Comput. Geom. 89 (2020) 101623

Contents lists available at ScienceDirect 22 o
Geometry
Computational Geometry: Theory and | ™
. . |
Applications
www.elsevier.com/locate/comgeo ——
Computing multiparameter persistent homology through a n
discrete Morse-based approach ity
Sara Scaramuccia®, Federico Iuricich”*, Leila De Floriani€¢, Claudia Landi?
a University of Genova, Genova, Italy
b Clemson University, Clemson (SC), USA
€ University of Maryland, College Park (MD), USA
4 University of Modena and Reggio Emilia, Italy
ARTICLE INFO ABSTRACT
Artif{e history: Persistent homology allows for tracking topological features, like loops, holes and their
Received 23 March 2019 higher-dimensional analogues, along a single-parameter family of nested shapes. Comput-

Received in revised form 28 January 2020
Accepted 6 February 2020
Available online 12 February 2020

ing descriptors for complex data characterized by multiple parameters is becoming a major
challenging task in several applications, including physics, chemistry, medicine, and geog-
raphy. Multiparameter persistent homology generalizes persistent homology to allow for the
exploration and analysis of shapes endowed with multiple filtering functions. Still, compu-

ﬁirvﬁ(;r—j;meter persistent homology tational constraints prevent multiparameter persistent homology to be a feasible tool for
Topological data analysis analyzing large size data sets. We consider discrete Morse theory as a strategy to reduce
Discrete Morse theory the computation of multiparameter persistent homology by working on a reduced dataset.
Morse reductions We propose a new preprocessing algorithm, well suited for parallel and distributed imple-
Homotopy expansion mentations, and we provide the first evaluation of the impact of multiparameter persistent

homology on computations.
© 2020 Elsevier B.V. All rights reserved.

The increasing amount of data available has led to the development of information handling techniques beyond ma-
chine learning approaches. Topological Data Analysis in particular provides a set of new tools for retrieving, organizing and
analyzing complex data by focusing on qualitative information about their shape. Recent applications of topological data
analysis in neuroscience [8,41], image processing [16,1,63] and astrophysics [61], to name a few, have proven its strength
and versatility.

Homology [43] is one of the most relevant tools used in topology but suffers from the drawback of being scarcely
descriptive. Persistent homology [32] overcomes this issue by allowing for multiresolution analysis of homology by means
of filtrations. It is used in data analysis to study the evolution of qualitative features of data and it is appreciated for its
robustness to noise, and dimension independence.

So far, many optimization methods for computing persistent homology have been proposed. Those more tightly related
to this work refer to another relevant tool for topological data analysis, namely discrete Morse theory [37]. Discrete Morse
theory provides an important preprocessing tool for homology computation. By defining a discrete gradient vector field (also
called discrete gradient) over the input datum, the size of the input space can be reduced to the critical parts, generally few.
The discrete gradient can also be built so as to preserve the filtration structure, thus enhancing also persistent homology

* Corresponding author.
E-mail addresses: sara.scaramuccia@dibris.unige.it (S. Scaramuccia), fiurici@clemson.edu (F. Iuricich), deflo@umiacs.umd.edu (L. De Floriani),
claudia.landi@unimore.it (C. Landi).

https://doi.org/10.1016/j.comgeo.2020.101623
0925-7721/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comgeo.2020.101623
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2020.101623&domain=pdf
mailto:sara.scaramuccia@dibris.unige.it
mailto:fiurici@clemson.edu
mailto:deflo@umiacs.umd.edu
mailto:claudia.landi@unimore.it
https://doi.org/10.1016/j.comgeo.2020.101623

2 S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623

computations via a reduction procedure. Although other persistent homology optimizations outperform this Morse-based
preprocessing, these no longer apply to the generalization of persistent homology, called multiparameter persistent homology.

Multiparameter persistent homology is an extension of persistent homology motivated by the fact that data analysis and
comparisons often involve studying properties naturally described by multiple parameters. However, high computational
costs and scalability problems prevent it to be applicable over large data. A Morse-based preprocessing solution, generalized
to the multiparameter case, has been proposed in [3,5]. This can have, in theory, a valuable impact on multiparameter
persistent homology computations. However, that preprocessing still presents limitations in scalability with real data.

In [45] we have proposed the first algorithm capable of computing a discrete gradient on simplicial real-sized mul-
tifiltered shapes and images. We have integrated the discrete gradient into a visualization tool for studying regions of
correlation in a multifield dataset, i.e., a regular grid with a vector-valued function defined on its vertices. In this work, we
extend the algorithm presented in [45] to the computation of multiparameter persistent homology. Taking the work by Allili
et al. [5] as the state-of-the-art for computing a discrete gradient for multiparameter persistent homology computation, our
contributions consist of:

a new efficient and parallel algorithm for computing a discrete gradient on multiparameter filtrations;

a detailed analysis of the algorithm’s complexity and a proof of its equivalence to [5];

a comparison of complexity and computational performances of our algorithm with respect to [5];

an evaluation of the advantages of using our algorithm as a preprocessing step for multiparameter persistent homology
computation.

Our approach is well suited to be used with both simplicial complexes and regular grids and is well suited for a parallel
implementation. Moreover, we show that the use of the discrete gradient provides an improvement of at least one order of
magnitude in the computation of multipersistent homology.

The remainder of this paper is organized as follows. In Section 1, we introduce the notions at the basis of our work.
Related work is reviewed in Section 2. The new preprocessing algorithm is described in Section 3, where we also present
a detailed complexity analysis. In Section 4, we present the proof of correctness as well as a theoretical and experimental
comparison of our approach with the one presented by Allili et al. [5]. The results obtained by computing multiparameter
persistent homology with our approach are discussed in Section 5. Finally, in Section 6, we draw concluding remarks and
we discuss future developments.

1. Background

In this section, we introduce the notions at the base of our work. After simplicial complexes we discuss homology [43]
and persistent homology [32]. Then, we describe multiparameter persistent homology [18]. We conclude the section by
discussing discrete Morse theory [37].

1.1. Simplicial complexes

A simplicial complex is a discrete topological structure made of simple elements, called simplices. A k-dimensional simplex
o, or k-simplex for short, is the convex hull of k + 1 affinely independent points. Often, we will write o to indicate a k-
simplex. A face T of o is the convex hull of any subset of points generating o. If the dimensions of T and o differ by one
we call T a facet of o. Dually, o is a coface of T and a cofacet when the two dimensions differ by one.

A simplicial complex S is a finite collection of simplices such that:

e every face of a simplex in S is also in S,
o the intersection of any two simplices in S is either empty or a single simplex in S (intersection property).

We will denote by Sy the set of k-simplices in S. An element in So is also called a vertex. A simplicial complex S of
dimension d is a simplicial complex in which the maximum dimension of the simplices of S is d.

1.2. Persistent homology

Homology is a topological invariant used in data analysis to qualitatively describe shapes. The homology of a simplicial
complex S detects independent k-dimensional cycles of S, i.e., connected components (0-cycles), tunnels (1-cycles), voids
(2-cycles), and so on. Cycles are formally captured by linear combinations of simplices whose boundary vanishes. In this
work, we focus on linear combinations over IFy, i.e., the field with only the two elements 0 and 1.

The chain complex C(S) = (Cx(S), 0+) associated with a simplicial complex S consists of the family Cy (S) = {Ck(S) }kez
of IF-vector spaces along with the collection of linear maps s = {0 : Cx(S) — Cx—1(S) }kez defined as follows:

e Ci(S) is the IFp-vector space generated by S, and its elements are called k-chains,

S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623 3

(@) (b) (© (@)

Fig. 1. A filtering function defined on a torus. Dots indicate the presence of a new component (a), new tunnels (b-c), and a new void (d), respectively. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

e O is called boundary map and defined by linear extension from the images of each k-simplex t:

ox(1T) = 2 k(t,0)0,

o€esS

with x(7,0) =1 if and only if o is a facet of 7. Elements in the kernel of J; are called k-cycles, while elements in the
image of 0k41 are called k-boundaries. The k-homology of a simplicial complex S is defined as the quotient vector space of
k-cycles over k-boundaries:

Hk(S) = kerak/imakH.

Persistent homology describes the homological changes occurring along an increasing sequence of simplicial complexes,
called a filtration. We consider R with its usual order, and we call its elements grades. A filtration S of a simplicial complex
S is a finite collection of simplicial subcomplexes SU in S, indexed by u € R, such that for all grades u < v, S* is a simplicial
subcomplex in SY. Here, we are interested in filtrations derived by the sublevel sets of functions defined on S: a filtering
function is a function f:S— R such that, if o is a face of 7, then f(0) < f(7).

Given a filtering function f, S(f) defined by setting S* = {0 € S|f (o) <u} is a filtration of S. For each pair of grades
u < v of the filtration S(f), we have that S*(f) is closed in SY(f). This means that for all T € S*(f), if condition x (7, 0) #
0 holds for some o € SY(f), then o € S¥(f).

In Fig. 1 we show a torus filtered by using the height function as filtering function. Each image illustrates a change
in the homology of the sublevel sets. In Fig. 1(a) a new component is introduced. Two loops are created, in Fig. 1(b)
and (c), respectively. A void is created in Fig. 1(d). For each homology class, we have a representative k-cycle appearing
in the filtration. The marked blue dot is the representative 0-cycle for the new component. The two green 1-cycles are
representative for the two tunnels. The set of triangles forming the entire torus surface corresponds to a 2-cycle.

The inclusion of simplicial complexes in a filtration preserves cycles and boundaries, that is, for all grades u < v, there
exists a linear map L,‘:"’ : Hi(S%) — Hi(SY) induced at homology level, not necessarily injective, since cycles can possibly
become boundaries by adding cells.

The persistent kth-homology relative to the grades u < v is the image of LZ‘V as a subspace in Hy(S"), that is the space
of all the homology classes of Hy(S*) which persist in Hi(S"). The global persistent homology information, for all possible
grades u < v, is encoded in the persistence module.

The kth persistence module Hy(S) of the filtered complex S consists of:

o the collection of F;-vector spaces Hy(S") varying the grade u e R,
o the collection of all inclusion-induced linear maps LZ‘V : Hi(S*) — Hy(S"), varying the pairs of grades satisfying u < v
in R.

In this work, we are interested in a generalization of persistent homology obtained by considering multiple filtrations at
once. Such tool is called multiparameter persistent homology. So, from now on, we refer to classic persistent homology as
one-parameter persistent homology.

1.3. Multiparameter persistent homology

Multiparameter persistent homology analyzes the changes in homology for a multiparameter filtration (or multifiltration,
for short). Instead of a total order on R, we consider a partial ordered set (R", <) such that, for any u = (uy,...,u,),v=
(v1,...,vp) e R", u < v if and only if u; < v;, for all i € {1,...,n}. We call grades the elements of the partial order set. If
u<v and u # v, we write u < v for short.

A multiparameter filtration S of a simplicial complex S is a finite collection of simplicial subcomplexes S* indexed by
u € R" such that, for all grades u < v, S is a simplicial subcomplex in SY. Multiparameter filtrations can be induced by
vector-valued functions. Any function f:S — R" satisfying f(o) < f(7), for all faces o of 7, induces a multifiltration
S(f) by setting S" as the set of all simplices o satisfying f (o) < u. In this case, f is called a (multi)filtering function on S,
and S" is called the sublevel set with respect to the (multi)grade u.

