaining 4.

2 BACKGROUND

In this work we consider a point cloud 𝑃 as a collection of points

in the Euclidean space R3. Points in 𝑃 are connected by means of a

graph 𝐺 = (𝑁,𝐴, 𝑓 ). Each node in 𝑁 corresponds to a point in 𝑃 .

With abuse of notation we will indicate with 𝑝 both a point and its
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corresponding node. 𝐴 is the set of arcs connecting pairs of nodes

in 𝑁 . 𝑓 is a scalar function defined on the nodes in 𝑁 . We say that

two nodes are adjacent if they share an arc. We call neighbors of a

node 𝑝 the nodes adjacent to 𝑝 .

The watershed algorithm used in this work is based on the dis-

crete topographic distance [14]. Discrete topographic distance is de-

fined in terms of a minimum-cost path in a graph 𝐺 . Given a node

𝑝 in 𝑁 , the lower slope 𝐿𝑆 (𝑝) is the maximal slope among the arcs

incident in 𝑝: 𝐿𝑆 (𝑝) = max {
𝑓 (𝑝)−𝑓 (𝑞)
𝑑𝑖𝑠𝑡 (𝑝,𝑞)

| (𝑝, 𝑞) ∈ 𝐴, 𝑓 (𝑞) < 𝑓 (𝑝)},

where 𝑑𝑖𝑠𝑡 (𝑝, 𝑞) denotes the Euclidean distance between points 𝑝

and 𝑞. The 𝜋-topographic distance between two nodes 𝑝 and 𝑞 is

the sum of the costs of all directed arcs in the path 𝜋 connecting 𝑝

to 𝑞. The discrete topographic distance 𝑇 (𝑝, 𝑞) between 𝑝 and 𝑞 is

the minimum of the 𝜋-topographic distances along all such paths.

The catchment basin of a minimum𝑚 of 𝑓 is the set of nodes closer

to𝑚 (in terms of topographic distance) than any other minimum

of 𝑓 . The watershed nodes are those nodes equally distant to more

than one catchment basin.

3 INDIVIDUAL TREE SEGMENTATION

The proposed approach is organized in two phases. First, the input

forest point cloud 𝑃 is divided into clusters, that we call tree clusters.

Second, each cluster is processed independently to identify all tree

point cloud (i.e., group of points identifying each tree).

Phase 1. A preprocessing step is used to clean the input forest

point cloud 𝑃 from ground points and noise [20].

After the preprocessing step, the objective is to subdivide a group

of trees that are easily separable, i.e., well-distanced trees should

end up in different clusters while trees with intersecting canopy

should end up in the same tree cluster.

Then, a graph 𝐺𝜖 = (𝑁,𝐴, 𝑓𝑑 ) is computed with the nodes 𝑁

being the points in the point cloud. To compute the arcs in 𝐴 we

first project the point cloud on the x-y plane and we connect all

points closer than a specified threshold 𝜖 . We describe in Section 4

how 𝜖 is automatically set by the algorithm. 𝑓𝑑 is a scalar function,

defined for each node in 𝑁 , approximating the point density. Given

a node 𝑝 ∈ 𝑁 , we define function

𝑓𝑑 (𝑝) =

∑𝑛
𝑖=0 𝑑𝑖𝑠𝑡 (𝑝, 𝑝𝑖 )

𝑛
where 𝑝𝑖 , with 0 ≤ 𝑖 ≤ 𝑛 are the points adjacent to 𝑝 in 𝑁 and

𝑑𝑖𝑠𝑡 (𝑝, 𝑝𝑖 ) is the Euclidean distance between two points. Intuitively,

this associates low values to points in regions of high density and

high values to points in regions of low density.

Performing watershed segmentation on graph 𝐺𝜖 will provide

a subdivision of 𝐺𝜖 in regions of influence of the minima of 𝑓𝑑 .

Notice that function 𝑓𝑑 is noisy which results in a high number

of minima and, consequently, a high number of clusters. However,

the boundaries between many trees are already well separated by

regions of high values (i.e., low density).

Then, a persistence-based simplification [4] is used to reduce

over segmentation. We assign a persistence value to each edge 𝑒 as:

𝑓𝑝 (𝑒) = min(𝑓𝑑 (𝑒) − 𝑓𝑑 (𝑝1), 𝑓𝑑 (𝑒) − 𝑓𝑑 (𝑝2)),

where 𝑝1 and 𝑝2 are the minima originating the two basins

connected by 𝑒 . Intuitively, each persistence value represents the

inverse likelihood of two regions to be generated by noise. If 𝑓𝑝 (𝑒)

is low, the two regions are likely generated by noise and should be

merged together.

