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Persistent homology allows for tracking topological features, like loops, holes and their 
higher-dimensional analogues, along a single-parameter family of nested shapes. Comput-
ing descriptors for complex data characterized by multiple parameters is becoming a major 
challenging task in several applications, including physics, chemistry, medicine, and geog-
raphy. Multiparameter persistent homology generalizes persistent homology to allow for the 
exploration and analysis of shapes endowed with multiple filtering functions. Still, compu-
tational constraints prevent multiparameter persistent homology to be a feasible tool for 
analyzing large size data sets. We consider discrete Morse theory as a strategy to reduce 
the computation of multiparameter persistent homology by working on a reduced dataset. 
We propose a new preprocessing algorithm, well suited for parallel and distributed imple-
mentations, and we provide the first evaluation of the impact of multiparameter persistent 
homology on computations.

© 2020 Elsevier B.V. All rights reserved.

The increasing amount of data available has led to the development of information handling techniques beyond ma-
chine learning approaches. Topological Data Analysis in particular provides a set of new tools for retrieving, organizing and 
analyzing complex data by focusing on qualitative information about their shape. Recent applications of topological data 
analysis in neuroscience [8,41], image processing [16,1,63] and astrophysics [61], to name a few, have proven its strength 
and versatility.

Homology [43] is one of the most relevant tools used in topology but suffers from the drawback of being scarcely 
descriptive. Persistent homology [32] overcomes this issue by allowing for multiresolution analysis of homology by means 
of filtrations. It is used in data analysis to study the evolution of qualitative features of data and it is appreciated for its 
robustness to noise, and dimension independence.

So far, many optimization methods for computing persistent homology have been proposed. Those more tightly related 
to this work refer to another relevant tool for topological data analysis, namely discrete Morse theory [37]. Discrete Morse 
theory provides an important preprocessing tool for homology computation. By defining a discrete gradient vector field (also 
called discrete gradient) over the input datum, the size of the input space can be reduced to the critical parts, generally few. 
The discrete gradient can also be built so as to preserve the filtration structure, thus enhancing also persistent homology 
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computations via a reduction procedure. Although other persistent homology optimizations outperform this Morse-based 
preprocessing, these no longer apply to the generalization of persistent homology, called multiparameter persistent homology.

Multiparameter persistent homology is an extension of persistent homology motivated by the fact that data analysis and 
comparisons often involve studying properties naturally described by multiple parameters. However, high computational 
costs and scalability problems prevent it to be applicable over large data. A Morse-based preprocessing solution, generalized 
to the multiparameter case, has been proposed in [3,5]. This can have, in theory, a valuable impact on multiparameter 
persistent homology computations. However, that preprocessing still presents limitations in scalability with real data.

In [45] we have proposed the first algorithm capable of computing a discrete gradient on simplicial real-sized mul-
tifiltered shapes and images. We have integrated the discrete gradient into a visualization tool for studying regions of 
correlation in a multifield dataset, i.e., a regular grid with a vector-valued function defined on its vertices. In this work, we 
extend the algorithm presented in [45] to the computation of multiparameter persistent homology. Taking the work by Allili 
et al. [5] as the state-of-the-art for computing a discrete gradient for multiparameter persistent homology computation, our 
contributions consist of:

• a new efficient and parallel algorithm for computing a discrete gradient on multiparameter filtrations;
• a detailed analysis of the algorithm’s complexity and a proof of its equivalence to [5];
• a comparison of complexity and computational performances of our algorithm with respect to [5];
• an evaluation of the advantages of using our algorithm as a preprocessing step for multiparameter persistent homology 

computation.

Our approach is well suited to be used with both simplicial complexes and regular grids and is well suited for a parallel 
implementation. Moreover, we show that the use of the discrete gradient provides an improvement of at least one order of 
magnitude in the computation of multipersistent homology.

The remainder of this paper is organized as follows. In Section 1, we introduce the notions at the basis of our work. 
Related work is reviewed in Section 2. The new preprocessing algorithm is described in Section 3, where we also present 
a detailed complexity analysis. In Section 4, we present the proof of correctness as well as a theoretical and experimental 
comparison of our approach with the one presented by Allili et al. [5]. The results obtained by computing multiparameter 
persistent homology with our approach are discussed in Section 5. Finally, in Section 6, we draw concluding remarks and 
we discuss future developments.

1. Background

In this section, we introduce the notions at the base of our work. After simplicial complexes we discuss homology [43]
and persistent homology [32]. Then, we describe multiparameter persistent homology [18]. We conclude the section by 
discussing discrete Morse theory [37].

1.1. Simplicial complexes

A simplicial complex is a discrete topological structure made of simple elements, called simplices. A k-dimensional simplex
σ , or k-simplex for short, is the convex hull of k ̀ 1 affinely independent points. Often, we will write σ k to indicate a k-
simplex. A face τ of σ is the convex hull of any subset of points generating σ . If the dimensions of τ and σ differ by one 
we call τ a facet of σ . Dually, σ is a coface of τ and a cofacet when the two dimensions differ by one.

A simplicial complex S is a finite collection of simplices such that:

• every face of a simplex in S is also in S ,
• the intersection of any two simplices in S is either empty or a single simplex in S (intersection property).