4 S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623

. c d Fo(@) — > F3(@) — > Fa@)

@ @ ®

c C‘: . r2<a>i>m<a7é>¥>%<a>
oa oa a

0 () 0]

(a) (b)

Fig. 2. (a) A bifiltration of a 2-dimensional simplicial complex. (b) A representation of the corresponding persistence module in degree 0 (connected
components). For each [Fy-vector space in the persistence module, the corresponding reference basis is made explicit, e.g., a is the homology class of the
vertex a. Each matrix expresses the linear maps with respect to such bases.

Given a multiparameter filtration of a simplicial complex S, homology construction H(-) can be applied to each sublevel
set in the multifiltration. Each inclusion S* < SV between multifiltration sublevel sets induces a linear map L}(”" s Hy(SY) —
Hi(SY).

A homology class is persistent from grade u to grade v if it is not trivial in Hy(S") and still non-trivial in Hy(S"). For each
homology degree k, the kth persistence module of a multifiltration of S is the family of vector spaces Hy(S") with u e R"
along with all linear maps L;{"V with u < v. In Fig. 2(b), we show the persistence module associated with the bifiltration
depicted in Fig. 2(a).

1.4. Discrete Morse theory

The algorithm we propose retrieves a combinatorial object, called a discrete gradient, compatible with the multiparameter
filtration over a simplicial complex S. The relevance of this output has to be considered within the framework of Forman’s
discrete Morse theory [37]. A (discrete) vector is a pair of simplices (o, T) such that o is a facet of t. A discrete vector field is
any collection of vectors V such that each simplex is a component of at most one vector in V. A V-path is a sequence of
vectors (o, 7;) belonging to V, for i =0,...,r, such that, for all indexes 0 <i<r—1, ;41 is a facet of 7; and o; # 0j+1.
A V-path is said to be closed if o9 = oy, and trivial, if r = 0. A discrete vector field V is a discrete gradient if all of its closed
V -paths are trivial. Simplices that do not belong to any vector are said to be critical. Given a discrete gradient V, a separatrix
from a critical cell ¢+ to a critical cell o¥ is a V-path from any facet of ¢+ to any cofacet of o*.

There are many ways to construct a discrete gradient on a simplicial complex. In this work, we are interested in a
specific class of discrete gradients, those consistent with a multiparameter filtration. Given a multifiltration S of a simplicial
complex S, a discrete gradient V over S is called compatible with S if, for each (o, 7)€ V and each filtration grade u e R",
it holds that

oeS* = rteSt

A discrete gradient implicitly represents a cell complex called a Morse complex, and generated by navigating the gradient
V-paths. The cells of a Morse complex M of V are in one-to-one correspondence with the critical simplices of V. For
any two critical simplices, the incidence between the corresponding cells in M is defined based on the following incidence
function: given o, T in M, ky(0,) =1 if and only if the number of separatrices from o to 7 is odd and ky(o,7) =0
otherwise. Analogously to the simplicial case, «p allows us to define a boundary map and, hence, the homology of the
Morse complex.

Theorem 4.3 in [51] proves that, for one-parameter filtrations, the persistent homology of the Morse complex of V
is equivalent to that of the original simplicial complex. Corollary 3.2 in [3] proves the same result for multiparameter
filtrations. From a computational point of view, a key advantage is the size of M with respect to S: M contains fewer cells
than S, making the computation of the persistence module faster.

2. Related work
In this section, we review related work on the computation of both persistent and multipersistent homology.
2.1. Computing persistent homology

In the one-parameter case, computing the persistence module of a complex, consists of reducing the boundary matrix of
the complex [32]. The standard algorithm by Edelsbrunner et al. [32] has a cubic time complexity in the worst case but

S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623 5

new approaches have been studied, with an improved efficiency. We classify such approaches into three groups: integrated
optimizations, annotation-based, and preprocessing algorithms.

Integrated optimizations aim at improving the efficiency of the standard approach by either reducing the number of steps
required for matrix reduction, or by progressively removing columns during computation. Examples of approaches based on
integrated optimizations are: the twist algorithm [23], the row algorithm [24], the approach based on sparsity presented in
[50], the one based on spectral sequences [30], and the chunk algorithm [7].

Annotation-based algorithms take advantage of an efficient data structure, the annotation matrix, to compute the persistent
co-homology of a complex. An annotation [13] is a map that assigns a binary vector to each simplex of a simplicial complex.
Each annotation provides the coordinate vectors that are used to efficiently identify the homology classes. The notion of
annotation was originally introduced in [13] for computing localized homology. In [25,12] the approach has been adapted
and improved for persistent homology computation.

Preprocessing algorithms reduce the size of the input filtration while preserving its persistent homology. In [28],
homology-preserving techniques, such as reductions, coreductions [52,54,27] and acyclic subspaces [53], are adapted to
the case of persistent homology. Approaches rooted in discrete Morse Theory [37] compute a discrete gradient V compati-
ble with the input filtration. The theoretical results in [51] guarantee that the Morse complex constructed from V has the
same persistence module as the input complex. Many algorithms have been developed for computing a discrete gradient
from a function sampled at the vertices of a cell complex. The algorithm described in [46] is the first one to introduce
a divide-and-conquer approach for computing a Forman gradient on real data. However, it suffers from the drawback of
introducing many spurious critical simplices. Two parallel approaches have been defined in [59,60] for 2D and 3D images,
respectively. They provide a substantial speedup in computing the discrete gradient, but they still create spurious critical
simplices. In [57], a dimension-agnostic algorithm is proposed that processes each vertex locally. It has been proved that,
up to the 3D case, the critical cells identified are in one-to-one correspondence with the topological changes in the sub-
level sets, i.e. no spurious critical simplices are created. An efficient implementation of [57] on regular grids is discussed in
[42]. Similar approaches have been developed for triangle [36] and tetrahedral meshes [62], and for dimension independent
simplicial complexes [38].

2.2. Computing multiparameter persistent homology

The first issue when computing multiparameter persistent homology is that no complete descriptor exists for the per-
sistence module [18]. The first algorithm for retrieving the persistence module is proposed in [17], where the three tasks
of computing the k-boundaries, k-cycles and their quotients at each multigrade u are translated into submodule membership
problems in computational commutative algebra. The algorithm introduces an artifact dependency on the chosen basis, and
has a time complexity of O(|S|*n3), where |S| is the number of simplices in the complex and n is the number of inde-
pendent parameters in the multifiltration. The algorithm in [40] acts on the multifiltration at the chain level rather than at
homology level. First, k-cycles and k-boundaries are expressed in terms of the same basis. Then, the Smith Normal Form
reduction [55,2] is applied at each multigrade u in the multifiltration leading to a worst time complex1ty of O(|S|?>@"), with
fL := Max;—o__n Mi, where u; is the number of multigrades in the multifiltration along the i*"-axis. The algorithm has been
implemented in the Topcat library [56]. Recently, a new algorithm based on a generalized matrix reduction technique has
been published on Arxiv [26] with a worst-case time complexity of O(|S|#) in the 2-parameter case.

An alternative to the persistence module is computing invariants providing partial information. A non-complete descrip-
tor for multiparameter persistent homology is the rank invariant, introduced in [18]. For each pair of multigrades u < v
the rank invariant is the rank of the corresponding inclusion-induced map, which is the number of homology classes from
multigrade u still persistent at multigrade v. The rank invariant value over a single pair (u, v) can be easily derived from
the persistence module representation. However, computing the full rank invariant means computing its value for each pos-
sible pair of multigrades (u, v) satisfying u < v, which is %uz, where u is the cardinality of all multigrades considered in
the multifiltration (typically very large).

The persistence space [21,22] is equivalent to the rank invariant but it avoids computing the persistence module. The per-
sistence space can be computed based on the foliation method [10]. With such approach, the persistence space is constructed
incrementally by slicing the space of the input multiparameter filtrations and by constructing a number of one-parameter
filtrations on which classic persistence homology is computed. The persistence pairs obtained on each slice form the per-
sistence space. The first approach for computing the persistence space has been limited to the case of 0™'-homology [10].
An approximate version of the persistence space is proposed in [9] for two-parameter filtrations, also called bifiltrations:
a selection of slices is performed to guarantee a fixed tolerance for the matching distance [14] among persistence spaces.
This method has found applications in shape comparison in the PHOG library [11], where the authors use the approximate
persistence space to deal with photometric attributes of a 3D shape.

Limitedly to bifiltrations, a visualization tool for the persistence space is RIVET [49]. RIVET uses bigraded Betti num-
bers [47,34] to locate multigrades where homology classes born or die. This procedure requires time O(/P)»), where A
is the product of AyAy with Ay and A, the number of x- and y-coordinates of such multigrades. RIVET computes an ar-
rangement of lines such that all the filtrations within the same cell of the arrangement, have the same barcode template. A
barcode template is constructed in O (34 + (i +logA)A?) time.

6 S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623

o1 23) 2
60 (33) |

o

(3,2)
(1,2) 30 1 3 @G | N

(a) (b) (c) (d)

Fig. 3. (a) A multiparameter filtration (S, f) where S is a triangle mesh. (b) Value of the indexing I for each simplex of S. (c) Within the index-based lower
star of Low; (3), simplices are subdivided and paired based on their value of f. (d) The final discrete gradient V.

Most optimization methods developed for classic persistent homology have not yet found a counterpart in the multi-
parameter case. Limitedly to the study of 0"-homology the algorithm proposed in [20] is the first approach capable of
reducing the size of an input complex S without affecting its persistence module.

The approach proposed in [3] can be seen as a Morse-based method generalizing to the multiparameter case the one
proposed in [46]. The algorithm computes a discrete gradient field having the same persistence module as the input com-
plex. Like its one-parameter counterpart [46], it suffers from introducing many spurious critical simplices. In a successive
paper by Allili et al. [5], authors propose to construct the discrete gradient locally inside the lower star of the simplices of
S. The resulting discrete gradient is proven to induce a Morse complex with the same persistence module as the original
multifiltration. However, the algorithm requires a global ordering of all the simplices of S and does not scale well with the
size of the data. In Section 4, we will discuss this issue further when analyzing our approach.

A new reduction algorithm has been proposed by Fugacci et al. [39] inspired by the chunk algorithm [7]. The latter works
on a matrix-based representation of the simplicial complex S called boundary matrix. Each column of the boundary matrix
represents a simplex o in S by storing the facets of 0. The method in [39] and the Morse-based approach discussed in this
paper have been experimentally compared showing that the one in [39] is an order of magnitude faster than ours on triangle
meshes. On the other hand, the Morse-based approach has other valuable characteristics. Above all, with the Morse-based
approach, we are able to maintain a complete mapping between the original simplicial complex and the obtained Morse
complex. This means that, once we have computed multiparameter persistent homology on the Morse complex, we are able
to project back the results on the simplicial complex for studying, for example, the distribution of the critical simplices on
the original complex.

3. Local computation of a discrete gradient over a multiparameter filtration

In this section, we present a new algorithm for computing a discrete gradient vector field compatible with a multipa-
rameter filtration. To make the exposition easier, we describe the algorithm by focusing on simplicial complexes, although
the approach is valid for any cell complex satisfying the intersection property, such as cubical complexes.