Our algorithm loops over the edges in increasing order of per-

sistence. Given edge 𝑒 and 𝑝1 and 𝑝2 the two basins connected by

𝑒 , we merge 𝑝1 and 𝑝2 if 𝑓𝑝 (𝑒) ≤ min𝑝 +(max𝑝 −min𝑝 ) ∗ 𝜃 , where

min𝑝 andmax𝑝 are the minimum and maximum persistence values

found, and 𝜃 is automatically set by our algorithm (see Section 4).

Once the tree clusters have been computed, points are re-projected

inR3 (Figure 1), where each cluster will be processed independently.

Figure 1: Tree clusters computed by the proposed approach.

Phase 2. The second phase consists of identifying single trees.

This time, the point distribution is analyzed in full by considering

positions of points in the three-dimensional space.

Our algorithm uses the height function and its inverse to create

two distinct segmentations of a tree cluster. Single trees will be

recognized by intersecting the two segmentations. The following

steps are performed for each tree cluster.

We define a graph𝐺𝑐 = (𝑁,𝐴, 𝑓 ). The nodes 𝑁 are the points in

the tree cluster. To compute the arcs in 𝐴 we perform a neighbor

search, for each point 𝑝 , by using a cylinder positioned on the top

of 𝑝 . We fit a circle with center in 𝑝 and radius 𝑟 , and we extrude a

cylinder from the circle with a height ℎ. All points falling into the

cylinder get connected to 𝑝 . Section 4 describes how 𝑟 and ℎ are

automatically selected.

After defining a topology for a tree cluster, we use watershed

segmentation on𝐺𝑐 assuming 𝑓 to be the height function. We can

expect noise and small perturbations to create spurious regions

that are removed by performing a merging operation based on

persistence.

Each region has a minimum 𝑝 associated with it. For each pair

of adjacent regions𝑚1,𝑚2, we retrieve the points 𝑝1 and 𝑝2 origi-

nating𝑚1 and𝑚2, respectively. Moreover we retrieve the edge 𝑒 ,

on the boundary of both 𝑚1 and 𝑚2, having minimum function
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(a) (b) (c) (d) (e)

Figure 2: Retrieving individual trees from tree cluster points performed by the proposed approach. (a) Tree cluster points, (b)

network constructed from tree cluster points, (c) points colored based on height according to a blue-red diverging color map,

and segmentation 𝑆↑, (d) points colored as the inverse height function, and segmentation 𝑆↓, (e) final segmentation obtained

by intersecting segmentations in (c) and (d).

value. Then, we associate a persistence value to the pair𝑚1,𝑚2, as

min𝑖={1,2} | (𝑓 (𝑝𝑖 ) − 𝑓 (𝑒)) |.

A persistence-based simplification is performed by merging re-

gions having normalized persistence lower than a preset threshold

of 𝜃 . After that, we obtain a segmentation 𝑆↑ based on the height

function. The same process is repeated by using the inverse of the

height function. Specifically, we run the same process on 𝐺𝑐 by

using 1

𝑓
instead of 𝑓 , which produces a second segmentation 𝑆↓.

An example of the results obtained is shown in Figure 2. Figure

2(c) shows the height function, color-coded on the tree cluster ac-

cording to a blue-red diverging color map, and the segmentation 𝑆↑
obtained with our approach. As we notice, the three tree bottoms

are well defined in the original point cloud which results in the cor-

rect segmentation of the three trees. Figure 2(d) shows the inverse

of the height function and the segmentation 𝑆↓. In this case, the

treetops are not distinct which results in the creation of a single

big segment including all tress.

The last step consists of creating the final segmentation 𝑆𝐹 by

performing an intersection of the two segmentations 𝑆↑ and 𝑆↓.

At this stage, each point in the point cloud has a pair of labels

associated with it, one defined by 𝑆↑ and the other defined by 𝑆↓.

Then, a region in 𝑆𝐹 is defined by the set of points having the same

pair of labels 𝑆↑ and 𝑆↓. 𝑆𝐹 is shown in Figure 2(e) which includes

three trees.

4 PARAMETER SETTING

The main objective of our proposed method is that of requiring

minimal user interactions. The user is asked for a single input

which is the definition of the dominant segmentation. The user has

to select which segmentation, between 𝑆↓ and 𝑆↑, is more likely to

identify single trees. The choice should be done based on the type

of trees in the forest. In the case of dominant conifer-like trees, 𝑆↓
should be the dominant segmentation since the treetops are easier

to identify. Otherwise, if tree trunks are easier to spot, 𝑆↑ should

be selected so that tree bottoms will drive the overall result.