In Section 3.1 we provide a high-level description of the algorithm workflow. A detailed description of the auxiliary
functions is given in Section 3.2, while in Section 3.3 we discuss the algorithm complexity.

3.1. Overview

The proposed algorithm receives a multiparameter filtration as input and produces a compatible discrete gradient. In the
following, we describe the input multiparameter filtration as a pair (S, f), where S is a d-dimensional simplicial complex
and f:So — R" is a vector-valued function defined on the vertices of S. We indicate with f;(v) the i-th component of
the vector associated with a vertex v. f; is extended to any simplex ¢ of S by fi(0) = maxyes fi(v), for each 0 <i<n,
and induces the multifiltration that we denote as S(f), as described in Section 1.3.

Without loss of generality, we require function f to be component-wise injective on the vertices, i.e., it is injective on
the vertices for each component. In applications, any function can be transformed into a component-wise injective one by
means of simulation of simplicity [33]. The output of the algorithm is a pair (V, M), where V is the set of paired simplices
of S and M is the set of the critical (unpaired) simplices. When proving correctness, we will show that V is a discrete
gradient compatible with the filtration, and that M contains the cells of its Morse complex.

The main strategy of the algorithm consists of decomposing S according to an indexing I defined on its vertices. The
use of I allows partitioning S into disjoint sets and then run the pairing algorithm in parallel on each set. In this way we
avoid the global ordering used in the algorithm by Allili et al. [5]. A full comparison of the two approaches is provided in
Section 4. Notice that the final result is independent of the choice of I (Lemma 2 in Section 4).

The algorithm consists of three main steps: vertex-based decomposition, multigrade grouping, and pairing. A running exam-
ple is depicted in Fig. 3.

In the first step we decompose S to obtain a partition of the simplices in S. In this step, we only require that simplices
belonging to the same multigrade also belong to the same group in the decomposition. This is performed by algorithm
ComputeDiscreteGradient (Algorithm 1) as follows:

S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623 7

Algorithm 1 ComputeDiscreteGradient(S, f).

Input: S, a simplicial complex; f:So — R", a component-wise injective function;
Output: V, list of simplices pairs; M, list of critical simplices;

1: define V and M as two empty lists

2: I «+ ComputeIndexing(So, f)

3: forall v in Sp do

4 L} « ComputeIndexLowerStar (v,I,S)

5 forall L, in SplitIndexLowerStar(f,L;) do

6: (Vu, My) < HomotopyExpansion(S,I,Ly)
7
8
9:

add V, to V
add M, to M
return (V, M)

e an indexing I : So — R is computed for the vertices of S (line 2). The indexing is extended to the other simplices
o €S by setting I(0) := maXyes I(v). The indexing used must be well-extensible, i.e., I must satisfy, for all simplices
o, 1 €S, the following property:

flo)y<f(r) = Io)<I(7). (1)

e S is subdivided into lower stars according to I (line 4). We recall that the star of a simplex o, denoted by Star(c),
is the set of its cofaces. Then, the index-based lower star of a simplex o, denoted as Low; (o), is the set of its cofaces
having a value of I lower or equal to o. Formally,

Low(0) :={tr eStar(o) | I(t) < I(0)}.

In Fig. 3(b) we indicate for each simplex the corresponding value of I. The well-extensible indexing I and the index-based
lower star Low; satisfy two fundamental properties:

e each simplex o belongs to the index-based lower star of exactly one vertex (see Lemma 1 in Section 4);
e if two simplices have the same value of f, then they belong to the index-based lower star of the same vertex (see
Lemma 2 in Section 4).

As a consequence, a well-extensible indexing and the index-based lower stars implicitly provide a partition of S. Thanks
to these properties we can guarantee that, by processing the vertices independently, we are identifying valid pairings (see
Section 4 for a formal proof).

The second step requires grouping the simplices in the set L; = Low;(v), with v € Sp, having the same multigrade (line
5). The latter is performed by SplitIndexLowerStar, which organizes the simplices in a collection of sets, where each
set L, contains simplices with the same multigrade u, i.e., L, = {o € Low;(v)|f(o) = u}, u e R™. In Fig. 3(c), simplices
belonging to the index based lower star Low;(3) are partitioned based on their value of f.

In the third step (line 6), each level set L, is independently processed by HomotopyExpansion and the gradient pairs
are computed. Paired and critical simplices found in the level set L, will contribute to the final discrete gradient. Fig. 3(d)
shows the final discrete gradient V computed by our algorithm on the multiparameter filtration depicted in Fig. 3(a). Since
simplices are subdivided based on their multigrade, each simplex in S appears in exactly one level set and it will be
classified, as either paired or critical, only once. This makes the approach easy to parallelize.

3.2. Detailed description

This section provides additional information about the auxiliary functions used in Algorithm 1.

ComputeIndexing computes a well-extensible indexing on the vertices of S. There are many ways to obtain a well-
extensible indexing I, here we have chosen to sort all the vertices of S according to the values of the first component of
f. The total order obtained naturally generates an indexing which is guaranteed to be well-extensible, since, for each pair
of simplices o and 7, f(o) < f(t) implies f1(0) < fi1(7). Thus, a vertex v € T exists such that fi(v) > fi(w) for every
vertex w € 0. This implies I(v) > I(w), for every vertex w € 0 and we conclude that I(o) < I(7).

ComputeIndexLowerStar computes the index-based lower star Low;(v) of a vertex v with respect to indexing I.
For each vertex v € S, the function extracts the set of simplices of Low;(v) incident into v. To do so, we assume that
each k-simplex o is represented by the list of its k + 1 vertices [vo, V1, ..., vk] stored in decreasing order of I, i.e., I(vo) >
I(vq) > -+ > I(vg). Thus, it is sufficient to collect those simplices whose first vertex is v.

Each index-based lower star Low;(v) is then partitioned into level sets by SplitIndexLowerStar according to multi-
grades. This function creates an associative array, by cycling on the simplices of Low;(v), that maps each multigrade u
(represented as a vector of floats) to the set of simplices sharing the same multigrade.

Function HomotopyExpansion classifies simplices with the same multigrade. We present its pseudocode in Algo-
rithm 2. The algorithm extends the one in [57]. A k-simplex ¢ and a (k + 1)-simplex t are considered pairable only when

8 S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623

Algorithm 2 HomotopyExpansion(S, I, L).

Input: S, a simplicial complex; I, a well-extensible indexing; L, a list of cells in S forming a level set u w.r.t. f;
Output: V,, list of discrete vectors; M, list of critical simplices;

1: define V, and M, two empty lists

2: define Ordo and Ordl two empty ordered sets

3: define declared an array of length |L,| with Boolean values equal to false
4: forall T in L, do

5: if num_undeclared facets(t,L;)=0 then

6 insert(7,0rdo,l)

7 else if num undeclared facets(t,L;)=1 then

8: insert(r,0rdl,l)

9: while Ord1# ¢J or Ordo# & do

10: while Ordi# ¢J do

11: T < delete(Ordl)

12: if num_undeclared facets(t,L;)=0 then
13: insert(r,0rdo,l)

14: else

15: p < unpaired_facet(t,Ly)

16: append((p, 7),Vy)

17: declared[p] «true, declared[r] «true
18: add_cofacets(p,Ly,l,0rdl)

19: add_cofacets(t, Ly,1,0rdl)

20: if 0rdo# ¢ then

21: T < delete(0rdo)

22: append(t,My)

23: declared[r] « true

24: add_cofacets(t, Ly,1,0rdl)

25: return (Vy, My)

o is the only unclassified facet of r. The main objective of HomotopyExpansion is that of pairing as many simplices as
possible and to classify them as critical only when no pairable simplices are available.

Two ordered sets Ord0 and Ordl are used to keep track of those simplices that have exactly zero unpaired facets
and one unpaired facet, respectively. Intuitively, simplices in Ord0 are candidates to be classified as critical or as tails
of arrows in the discrete vector, since they have no face to be paired with. Simplices in Ord1l are the candidates to be
heads of arrows in a discrete vector. Within the two sets Ord0 and Ord1l, a simplex o is represented by the sequence, in
decreasing order, of the values of I on its vertices. The two sets are organized based on the lexicographic ordering of such
sequences. Auxiliary function insert is used to compute the corresponding sequence for any simplex o and to insert o
in a set. Auxiliary function delete is used to extract the first simplex o in the set, according to the lexycographic order.
The two sets are initialized by cycling on the simplices in the input set (lines 4 to 8 of Algorithm 2). Auxiliary function
num_undeclared facets is used to count the number of unclassified facets for each simplex. Array declared keeps
track of the simplices already classified (i.e., either paired or declared critical). At the beginning, all entries of declared
are set to false.

Simplices are classified within the two nested while loops (lines 9 to 24). If Ord1l is not empty, we extract the first
simplex T in Ordl and we verify if the number of unclassified facets of T has not changed (line 12). Notice that the
number of unpaired facets can only decrease. If this number is now zero (i.e., its facet has been classified), we insert T
into Ordo. Otherwise, we retrieve its unique unclassified facet o (line 15), we use function append to add (o,t) to the
set of pairs V,, and we update the array declared accordingly. After classifying o and 7, add_cofacets adds all their
unclassified cofacets to either Ordl or Ordo, if they have one or zero unclassified facets, respectively (lines 18 and 19).

When no pairable simplex is available (i.e., 0Ord1 is empty) the first simplex o in Ordo is extracted and declared critical
by adding o to the set of critical simplices M, (lines 21 to 23). Each cofacet of ¢ is added to Ord1 if it has exactly one
unclassified facet. The algorithm terminates when both lists are empty.

3.3. Complexity

In this section, we discuss the computational complexity of ComputeDiscreteGradient and its auxiliary functions.
The parameters involved in the analysis are expressed in terms of cardinality |- | of sets. We indicate with Star(o’) the star
of a simplex o € S, and simply with Star any star with maximal cardinality in the simplicial complex S. Notice that, in a
d-dimensional simplicial complex, |Star| is not bounded from above by a constant and is possibly as large as |S|, this is not
the case for more regular cell complexes like, for example, cubical complexes.

To simplify the runtime analysis and the exposition we make a few assumptions:

o for each simplex o € S, we assume Star(o’) to be computed and stored in the data structure encoding S. Computing
Star(o') on the fly would require O(|Star(o)|) time [15].

e Ordo, Ordl are implemented as balanced binary search trees. Inserting, or removing an element from any such tree
has a logarithmic cost in its size.

S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623 9

e For each k-simplex o € S, f(o) can be retrieved in O (k) time by retrieving the filtration values of the vertices of o.
We will overestimate k by considering the dimension d of the simplicial complex S.

These assumptions are consistent with the implementation of ComputeDiscreteGradient used in our experimental
evaluation (see Section 4.2.1).

3.3.1. Analysis of the auxiliary functions

Here, we present the time and storage costs of the auxiliary functions introduced in Section 3.2.

For creating the well-extensible indexing with ComputeIndexing we sort the vertices according to a single component
of the input function. This requires O (|So|log|So|) time and O (|Sp|) extra space for storing the new sorted list of vertices,
where Sy is the set of vertices of S.

The lower star of each vertex v is extracted by ComputeIndexLowerStar. The lower star of a vertex is extracted
from the precomputed star Star(v) by selecting those simplices having v as the first vertex. This requires O (] Star(v)|) time.

Once a lower star is extracted, the level sets are created by means of SplitIndexLowerStar. Given a simplex o,
computing the value of each component by fij(0) = maxyeo fi(v) takes linear time in the number of vertices of o. Then,
the filtration value of o is computed in O(dn) time, by overestimating the dimension of o with the dimension d of the
complex S. Searching for the set of simplices associated with a specific level set takes at most O (log|Low;(v)|) time. Thus,
the overall time complexity of SplitIndexLowerStar is Crs(v) = O(|Low;(v)|(dn + log|Low,(v)])).

In the third step, HomotopyExpansion classifies the simplices in each level set L. For each simplex o in Ly, num_un-
declared_facets requires visiting its facets whose number is limited from above by a constant and inserting each
simplex in the set requires O (log|Ly|) time. Then, preparing Ordl and Ordo requires O(|L,|log|Ly|) time.

Within the two while loops, each simplex is added to a list at most once and it is also classified once. Then, for each
simplex o:

e retrieving its facets (num_undeclared_ facets or unpaired facets) requires a constant number of operations,

e retrieving its cofacets (add_cofacets) takes at most O(|L,|) time as the number of cofacets is not limited from
above by any constant number,

e adding the simplex o to L, takes O(log|L,|) time.

Overall the time complexity of HomotopyExpansion is Cyg(Ly) = O(|Ly|? + 2|Ly|log(|Ly|)) = O (|Ly|?).

3.3.2. Analysis of algorithm ComputeDiscreteGradient
By analyzing the complexity of all auxiliary functions we obtain a worst-case time complexity for algorithm Compute-
DiscreteGradient of:

0 | [Sollog|So|+ Y. [[Star(v)[+ Cis(v)+ >, Che(Ly)
VeSy LySLowy(v)
In the internal summation, L, can be as large as the entire index-based lower star. Thus, for any vertex v, we can estimate
0 <ZLugLow1(v) CHE(Lu)> = O(|Low;(v)[?) time. Each k-simplex appears in the star of its k + 1 vertices. Thus, we write

0] (Zveso |Star(v)|) = 0(|S|(d + 1)) again by overestimating the dimension k of each simplex with the dimension d of the

complex S.
Each simplex appears in exactly one index-based lower star. Thus, we can estimate the worst-case time complexity

of SplitIndexLowerStar by O (Zveso CLs(V)) = 0(|S|(d + log(maxyes, | Low;(v)])) time. For the same reason, we
can estimate the worst-case time complexity for HomotopyExpansion by O (Zveso CHE(v)> = 0(maxyes, | Low;(v)[?).

Moreover, we notice that maxyes, | Low;(v)| < |Star|.

Based on these observations we can rewrite the overall worst-case time complexity as

0(|So|log |So| +|S|(d + | Star [?)).

In general, the cardinality of a vertex star is not bounded from above. In practice its size becomes negligible with
respect to the total number of simplices in S, i.e., when working with low dimensional simplicial complexes or 2D and 3D
images. In those cases, we can consider d and |Star| to be constant factors which lead to a worst-case time complexity of
0(|Sollog |So + [S])-

4. Comparison with the Matching algorithm and proof of correctness

The Matching algorithm introduced by Allili et al. [4] computes a discrete gradient on a multifiltration by using a global
queue. In this Section, we compare algorithm ComputeDiscreteGradient to algorithm Matching. In Subsection 4.1,

10 S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623

we first describe algorithm Matching. In Subsection 4.2, we provide a formal comparison of the two approaches and, in
Subsection 4.2.2, we prove their equivalence.

4.1. Globally computing a discrete gradient for multiparameters

The Matching algorithm [4,5] acts on a simplicial complex S and a function f :So — R" required to be component-
wise injective on vertices, and extended to higher dimensional simplices, as defined in Section 3. The pair (S, f) defines a
multifiltration of S obtained by sublevel sets. Additionally, the Matching algorithm requires an indexing | on S, i.e. an
injective map J : S — R. The indexing J has to satisfy the following property for every o # t € S,

oisafaceoftor f(o)x f(r) = J(o)<](7). (2)

That is, J has to be compatible both with the coface partial order among simplices and with the value ordering under f.

The algorithm cycles on all simplices in S relying on a global queue. Simplices are processed according to increasing
values of J. This makes unfeasible implementing the approach in parallel.

An auxiliary Boolean vector of length |S|, called classified, is initialized with all entries set to false. For each
simplex o, algorithm Matching checks whether o is classified so that only non-classified simplices are processed. We
denote by P the set of all simplices o € S, also called primary simplices, that are still unclassified when Matching starts
processing their lower star. A non-classified simplex o is passed to an auxiliary function extracting the lower star of o with
respect to f

Lowy (o) :={T eStar(o) | f(T) < f(0)}.

Afterwards, Homot opyExpansion (pseudocode reported in Algorithm 2) is run with input (Lowy (o), J) and returns a pair
of lists (VLOWf((,), MLOWf(G)). All entries in the auxiliary vector classified corresponding to the simplices in the two lists
are set to true. The global output is obtained with the independent contributions of all pairs (Vg (o) M ow f((,)).

Theorem 9 in [5] proves that the union of all the discrete gradients, computed locally to the lower star Low (o) of each
simplex o, forms a discrete gradient. Moreover, Proposition 8 in [5] proves that the same gradient is compatible with the
input multifiltration (S, f). Specifically, Proposition 15 in [5] directly implies that for primary simplices o € P, lower stars
Low (o) form a partition of S.

4.2. Comparison of algorithms Matching and ComputeDiscreteGradient

In this section, we compare ComputeDiscreteGradient to Matching from three different standpoints: complexity,
performance, and quality of output. We recall that P indicates the primary simplices in Matching, i.e., those simplices
in S that were still unclassified when Matching processed their lower stars. Both ComputeDiscreteGradient and
Matching build a discrete gradient by running HomotopyExpansion on a partition of the input complex S:

e Matching finds the discrete gradient over each lower star Lowy (o) with o a primary simplex of P,
e ComputeDiscreteGradient finds the discrete gradient independently over each level set L, in a index-based lower
star Low;(v) with v € So.

The two algorithms differ in the number of stars they compute and visit. ComputeDiscreteGradient computes a lower
star for each vertex in the input complex. This means that, in our case, the exact number of stars visited by ComputeIn-
dexLowerStar is |Sol.

On the contrary, Matching computes a lower star for each primary simplex in P. In the best case, the primary simplices
P are exactly the vertices of S, i.e, |P| =|So|. Then, the two algorithms compute the same number of lower stars. In the
worst case, the number of primary simplices |P| is equal to the total number of simplices |S|, which greatly affects the
performances of Matching, as shown in Subsection 4.2.1.

4.2.1. Performance comparison

We recall that the input of both algorithms is described as a pair (S, f), where S is a simplicial complex and f :
So — R™ is a component-wise injective function. Here, we focus on the case where S is a triangle mesh embedded in the
Euclidean 3D space and f assigns to each vertex its x and y coordinates (i.e., for v = (x, y,z), f(v) = (x, y)). The algorithm
in [5] is defined to work in combination with a data structure that encodes all the simplices of a simplicial complex S. This
approach does not scale well when the size and the dimension of S increase. The only way to guarantee scalability is that
of encoding S with an indexed-based representation based on its top simplices [38]. For a fair comparison, both algorithms
have been implemented by using the FG_Multi library [35] which provides a compact encoding for the triangle mesh as well
as for the discrete gradient.

S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623 11

Table 1

Datasets used for the experiments. For each of them, we indicate the number of
independent parameters in the multifiltration (column Parameters), the number of
simplices in the original dataset (column Original), number of critical simplices re-
trieved by ComputeDiscreteGradient and Macthing (column Critical) and the
compression factor (column Original/Critical).

Dataset Parameters Simplices Compression factor
Original Critical Original/Critical
Torus 2 1.3M 0.035M 379
53M 0.11M 453
21.5M 0.77M 277
2.9M 0.28M 10.2
Sphere 2 11.7M 0.11M 10.2
471M 0.46M 101
3.8M 0.4M 9.5
Gorilla 2 15.2M 1.6M 9.4
60.9M 6.4M 9.4

Timings in seconds

2000
1500
1000

500

arr— N e W ,,. | ,.

Tor Ton 7o, Sor Sox Sor G G
“us; "’:e sy pﬁ@’e; D/)e’sew?e’eg Or'//e/ Or'//eg

Go,.,
*///63
Fig. 4. Timings (in seconds) required by ComputeDiscreteGradient (in blue) and Matching (in orange).

Simplicial complex representation A triangle mesh S is a simplicial complex of dimension two formed by vertices, edges, and
triangles. The FG_Multi library implements an incidence-based data structure for compactly encoding the relations among
these simplices. Vertices and triangles are the only simplices that are explicitly encoded for a total of |Sg| + |S2| entities.
Each vertex encodes the list of triangles incident in it, while each triangle encodes a reference to its three vertices. Thus,
since each triangle references three vertices, the triangle-vertex relation costs 3|S,| while encoding also the vertex-triangle
relation doubles this cost leading to a total of 7|S;| + |So|. The filtering function f is stored with each vertex encoding a
vector of floating point values, one value for each component of f.

Discrete gradient representation The discrete gradient V is encoded by adopting the representation described in [36]. The
latter focuses on encoding all the gradient pairs locally to each triangle. The encoding uses the following rationale. Since
each triangle can be paired with at most three edges, and each edge can be paired with two vertices, we have 9 possible
pairs for each triangle. If we consider also the pairs between an edge of o and an adjacent triangle, we get 12 possible
gradient pairs and, thus, 212 = 4096 possible combinations. However, a discrete gradient imposes certain restrictions, i.e.,
each simplex can be involved in at most one pairing. As a consequence, we have only 97 valid cases for a triangle. These
cases can be encoded using only one byte per triangle and, thus, encoding the gradient only requires |S;| bytes. This
approach has been generalized to tetrahedral meshes [62] and to d-dimensional simplicial complexes [38].

The datasets used in this comparison are originated by three triangle meshes. The experiments have been performed on
a dual Intel Xeon E5-2630 v4 CPU at 2.20 GHz with 64 GB of RAM. For each mesh, we have produced two refined versions
at increased resolution by recursively applying Catmull-Clark algorithm [19]. The nine triangle meshes are presented in
Table 1. Column Original indicates the number of simplices composing the mesh. Column Critical indicates the number of
unpaired (critical) simplices identified by both reduction approaches, while the resulting compression factor is reported in
column Original/Critical. Timings are shown in Fig. 4. ComputeDiscreteGradient takes between 0.89 seconds and 4.8
minutes depending on the dataset and it is generally 7 times faster than our efficient implementation of the Matching
algorithm. Time performances show the practical efficiency of the local approach compared with the global one. As discussed
in Section 3.3, both algorithms have linear time complexity when the number of simplices within each star is negligible. In
Fig. 5(left), we show the trends as the number of simplices increases. This confirms that the number of stars to be retrieved
and visited has a direct consequence on the algorithm performance. In ComputeDiscreteGradient we need to process
each vertex star only once, while Matching requires processing a star for each grade.

12 S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623

Memory usage

2000
20
g1s00 s
@
1000 0
E
500 . _ |
of 0_‘-‘\l N -
7 7 7

Sop. Sop. Sop. Gon, Go,, Gop
10 20 30 40 50 60 s, g, i, 0/7%7 %%e%@’ea o, Sty

Number of Simplices (millions)

Fig. 5. On the left, timings (in seconds) required by ComputeDiscreteGradient (in blue) and Matching (orange). On the right, maximum peaks of
memory (in gigabytes) required by ComputeDiscreteGradient (in blue) and Matching (in orange).