Once the dominant segmentation is selected, all remaining pa-

rameters are automatically set as follows.

Distance 𝜖 : it is used to construct graph 𝐺𝜖 . We start by comput-

ing the graph 𝐺𝜖 for 𝜖 = 0.5 and we use an iterative approach for

tuning 𝜖 based on the average valence of the nodes of 𝐺𝜖 . If the

average valence is between 150 and 50 we select current 𝜖 . If the

valence is greater than 150, 𝜖 is decreased by 0.25. Otherwise, it is

increased by 0.25.

Cylinder radius 𝑟 and height ℎ: they define the shape of the cylin-

der used to connect points in phase 2. Radius 𝑟 is set equal to 𝜖 .

Height ℎ is computed as half the elevation of the highest point in

the tree cluster.

Persistence-based simplification 𝜃 : it defines the amount of noise-

removal operations performed while retrieving individual trees.

Notice that we use two independent values for 𝜃 . One is used when

working on segmentation 𝑆↑, and a different value is used when

working on 𝑆↓. 𝜃 can assume any value between 0 and 1, where 0

indicates no noise-removal operation while 1 indicates that all re-

gions are merged. The rationale is that the dominant segmentation,

chosen by the user, should contain a smaller amount of noise. Then,

for this segmentation, we set 𝜃 = 0.1, which corresponds to a light

noise-removal. The other segmentation instead is assumed to be

noisier. We set 𝜃 = 0.7 for a strong noise-removal.

5 EXPERIMENTAL RESULTS

In this section we discuss the results obtained with the proposed

approach. We have implemented our algorithm as a plugin for the

Topological Toolkit [19] which is an open-source library for topo-

logical data analysis and visualization. The output segmentations

produced by our plugin are rendered in Paraview [1]. Experiments

are run on a desktop computer equipped with a Intel ® Core™ CPU

i7-8700 @ 3.20GHz and 32GB memory of RAM.

Experiments are performed on the NEW technologies for a better

mountain FORest timber mobilization (NEWFOR) dataset [6]. The

dataset consists of 14 publicly available study areas (i.e., ALS point

cloud data) with associated field survey data. Field data include

tree height, location, and Diameter at Breast Height (DBH) for each

tree. Study areas are predominantly populated with fir, spruce, and

pines.

We compare our approach with four methods provided by the

publicly available lidR package [11]. Dalponte et al. [3], Silva et al.

[18] and Watershed [15] are raster-based approaches. The fourth

method, Li et al. [13] is a pure point-based approach. Parameters
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for Li et al. [13] are set based on the suggested values in the original

paper. Parameters for the remaining algorithms are tuned with a

trial-and-error approach.

Comparisons. Considering timings, raster-based approaches take

5.88 seconds to run on average, except for one study area where

they need around 20 seconds. Our method is faster on 8 over 14

study areas. The point-based approach by Li et al. [13] is the fastest

overall, and this is four times faster, on average, compared to ours.

It is important to remark that all methods, except ours, required

additional time for tuning their parameters. This time is not counted

in the comparison.

The accuracy of each method has been validated at the individ-

ual tree level. We replicate the same matching approach used by

the NEWFOR benchmark [6], where segmented trees and trees

in the field data are matched based on their location and their

height. We report the matching rate calculated as the number of

matched trees divided by the total number of trees in the field data.

Overall, our method performs best on 10 over 14 study areas with

an average matching rate of (38.39%). Our method outperforms

other approaches in both high-density and low-density areas. For

example, in a high-density area, our approach performs best with

48.98% matching rate. In low-density areas, the approach has 38.18%

matching rate, which is 1.4 times the matching rate of any other

method. In the 4 study areas where our method does not score

best, the matching rate is comparable to those of other approaches,

and segmentations look convincing under visual inspection. Notice

that a direct comparison with the results of the NEWFOR bench-

mark is not feasible [6]. NEWFOR results have been evaluated on a

cleaned-up version of the publicly available dataset where outliers

and wrong data have been manually removed. Still, the average

matching rate reported by the NEWFOR benchmark is 47%, which

is close to the average matching rate of 38.39% we achieve on the

"noisy" dataset.

6 CONCLUDING REMARKS

We have proposed a new robust approach for individual tree seg-

mentation. We have compared our approach with state-of-the-art

methods, and we proved that it provides improved accuracy in

single tree identification. Additionally, our approach requires no

parameter tuning, which makes it better suited for a large scale

forest analysis.

A parallel version of our algorithm is under development with

the scope of improving performances. We are currently testing our

approach using different types of forest. Aside from ALS data, we

are interested in applying our approach to other types of LiDAR

data, such as Terrestrial LiDAR.
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