Other than time efficiency, our strategy also requires less memory. In Fig. 5(right), we report the maximum peak of
memory used by the two algorithms. ComputeDiscreteGradient uses up to 10 gigabytes of memory versus more
than 20 gigabytes used by Matching. The storage cost difference between the two implementations grows linearly with
the number of simplices in the datasets. The advantage is due to the different memory consumption at runtime. Specif-
ically, Matching stores a global queue over all the simplices in the dataset and needs to track all classified simplices.
ComputeDiscreteGradient performs these steps over each level set.

4.2.2. Equivalence of the outputs

We now show that ComputeDiscreteGradient and Matching produce the same gradient when the indexing I
used in ComputeDiscreteGradient is well-extensible and the filtering function f is componentwise injective on the
vertices. These assumptions will be maintained throughout this section. Here, we first state the results required to draw
such conclusions, while the detailed proofs can be found in Appendix A.

The proof consists of two parts. First, we show that the two algorithms apply HomotopyExpansion to the same
partition of the input simplicial complex. Then, given for one algorithm any valid order for processing the simplices in
HomotopyExpansion we prove that a valid order for the other algorithm exists such that the two provide the same
output. We start by proving that the partitioning strategies of ComputeDiscreteGradient and Matching are the
same. In ComputeDiscreteGradient we partition S according to the level sets L, of f in Low,(v), for all vertices v
and grades u. In Matching S is partitioned according to Low (o), with o varying in the set of primary simplices P, i.e.
simplices that do not belong to the lower star with respect to f of any other simplex.

We start showing that the partition provided by sets Low (o), with ¢ in P, is a refinement of the one provided by the
sets Low;(v) with v € S.

Lemma 1. For every o € S, and, hence, in particular for o € P, there is exactly one vertex v € Sg such that Low (o) < Low;(v).

Next, we show that, for every vertex v, any level set L, of the filtering function f restricted to Low;(v) coincides with
the lower star Low (o) of some primary simplex o.

Lemma 2. Let L, be a non-empty level set of f in Low;(v) for some grade u € R and some vertex v € So. There exists a unique simplex
0 € Ly such that Low¢ (o) = L,. Moreover, o € P.

Lemmas 1 and 2 allow us to conclude that both ComputeDiscreteGradient and Matching run HomotopyEx-
pansion on the same subsets L, = Lowy (o). Now we need to show that HomotopyExpansion does so by processing
the simplices of these subsets in the same order.

Proposition 3. For every valid input (S, f) for ComputeDiscreteGradient, there exists an indexing | : S — R valid for
Matching such that the output of Matching(S, f,]) and ComputeDiscreteGradient(S, f) coincide.

As a consequence of this result, from the correctness of Matching, we obtain the correctness of ComputeDiscrete-
Gradient.

Corollary 4. Algorithm ComputeDiscreteGradient with input (S, f) returns a discrete gradient compatible with the multifil-
tration induced by f on S.

S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623 13

Table 2

Timings (in seconds) and storage costs (in gigabytes) for the persistence module retrieval over the original triangulation
(columns Original) and the corresponding Morse complex (columns Morse). Columns Simplices and Grades report the num-
ber of simplices in the dataset and the number of level sets along each parameter, respectively. Missing entries indicate
where the Topcat library runs out of memory. Column Time explicits the timings (in seconds) for obtaining the Morse
complex using ComputeDiscreteGradient.

Dataset Original Morse Time

Simplices Grades Persistence module Critical Grades Persistence module
Time Memory simplices Time Memory

Sphere 38 8x38 03 0.24 4 5x%x5 0.18 0.1 0.0264
242 42 x 42 44 0.86 20 10x 10 028 0.2 0.0244
2882 482 x 482 - - 278 92 x89 243 15 0.0473

Torus 96 16 x 16 0.5 0.1 8 9x%x9 0.25 0.2 0.0255
4608 768 x 768 - - 128 65 x66 796 24 0.0643
7200 1200 x 1200 - - 156 70 x 80 1205 3.0 0.0815

We recall from Section 1.4 that a discrete gradient V implicitly represents a Morse complex consisting only of the
critical simplices of V and with the incidence relations given by the separatrices originating and having destination in a
pair of critical simplices. Then, we have proved that our algorithm implicitly computes a Morse complex that has the same
multiparameter persistent homology of the original complex.

5. Computing multiparameter persistence homology

In this section, we evaluate the impact of our algorithm as a preprocessing method for the computation of the persistence
module (see Subsection 5.1) and of the persistence space (see Subsection 5.2). Before that, we describe how to compute the
Morse complex represented by the discrete gradient.

Computing the Morse complex We process all the critical simplices of V and, for each critical simplex o of dimension k,
a breadth-first traversal is performed as follows. For each (k — 1)-simplex 74, facet of o, we extract its paired k-simplex
o1, if any. We apply the same rationale to o7 to continue the visit. As soon as we encounter a (k — 1)-simplex t which is
unpaired (critical), we classify the two simplices o and T as mutually incident.

In the worst case, computing the incidences for a single critical simplex of dimension k requires visiting all k-simplices
multiple times, in the order of O(|Sg|?), where Sy is the set of k-simplices in S. If the number of critical simplices is of the
same order as |Si| the total worst-case complexity would be cubical in the number of simplices. In practical cases, however,
the extraction of the Morse complex is very efficient as each k-simplex belongs to a very limited set of gradient paths,
possibly zero.

5.1. Computing the persistence module

The persistence module is computed by means of the open-source library Topcat [56]. Due to its strong limitations in
terms of time and memory costs, we used simplified datasets for our experiments. We use six triangle meshes of limited
size, three representing a torus and three representing a sphere. For each mesh, we use a bifiltration defined by the x and y
coordinates of its vertices. Table 2 presents a description of the input datasets. The number of simplices (column Simplices)
and number of multigrades (column Grades) are reported for each simplicial complex (column Original) and each Morse
complex (column Morse). Notice that for a Morse complex M, column Critical Simplices indicates the number of critical
simplices in the discrete gradient V which is also equivalent to the number of cells in the corresponding Morse complex
M. The Topcat library uses the boundary matrices of the complex to compute the persistence module. Since it was designed
to accept only multifiltrations defined on simplicial complexes, we have modified the library for working on multifiltrations
defined over more general cell complexes, like the Morse complex.

We compute the persistence module, for each homology grade, of both the original simplicial complex and the Morse
complex generated by our algorithm, and we measure time and storage consumption of the Topcat library. We report
the results obtained in Table 2, columns Time and Memory. These represent the timings (in seconds) and the memory
(in Gigabytes) required for computing the persistence module. When the Topcat library runs out of memory, no result is
reported. Where a comparison is possible, computing the persistence module on the Morse complex takes approximately
half of the time than computing it on the original simplicial complex.

The memory consumption is the main bottleneck of the Topcat library as it is mainly affected by the number of input
cells and by the number of multigrades. Using the Morse complex helps to deal with this problem by reducing both quan-
tities. In our experiments, all successful executions have used a limited amount of memory, significantly below the machine
limit of 64 GB. This suggests a dramatic increase in memory usage in the ones where the computations have failed. For
instance, the failure of the test over the Sphere dataset with 2882 cells and 482 x 482 multifiltration multigrades suggests
that computing the persistence module on a Morse complex of the same size would fail as well. We should stress the fact
that the objective of our experiment is that of evaluating the gain in performances when using our reduction approach and

14 S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623

Table 3

Timings (in seconds) required for computing the persistence pairs on 100 uniformly sampled slices. Datasets are reported
by rows. For each triangle mesh, the first row is for the original dataset and the second one for the Morse complex
considered over the same 100 slices. Column Simplices reports the number of simplices in the multifiltration. Column Pairs
reports the average number of persistence pairs found per slice.

Dataset Simplices Pairs Morse Line Foliations time
time extraction Building Computing Reindexing Foliations
pers. input persistence pers. output total
Shark 9491 4744 0.11 0.86 9.04 1.91 145 12.42
1111 554 115 0.21 0.84 2.22
Turtle 10861 5426 012 0.63 10.21 211 1.53 13.87
1197 594 1.22 0.22 0.84 2.29
Gun 27826 13873 0.28 0.65 2749 5.65 2.69 35.85
3144 1532 318 0.60 0.99 4.77
Piano 119081 59349 114 0.85 118.14 26.56 1033 155.91
10955 5286 11.09 2.26 1.65 15.01

not that of overcoming the limitations of Topcat. Column Morse Time reports the partial timings required for computing the
Morse complex. These include the contribution of running ComputeDiscreteGradient together with the retrieval of
the boundary matrix. We point out that the reduction timings, ranging from 0.0244 to 0.0815 seconds, are negligible with
respect to the time required for computing the persistence module.

5.2. Computing the persistence space

In this subsection, we evaluate the impact of the reduction method on the computation of the persistence space [22].

The foliation method The persistence space of an n-parameter filtration is a subset of R" x R" that can be computed via
the foliation method [10]. This consists of considering all possible lines ¢ in R" through two grades u < v. By restricting
the n-parameter filtration to the grades belonging to ¢, we obtain a one-parameter filtration, called a slice. On each slice,
any technique for one-parameter persistent homology computation can be applied to obtain the corresponding persistence
diagram [29]. A persistence diagram is a representation, on the Cartesian plane, of a one-parameter persistence module. Each
point in the persistence diagram represents a discontinuity in the rank invariant created by either a new-born or a vanishing
homology class. The union of the persistence diagrams for all possible lines £ mapped back to R" x R" gives the persistence
space. In practice, it is possible to compute only a sampling of the persistence space by selecting a finite number of lines.
The number of lines to consider varies based on the application at hand. As a rule of thumb, the more slices we consider,
the more accurate is the approximation of the resulting persistence space. Next, we describe our implementation of the
foliation method.

We applied the foliation method on bifiltrations induced by some function f : S — R2. The first step consists in selecting
? lines ¢ with a non-negative slope in R2. Since each line £ with positive slope in R? is determined by the angle A of
the line with the x axis, and a base point b on ¢, we have selected w values for both A and b. Values of A are uniformly
taken from interval [0, %] Points b are uniformly taken from the segment whose endpoints are the projections of points
(c1,C2) and (Cq,c2), with C; := maxxes fi(x) and ¢; := minkes fi(x) for i =1, 2, onto the bisector of the second and fourth
quadrant along the direction m = (cos(), sin(1)). For each choice of A and b, we thus determine the line ¢ passing through
b with direction m = (cos(1),sin(1)). By varying the values of A and b, we obtained the desired w? possible lines. The
second step creates a new one-parameter filtration on S for each line £. If £ has parameters A, b, for each simplex o € S,
the grade of o in the new filtration is given by <I>‘(a) 1= Mminj—1,2M; - Max;—1,2 f'(gm—)ib’ The last step consists of computing
classic persistent homology for the obtained one-parameter filtration by sublevel sets of ®¢ corresponding to each choice of
A and b.

After choosing how to sample slices, the foliation method still requires choosing the number of slices. In what follows,
we will present results providing insights on both choices, either by varying the number of slices (between 2 and 100), or
by varying the method for computing persistent homology (taken from the PHAT library [6]).

Here we present results for evaluating the impact of our reduction approach when computing the persistence space by
using a variable number of slices (between 2 and 100). The meshes considered are from the Princeton Shape Benchmark
[58]. Table 3 describes the meshes and the results obtained when computing the persistence space by using 100 slices
and by using the standard algorithm implemented in PHAT [6]. For each mesh reported in Table 3, the first row reports
data regarding the original mesh, while the second row describes the corresponding Morse complex computed by using
our reduction method. For each input complex, we show the number of simplices (column Simplices) and the average
number of persistence pairs found per slice (column Pairs). Timings are reported separately for the computation of the
Morse complex (column Morse time), for the extraction of slices (column Line Extraction) and for the actual computation
of the persistence space (column Foliation Time). The latter accounts for the construction of the boundary matrix (column
Building Pers. input), for the computation of persistent homology (column Computing Persistence), and for reindexing the
persistence pairs according to the multifiltration (column Reindexing Pers. output). Column Foliation Total shows the sum of
the partial timings.

S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623 15

Shark Dataset: whole process Shark Dataset: persistence computation
151 =e Simplicial complex 15 ~o— Simplicial complex
Morse complex Morse complex
12.51 ==~ Preprocessing + Foliation _. 125 ~ -~ Preprocessing + Foliation

10 / 10
7.5 / .75
5 5

25 g 2.5

4 916 25 36 49 64 81 100 4 916 25 36 49 64 81 100
(a)
Turtle Dataset: whole process Turtle Dataset: persistence computation
15| —# Simplicial complex 15 —e— Simplicial complex
Morse complex Morse complex
12.5 -~ Preprocessing + Foliation 12.5 - == Preprocessing + Foliation
10 10
7.5 7.5
5 5
25] e 25
o e S 0
4916 25 36 49 64 81 100 2916 25 36 49 64 81 100
(b)

Fig. 6. Time performances (in seconds) plotted with respect to a number of slices varying from 4 to 100 over the same dataset. Datasets considered are
triangle meshes: (a) Shark and (b) Turtle. In all the figures performances are indicated in blue for the original dataset and in orange for the corresponding
reduced dataset. On the left we show timings required by the foliation method. On the right, we show timings for computing persistence homology over a
single slice.

We notice that, by reducing the number of simplices of approximately one order of magnitude, we get a one-order
reduction on all timings. Looking at column Line Extraction we notice that the time required for extracting the lines is
almost the same for all the meshes. This happens because we are always considering the same number of slices. For the
partial timings, the highest contribution is shown in column Building Pers. Input. This is the part where the cells are sorted
by increasing values under ®‘ and reindexed according to these values. Both this phase and the following one (i.e., the
actual computation of persistent homology) are affected by the number of input simplices, and the results for the Morse
complex reflect the one-order reduction in the number of simplices. Results are shown in column Reducing Pers. Output. The
difference in the results obtained with the original triangle mesh and the corresponding Morse complex suggests that our
reduction step lets us avoid computation on many spurious persistence pairs. Column Foliation Total indicates timings for
computing the persistence space as a whole. The total timings required by a Morse complex range from a minimum of 2.22
seconds (Shark triangle mesh) to a maximum of 15.01 seconds (Piano triangle mesh), whereas, the original datasets require
from 12.42 (Shark triangle mesh) to 155.91 seconds (Piano triangle mesh).

In Figs. 6 and 7, we compare the time performances of the foliation method when using a number of slices ranging from
4 to 100. Over each slice, one-parameter persistence is computed by the standard algorithm implemented in PHAT. For each
dataset, we show, on the left, the global timings for the foliation phase and, on the right, the partial timings required by
the computation of persistent homology.

Blue lines indicate results obtained for the triangle meshes, green dotted lines present results obtained with the Morse
complexes accounting for both the reduction algorithm and the foliation step. Orange lines indicate results obtained with
the Morse complexes exclusively for the foliation phase. As we can see, orange and green lines almost overlap indicating
that the time used for computing the Morse complex is almost negligible with respect to that required to compute the
persistence space.

We also notice the linear dependency on the number of slices. For Morse complexes (orange line), the slope coefficient
is smaller than for the original simplicial complex (blue line). This is more evident for global timings suggesting that a
preprocessing reduction is preferable independently of the number of slices considered. Notice that, the blue line is below
the green dashed line only when we are using 4 slices. This is the only case when the preprocessing step could be avoided.

Our tests confirm that the complexity of the foliation method primarily depends on the number of slices considered. Our
reduction approach impacts the performances by simply reducing the number of cells to be processed. Moreover, our tests
show that the proposed preprocessing is effective also for a small number of slices.

6. Concluding remarks

We have proposed a new preprocessing algorithm for multiparameter persistent homology suitable for applications to
large data sets. We have highlighted the local characteristics of our approach as opposed to the global characteristics of the

16 S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623

Gun Dataset: whole process Gun Dataset: persistence computation
351 % Momecompion s 35 Rl
304 " Preprocessing + Foliation 30 Preprocessing + Foliation
25 25
20 20
15 15
10 10
5 5
0 0 O g mmmmmgmmmm———y
4916 25 36 49 64 81 100 4916 25 36 49 64 81 100
(a)
Piano Dataset: whole process Piano Dataset: persistence computation
~®= Simplicial complex ~®= Simplicial complex
140 Morse complex 140 Morse complex
120 Preprocessing + Foliation 120 ==~ Preprocessing + Foliation
100 100
80 80
60 60
40 40
20 <~ 20
= 0
4916 25 36 49 64 81 100
(b)

Fig. 7. Time performances (in seconds) plotted with respect to a number of slices varying from 4 to 100 over the same dataset. Datasets considered are
triangle meshes: (a) Gun and (b) Piano. In all the figures performances are indicated in blue for the original dataset and in orange for the corresponding
reduced dataset. On the left we show timings required by the foliation method. On the right, we show timings for computing persistence homology over a
single slice.

equivalent existing approach by Allili et al. [5]. With real data, the use of the Morse complex allowed us to successfully
compute multiparameter persistent homology. We increased about 50 times the size of the input complex that can be
managed, and up to about 250 times the size of the filtration that can be treated. Our local preprocessing has shown its
advantages, especially when computing the persistence space [21] through the foliation method. We found that the Morse
complex outperforms the corresponding original filtration, regardless of the number of slices used in the foliation method.
By using the Morse complex for computing the persistence module we still have experienced efficiency problems, even with
small datasets. This suggests that our preprocessing is not powerful enough to make the persistence module computation
feasible and that optimizations of current algorithms require further improvements. As new algorithms for computing the
persistent module arise, such as the approach by Dey and Xin [26], our preprocessing approach may prove its importance
for computing multipersitent homology.

We think that the idea of a discrete gradient compatible with a multifiltration deserves further investigations. Currently,
we are expanding the set of visual features that can be extracted from a discrete gradient for data analysis and visualization
by studying the relationships between the critical simplices identified by our method and the multigraded Betti numbers
computed by RIVET [49]. This may help us constructing a bridge between the discrete notions of critical simplices and the
piecewise linear notions of Pareto sets [44] and Jacobi sets [31].

Also, we plan to evaluate the scalability of our approach to higher dimensional simplicial complexes. So far, the alter-
native approach by Fugacci and Kerber [39] has shown its advantages when working on triangle meshes. However, the
algorithm requires a global representation of the facets of each simplex while our approach only requires the encoding of
the top simplices only. While this type of encoding has its drawbacks in lower dimensions, as shown by the timings in [39],
it has been proven by Fugacci et al. [38] that it provides better scalability when the dimension of the simplicial complex
increases.

A current limitation of our approach is that of requiring a componentwise injective function. From this property, the
algorithm’s correctness (see Section 4) and its time complexity follow (see Section 3.3). Moreover, it guarantees the mini-
mality of the critical simplices this algorithm identifies, proved by Landi and Scaramuccia in [48]. It would be interesting
for future work to extend our results to functions that are not componentwise injective or defined on all the simplices of
the simplicial complex.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623 17

Acknowledgements

This work has been partially supported by the US National Science Foundation under grant number 1IS-1910766. The
authors wish to thank Michael Kerber and Ulderico Fugacci for interesting discussion on the results.

Appendix A

In this appendix, we report all the proofs of the results provided in Subsection 4.2.2.

Proof of Lemma 1. Let o € S. Because the sets Low;(v), with v € Sp, form a partition of S, there is a unique vertex v of
S such that o belongs to Low;(v). By definition of lower star, v is a face of o, and (o) < I(v). Because I is extended
from the vertices to other simplices by taking the maximum over all vertices, it also holds that I(v) < I(o), and hence
I(v) =1(0).

Let T be a simplex in Lowy (o). Again by definition of lower star and because f is defined by max-extension as well,
we similarly get that o is a face of T and f(t) = f(o). Since I is well-extensible, this implies that I(7) = (o), and hence
I(t) = I(v). Because v < 0 < T we can thus conclude that t € Low,(v). Therefore, Low; (o) < Low;(v). [J

Proof of Lemma 2. In order to prove uniqueness, assume by contradiction that there are two simplices 0,0’ € S such that
Lows (o) = L, = Lowy(c’). Hence, o’ € Low (o) and o € Lowy(o”), implying that o’ is a coface of o and o is a coface of
o’. Thus, o' = 0.

In order to prove existence, we take o to be the maximal common face of all simplices of L,. Since v € t for every
T € Ly, o is non-empty and belongs to Low;(v). In particular, o belongs to L,. Indeed, on one hand, for every 7 in L,
f(o) < f(r) =u, because f does not decrease with the coface relation. On the other hand, since f is obtained by max-
extension from the vertices of a component-wise injective function, for every i = 1,...,n there is a unique vertex w; such
that u; = fij(w;). Hence, for all t € L, it holds that u; = fi(t) = fi(w;) = u;, implying that w; is a vertex of 7 for all T € L,,.
By definition of o, w; is also a vertex of o. Therefore, fi(c) > fi(w;) = u;. Because this holds for every i =1,...,n, we
deduce that u < f(o), which together with f(o) <u yields f(o) = u. In conclusion, o belongs to L.

We now claim that Lowf (o) = L,. We easily see that L, is contained in Low; (o) because, by definition of o, all
simplices T € L, are cofaces of o, and by definition of level set, f(o) = f(7) = u. Conversely, to prove that Low (o) < Ly,
let T be a simplex in Lowf(c). Lemma 1 ensures that T € Low;(v), so it is sufficient to prove that f(7) = u. We have
already proved that f(o) = u, hence the claim follows by using again the fact that, for all T € Lowy (o), f(7) = f(0).

To conclude the proof, it remains to show that o is a primary simplex for Matching. Recall that a simplex is primary,
ie. o € P, if and only if there is no other simplex 7 such that o € Low (7). By contradiction, let us assume such simplex
T exists. Hence Lowy(o) < Lows(7). By Lemma 1, o and t belong to the same index-based lower star Low;(v). Since
o €Lowy(t), we get u = f(o) = f(t). Thus, Ly = Lowy (o) < Lows(T) < Ly, implying that Low (o) = Low;(7), and hence
o=1. [

Proof of Proposition 3. To prove the claim, we show how to construct an indexing J on S valid as an input of Matching
such that each call of HomotopyExpansion with simplices of Low (o) = L, taken in the order of | gives the same result
as ComputeDiscreteGradient.

For each o € P, we indicate by J, the indexing on simplices of Low (o) = L, built in HomotopyExpansion(S, I, Ly)
when called by ComputeDiscreteGradient. By construction, it is increasing with the coface relation, and consistent
with the orderings of the lists Ordo and Ord1l.

Let g: P — R be any injective function compatible with f, ie, f(o) < f(r) implies g(o) < g(t) (obtained, for
example, by topological sorting). For every simplex 7 € S, we can consider the map Q : S — P such that Q(7) = o, with
o the unique primary simplex o € P such that T € Lowy (o). Thus, we can extend g from P to S by taking G =go Q. By
construction, G is still compatible with f.

Therefore, for any simplex 7 € S, we get a pair of real numbers (G(7), Jq(¢)(7)). The set of all such pairs can be
lexicographically ordered, and we can finally take J: S — R to be an injective map giving a total order equivalent to such
lexicographic order.

We need to show that J is a valid ordering for Matching, that is it satisfies condition (2). If o < t, we have f(o) <
f(t) because f is defined by max-extension from the vertices. By compatibility of G with f, this implies that G(o) < G(1).
In the case G(0') < G(), by the equivalence of] with the lexicographic order on all the pairs (G(7), Jo(7)(7)) with T €S,
we get J(0) < J(7). In the case G(o) = G(7), by injectivity of g, it follows that Q (o) = Q (7). Because] () is increasing
with the coface relation, we get J(o) < J(t). Hence, in any case, 0 < t implies (o) < J(t). Let us now assume that
f(o) = f(r). From f(0) = foQ(o) and f(t) = foQ(7), it follows that fo Q (o) < f o Q (7). Necessarily, Q (o) # Q (7).
Thus, by injectivity of g, go Q(0) < go Q(t). Because G = go Q, we conclude that J(o) < J(r) by equivalence of
J with the lexicographic order on the pairs considered above. Therefore, we have proved that] satisfies condition (2)
and is a valid ordering for Matching. In conclusion, by Lemma 2, Matching and ComputeDiscreteGradient call
HomotopyExpansion with the same input and, provided that Matching uses the ordering J, they also process simplices
in the same order. Hence, Matching and ComputeDiscreteGradient produce the same output. []

18 S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623

Proof of Corollary 4. By Proposition 3, for any valid input (S, f) for ComputeDiscreteGradient there is a valid input
(S, f,J]) for Matching such that ComputeDiscreteGradient(S, f) is equal to Matching(S, f, J). By Proposition 8
and Theorem 9 in [5], Matching(S, f, J) returns a discrete gradient V that is compatible with the multifiltration induced
by the pair (S, f). Therefore, so does ComputeDiscreteGradient(S, f). [J

References

[1] H. Adams, G. Carlsson, On the nonlinear statistics of range image patches, SIAM J. Imaging Sci. 2 (1) (Jan. 2009) 110-117.

[2] M.K. Agoston, Computer Graphics and Geometric Modeling: Mathematics, Springer Verlag London Ltd., 2005.

[3] M. Allili, T. Kaczynski, C. Landi, Reducing complexes in multidimensional persistent homology theory, J. Symb. Comput. 78 (C) (2017) 61-75.

[4] M. Allili, T. Kaczynski, C. Landi, F. Masoni, Algorithmic construction of acyclic partial matchings for multidimensional persistence, in: W. Kropatsch, N.
Artner, 1. Janusch (Eds.), Discrete Geometry for Computer Imagery, DGCI 2017, in: Lecture Notes in Computer Science, vol. 10502, Springer, Cham, 2017,
pp. 375-387.

[5] M. Allili, T. Kaczynski, C. Landi, F. Masoni, Acyclic partial matchings for multidimensional persistence: algorithm and combinatorial interpretation, J.
Math. Imaging Vis. 61 (2) (Feb. 2019) 174-192.

[6] U. Bauer, M. Kerber, J. Reininghaus, Persistent Homology Algorithm Toolbox (PHAT), 2013.

[7] U. Bauer, M. Kerber,]. Reininghaus, Clear and compress: computing persistent homology in chunks, in: P.-T. Bremer, I. Hotz, V. Pascucci, R. Peikert
(Eds.), Topological Methods in Data Analysis and Visualization III, Springer International Publishing, Cham, 2014, pp. 103-117.

[8] P. Bendich, J.S. Marron, E. Miller, A. Pieloch, S. Skwerer, Persistent homology analysis of brain artery trees, Ann. Appl. Stat. 10 (1) (Mar. 2016) 198-218.

[9] S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, A new algorithm for computing the 2-dimensional matching distance between size functions, Pattern Recognit.
Lett. 32 (14) (2011) 1735-1746.

[10] S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, C. Landi, Multidimensional size functions for shape comparison, J. Math. Imaging Vis. 32 (2) (2008) 161-179.

[11] S. Biasotti, A. Cerri, D. Giorgi, M. Spagnuolo, PHOG: photometric and geometric functions for textured shape retrieval, Comput. Graph. Forum 32 (5)
(2013) 13-22.

[12]].D. Boissonnat, T.K. Dey, C. Maria, The compressed annotation matrix: en efficient data structure for computing persistent cohomology, in: Algorithms
- ESA 2013, in: Lecture Notes in Computer Science, vol. 8125, Springer, Berlin/Heidelberg, 2013, pp. 695-706.

[13] O. Busaryey, S. Cabello, C. Chen, TK. Dey, Y. Wang, Annotating simplices with a homology basis and its applications, in: V. Fomin, P. Kaski (Eds.),
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, vol. 7357, Springer,
2012, pp. 189-200.

[14] E. Cagliari, B. Di Fabio, M. Ferri, One-dimensional reduction of multidimensional persistent homology, Proc. Am. Math. Soc. 138 (08) (2010) 3003-3017.

[15] D. Canino, L.D. Floriani, K. Weiss, IA* an adjacency-based representation for non-manifold simplicial shapes in arbitrary dimensions, Comput. Graph.
35 (3) (2011) 747-753.

[16] G. Carlsson, T. Ishkhanov, V. de Silva, A. Zomorodian, On the local behavior of spaces of natural images, Int. J. Comput. Vis. 76 (1) (Jan. 2008) 1-12.

[17] G. Carlsson, G. Singh, A. Zomorodian, Computing multidimensional persistence, in: Y. Dong, D.-Z. Du, O. Ibarra (Eds.), Lecture Notes in Computer
Science, vol. 5878, Springer, Berlin/Heidelberg, 2009, pp. 730-739.

[18] G. Carlsson, A. Zomorodian, The theory of multidimensional persistence, in: Proceedings of the Twenty-Third Annual Symposium on Computational
Geometry, Gyeongju, South-Korea, vol. 392, ACM, New York, 2007, pp. 184-193.

[19] E. Catmull, J. Clark, Recursively generated b-spline surfaces on arbitrary topological meshes, Comput. Aided Des. 10 (6) (1978) 350-355.

[20] A. Cerri, P. Frosini, C. Landi, A global reduction method for multidimensional size graphs, Electron. Notes Discrete Math. 26 (2006) 21-28.

[21] A. Cerri, C. Landi, The persistence space in multidimensional persistent homology, in: R. Gonzalez-Diaz, M.-]. Jimenez, B. Medrano (Eds.), Discrete
Geometry for Computer Imagery, in: Lecture Notes in Computer Science, vol. 7749, Springer, Berlin/Heidelberg, 2013, pp. 180-191.

[22] A. Cerri, C. Landi, Hausdorff stability of persistence spaces, Found. Comput. Math. 16 (2) (2016) 343-367.

[23] C. Chen, M. Kerber, Persistent homology computation with a twist, in: 27th European Workshop on Computational Geometry, vol. 45, 2011, pp. 28-31.

[24] V. de Silva, D. Morozov, M. Vejdemo-Johansson, Dualities in persistent (co)homology, Inverse Probl. 124003 (12) (2011) 16.

[25] TK. Dey, F. Fan, Y. Wang, Computing topological persistence for simplicial maps, in: Annual Symposium on Computational Geometry, SOCG'14, ACM,
2014, pp. 345-354.

[26] T.K. Dey, C. Xin, Generalized persistence algorithm for decomposing multi-parameter persistence modules, arXiv:1904.03766, 2019.

[27] P. Diotko, T. Kaczynski, M. Mrozek, T. Wanner, Coreduction homology algorithm for regular CW-complexes, Discrete Comput. Geom. 46 (2) (2011)
361-388.

[28] P. Dtotko, H. Wagner, Simplification of complexes for persistent homology computations, Homol. Homotopy Appl. 16 (1) (2014) 49-63.

[29] H. Edelsbrunner,]. Harer, Persistent homology - a survey, in: Contemporary Mathematics, vol. 453, American Mathematical Society, Providence, RI,
2008, pp. 257-282.

[30] H. Edelsbrunner, J. Harer, Persistent homology—a survey, Contemp. Math. 453 (2008) 257-282.

[31] H. Edelsbrunner, J.L. Harer, Jacobi sets, in: Foundations of Computational Mathematics, Minneapolis, 2002, in: London Mathematical Society Lecture
Note Series, vol. 312, Cambridge University Press, 2002, pp. 37-57.

[32] H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom. 28 (4) (2002) 511-533.

[33] H. Edelsbrunner, E.P. Miicke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms, ACM Trans. Graph. 9 (1) (Jan
1990) 66-104.

[34] D. Eisenbud, The Geometry of Syzygies: A Second Course in Commutative Algebra and Algebraic Geometry, Springer, New York, NY, 2005.

[35] E luricich, MDG: a C++ library for computing discrete gradients on multivariate data, 2018.

[36] R. Fellegara, F. luricich, L. De Floriani, K. Weiss, Efficient computation and simplification of discrete Morse decompositions on triangulated terrains,
in: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL '14, ACM, 2014,
pp. 223-232.

[37] R. Forman, Morse theory for cell complexes, Adv. Math. 134 (1998) 90-145.

[38] U. Fugacci, F. luricich, L. De Floriani, Computing discrete Morse complexes from simplicial complexes, Graph. Models 103 (2019) 101023.

[39] U. Fugacci, M. Kerber, Chunk reduction for multi-parameter persistent homology, in: G. Barequet, Y. Wang (Eds.), 35th International Symposium on
Computational Geometry, SoCG 2019, Dagstuhl, Germany, in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 129, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019, pp. 37:1-37:14.

[40] O. Gdfvert, Algorithms for Multidimensional Persistence, Master thesis, KTH Royal Institute of Technology, 2016.

[41] C. Giusti, R. Ghrist, D.S. Bassett, Two’s company, three (or more) is a simplex: algebraic-topological tools for understanding higher-order structure in
neural data, J. Comput. Neurosci. 41 (1) (Aug. 2016) 1-14.

[42] D. Giinther,]. Reininghaus, H. Wagner, 1. Hotz, Efficient computation of 3d Morse-Smale complexes and persistent homology using discrete Morse
theory, Vis. Comput. 28 (10) (2012) 959-969.

http://refhub.elsevier.com/S0925-7721(20)30017-1/bib8D4B0F65E41D577441840BECC45CB4D1s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib7DC138297129957621FF0554CF24630Ds1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib2C8B38949F70A9277F57582B11EDBB2Es1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib5E67CD6F50B4068982E4874021773BA6s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib5E67CD6F50B4068982E4874021773BA6s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib5E67CD6F50B4068982E4874021773BA6s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibC33AD571CA193E7322404089E41A29F6s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibC33AD571CA193E7322404089E41A29F6s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib4C8C1FB18C1015F83A4BC2B6B83AA924s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib525A6263E9AF1C10F39ED40998CB3A01s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib525A6263E9AF1C10F39ED40998CB3A01s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib20C78F991E0180F635527B370BD5D380s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibAD8B462132EA7F9E98AB58C552EF954As1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibAD8B462132EA7F9E98AB58C552EF954As1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibA13338C1F80CD7ACEB8CB22D11010E98s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib773FBFF141153726BE2FAD79375821F7s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib773FBFF141153726BE2FAD79375821F7s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib76CFEE8C5199E4A09203EC1C44C4C9F1s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib76CFEE8C5199E4A09203EC1C44C4C9F1s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib945E28E95EDE305BBD14EFAB4B927387s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib945E28E95EDE305BBD14EFAB4B927387s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib945E28E95EDE305BBD14EFAB4B927387s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibB3B74F219BB2D5233B01084ECEA576C3s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib0CC34EC6056683327ED29AD9AB34CFFBs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib0CC34EC6056683327ED29AD9AB34CFFBs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib84C20150C1332BEED9B388D254FD8EE1s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibEE144089A9A5D85BFA91A32DE23521BCs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibEE144089A9A5D85BFA91A32DE23521BCs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib88D0612A58E8471B39A8AC63475B5EE0s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib88D0612A58E8471B39A8AC63475B5EE0s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib757669DC613B41CA1FAE163D9D759916s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib368C318B555E834E06F1A2D8C906DFC8s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib9C30EB93B4060F49ED9CCA0F8286557Cs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib9C30EB93B4060F49ED9CCA0F8286557Cs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib89C1E4BD44EAA226DEFA53A230513F0Fs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib0806DE474FC3DBB037F68D7E26982D9Fs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib55354DF7A30DFE38D0DE1F62A9D00202s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib356690B26FEF55E3B076B25F990D4370s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib356690B26FEF55E3B076B25F990D4370s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib453FDB30E22B6DC12E82E3A9E5F41B98s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibD4DD830672B96F31E6DAE87A761D4750s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibD4DD830672B96F31E6DAE87A761D4750s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibA376C5F5BAB0FBC5ACF33A766B6055A5s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib7F1AFD3816027CA7BD6B3FA4D51513E3s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib7F1AFD3816027CA7BD6B3FA4D51513E3s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibAE9B9C00669DAE71004F7850043D179Ds1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibE4B3A9CC5D961AB5411E121E531BA532s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibE4B3A9CC5D961AB5411E121E531BA532s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib529AAAA5027291DD91C4B5AFA53DFBBBs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib535114231371D6E86F6307F9F1FBE61Bs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib535114231371D6E86F6307F9F1FBE61Bs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib059F3285747F013D078F1928B72A9086s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib5A6B56401561DBD489C97B28198B26B9s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib5A6B56401561DBD489C97B28198B26B9s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib5A6B56401561DBD489C97B28198B26B9s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibD829C17618A59F7FDAD0216B5E57FC20s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib36597F389B64990B0C7B4769CDC78E66s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib9DA344F4D2C349B51B5FE9738C877C7Cs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib9DA344F4D2C349B51B5FE9738C877C7Cs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib9DA344F4D2C349B51B5FE9738C877C7Cs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib6DA38A9EEC5BD834821B852D2906673Cs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibB26437797925DC3091CCEF945EF3FCDCs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibB26437797925DC3091CCEF945EF3FCDCs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibDAC5467D0D85D2123E6E0893FCA10A07s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibDAC5467D0D85D2123E6E0893FCA10A07s1

S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623 19

[43] A. Hatcher, Algebraic Topology, Cambridge UP, Cambridge, 2002.

[44] L. Huettenberger, C. Heine, C. Garth, Decomposition and simplification of multivariate data using Pareto sets, IEEE Trans. Vis. Comput. Graph. 20 (12)
(2014) 2684-2693.

[45] F. luricich, S. Scaramuccia, C. Landi, L. De Floriani, A discrete Morse-based approach to multivariate data analysis, in: SIGGRAPH ASIA 2016 Symposium
on Visualization, Dec. 1-8, 2016.

[46] H. King, K. Knudson, N. Mramor, Generating discrete Morse functions from point data, Exp. Math. 14 (4) (2005) 435-444.

[47] K.P. Knudson, A refinement of multi-dimensional persistence, Homol. Homotopy Appl. 10 (1) (2008) 259-281.

[48] C. Landi, S. Scaramuccia, Persistence-perfect discrete gradient vector fields and multi-parameter persistence, arXiv:1904.05081, 2019.

[49] M. Lesnick, M. Wright, Interactive visualization of 2-D persistence modules, arXiv:1512.00180, Dec. 2015, pp. 1-75.

[50] N. Milosavljevi¢, D. Morozov, P. Skraba, Zigzag persistent homology in matrix multiplication time, in: Proceedinggs of 27th Annual Symposium of
Computational Geometry, SoCG '11, ACM, New York, NY, USA, 2011, pp. 216-225.

[51] K. Mischaikow, V. Nanda, Morse theory for filtrations and efficient computation of persistent homology, Discrete Comput. Geom. 50 (2) (2013) 330-353.

[52] M. Mrozek, B. Batko, Coreduction homology algorithm, Discrete Comput. Geom. 41 (1) (2009) 96-118.

[53] M. Mrozek, P. Pilarczyk, N. Zelazna, Homology algorithm based on acyclic subspace, Comput. Math. Appl. 55 (11) (jun 2008) 2395-2412.

[54] M. Mrozek, T. Wanner, Coreduction homology algorithm for inclusions and persistent homology, Comput. Math. Appl. 60 (10) (2010) 2812-2833.

[55] J.R. Munkres, Elements of Algebraic Topology, Perseus Books, 1984.

[56] O. Gafvert, TopCat: a Java library for computing invariants on multidimensional persistence modules, 2016.

[57] V. Robins, P.J. Wood, A.P. Sheppard, Theory and algorithms for constructing discrete Morse complexes from grayscale digital images, IEEE Trans. Pattern
Anal. Mach. Intell. 33 (8) (2011) 1646-1658.

[58] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, The Princeton shape benchmark, in: Shape Modeling Applications, 2004, Proceedings, Genova, Italy, 2004,
pp. 167-178.

[59] N. Shivashankar, S. Maadasamy, V. Natarajan, Parallel computation of 2d Morse-Smale complexes, IEEE Trans. Vis. Comput. Graph. 18 (10) (2012)
1757-1770.

[60] N. Shivashankar, V. Natarajan, Parallel computation of 3d Morse-Smale complexes, Comput. Graph. Forum 31 (3) (2012) 965-974.

[61] R. van de Weygaert, G. Vegter, H. Edelsbrunner, B. Jones, P. Pranav, C. Park, W.A. Hellwing, B. Eldering, N. Kruithof, P. Bos,]. Hidding,]. Feldbrugge, E.
ten Have, M. van Engelen, M. Caroli, M. Teillaud, Alpha, Betti and the megaparsec universe: on the topology of the cosmic web, in: M.L. Gavrilova, C.K.
Tan, M.A. Mostafavi (Eds.), Transactions on Computational Science XIV, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 60-101.

[62] K. Weiss, F. luricich, R. Fellegara, L. De Floriani, A primal/dual representation for discrete Morse complexes on tetrahedral meshes, Comput. Graph.
Forum 32 (3) (2013) 361-370.

[63] P. Wu, C. Chen, Y. Wang, S. Zhang, C. Yuan, Z. Qian, D. Metaxas, L. Axel, Optimal topological cycles and their application in cardiac trabeculae restoration,
in: M. Niethammer, M. Styner, S. Aylward, H. Zhu, I. Oguz, P.-T. Yap, D. Shen (Eds.), Information Processing in Medical Imaging, vol. 10265, Springer
International Publishing, Cham, 2017, pp. 80-92.

http://refhub.elsevier.com/S0925-7721(20)30017-1/bib5079121E04027893CED59E1503931315s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib915C172895BEB7AE8B020B463E59EF05s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib915C172895BEB7AE8B020B463E59EF05s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibBF42F451119EF58804849C6801931F73s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibBF42F451119EF58804849C6801931F73s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib9CEBDA6A78B30E6533A9C7622F275BBCs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib813DF48A764A82D4262A6FA2C27886C3s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib066489198A21D2CDDAF2C5F6D22CF0FAs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib95BF97A0FC10D42E687BAF33A9F07144s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibB36383DC470DF393526E4D9B07D41007s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibB36383DC470DF393526E4D9B07D41007s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bibD6D2DB4A1DA5DEEE85D57D060749E930s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib255910E77A296FB51ED6B91710C17BCDs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib21350932CDC2C51F93B901BFA1B816C0s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib79B146BD44442E99B307BD5E57CE0306s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib5DE6B7CEE36F6E6B39355608E616CD6As1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib6DA4030265DD5119B9652AD8F99CCDFAs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib6DA4030265DD5119B9652AD8F99CCDFAs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib98F95EAD8B70103A376F1279361D3222s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib98F95EAD8B70103A376F1279361D3222s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib083F0475DFF25AE5F9951F42F77B2D35s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib083F0475DFF25AE5F9951F42F77B2D35s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib718C6DDC6CDA5310405B3F981049B70Cs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib0602C0571376655779BC1356EB85BCD4s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib0602C0571376655779BC1356EB85BCD4s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib0602C0571376655779BC1356EB85BCD4s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib727C9CD5707A29443F0A241A279E6807s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib727C9CD5707A29443F0A241A279E6807s1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib44678F9AF99064DF8FA290A963F77BEAs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib44678F9AF99064DF8FA290A963F77BEAs1
http://refhub.elsevier.com/S0925-7721(20)30017-1/bib44678F9AF99064DF8FA290A963F77BEAs1

	Computing multiparameter persistent homology through a discrete Morse-based approach
	1 Background
	1.1 Simplicial complexes
	1.2 Persistent homology
	1.3 Multiparameter persistent homology
	1.4 Discrete Morse theory

	2 Related work
	2.1 Computing persistent homology
	2.2 Computing multiparameter persistent homology

	3 Local computation of a discrete gradient over a multiparameter filtration
	3.1 Overview
	3.2 Detailed description
	3.3 Complexity
	3.3.1 Analysis of the auxiliary functions
	3.3.2 Analysis of algorithm ComputeDiscreteGradient

	4 Comparison with the Matching algorithm and proof of correctness
	4.1 Globally computing a discrete gradient for multiparameters
	4.2 Comparison of algorithms Matching and ComputeDiscreteGradient
	4.2.1 Performance comparison
	Simplicial complex representation
	Discrete gradient representation

	4.2.2 Equivalence of the outputs

	5 Computing multiparameter persistence homology
	5.1 Computing the persistence module
	5.2 Computing the persistence space

	6 Concluding remarks
	Acknowledgements
	References