We will denote by Sk the set of k-simplices in S . An element in S0 is also called a vertex. A simplicial complex S of 
dimension d is a simplicial complex in which the maximum dimension of the simplices of S is d.

1.2. Persistent homology

Homology is a topological invariant used in data analysis to qualitatively describe shapes. The homology of a simplicial 
complex S detects independent k-dimensional cycles of S , i.e., connected components (0-cycles), tunnels (1-cycles), voids 
(2-cycles), and so on. Cycles are formally captured by linear combinations of simplices whose boundary vanishes. In this 
work, we focus on linear combinations over F2, i.e., the field with only the two elements 0 and 1.

The chain complex CpSq “ pC˚pSq, B˚q associated with a simplicial complex S consists of the family C˚pSq “ tCkpSqukPZ
of F2-vector spaces along with the collection of linear maps B˚ “ tBk : CkpSq ÝÑ Ck´1pSqukPZ defined as follows:

• CkpSq is the F2-vector space generated by Sk , and its elements are called k-chains,
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Fig. 1. A filtering function defined on a torus. Dots indicate the presence of a new component (a), new tunnels (b-c), and a new void (d), respectively. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

• Bk is called boundary map and defined by linear extension from the images of each k-simplex τ :

Bkpτ q “
ÿ

σPS

κpτ ,σ qσ ,

with κpτ , σ q “ 1 if and only if σ is a facet of τ . Elements in the kernel of Bk are called k-cycles, while elements in the 
image of Bk`1 are called k-boundaries. The k-homology of a simplicial complex S is defined as the quotient vector space of 
k-cycles over k-boundaries:

HkpSq “ ker Bk
L

im Bk`1.

Persistent homology describes the homological changes occurring along an increasing sequence of simplicial complexes, 
called a filtration. We consider R with its usual order, and we call its elements grades. A filtration S of a simplicial complex 
S is a finite collection of simplicial subcomplexes Su in S , indexed by u P R, such that for all grades u ď v , Su is a simplicial 
subcomplex in S v . Here, we are interested in filtrations derived by the sublevel sets of functions defined on S: a filtering 
function is a function f : S ÝÑ R such that, if σ is a face of τ , then f pσ q ď f pτ q.

Given a filtering function f , Sp f q defined by setting Su “ tσ P S| f pσ q ď uu is a filtration of S . For each pair of grades 
u ď v of the filtration Sp f q, we have that Sup f q is closed in S v p f q. This means that for all τ P Sup f q, if condition κpτ , σ q ‰
0 holds for some σ P S v p f q, then σ P Sup f q.

In Fig. 1 we show a torus filtered by using the height function as filtering function. Each image illustrates a change 
in the homology of the sublevel sets. In Fig. 1(a) a new component is introduced. Two loops are created, in Fig. 1(b) 
and (c), respectively. A void is created in Fig. 1(d). For each homology class, we have a representative k-cycle appearing 
in the filtration. The marked blue dot is the representative 0-cycle for the new component. The two green 1-cycles are 
representative for the two tunnels. The set of triangles forming the entire torus surface corresponds to a 2-cycle.

The inclusion of simplicial complexes in a filtration preserves cycles and boundaries, that is, for all grades u ď v , there 
exists a linear map ιu,v

k : HkpSuq ÝÑ HkpS v q induced at homology level, not necessarily injective, since cycles can possibly 
become boundaries by adding cells.

The persistent kth-homology relative to the grades u ď v is the image of ιu,v
k as a subspace in HkpS v q, that is the space 

of all the homology classes of HkpSuq which persist in HkpS v q. The global persistent homology information, for all possible 
grades u ď v , is encoded in the persistence module.

The kth persistence module HkpSq of the filtered complex S consists of:

• the collection of F2-vector spaces HkpSuq varying the grade u P R,
• the collection of all inclusion-induced linear maps ιu,v

k : HkpSuq ÝÑ HkpS v q, varying the pairs of grades satisfying u ď v
in R.

In this work, we are interested in a generalization of persistent homology obtained by considering multiple filtrations at 
once. Such tool is called multiparameter persistent homology. So, from now on, we refer to classic persistent homology as 
one-parameter persistent homology.

1.3. Multiparameter persistent homology

Multiparameter persistent homology analyzes the changes in homology for a multiparameter filtration (or multifiltration, 
for short). Instead of a total order on R, we consider a partial ordered set pRn, ĺq such that, for any u “ pu1, . . . , unq, v “
pv1, . . . , vnq P Rn , u ĺ v if and only if ui ď vi , for all i P t1, . . . , nu. We call grades the elements of the partial order set. If 
u ĺ v and u ‰ v , we write u ň v for short.

A multiparameter filtration S of a simplicial complex S is a finite collection of simplicial subcomplexes Su indexed by 
u P Rn such that, for all grades u ĺ v , Su is a simplicial subcomplex in S v . Multiparameter filtrations can be induced by 
vector-valued functions. Any function f : S ÝÑ Rn satisfying f pσ q ĺ f pτ q, for all faces σ of τ , induces a multifiltration 
Sp f q by setting Su as the set of all simplices σ satisfying f pσ q ĺ u. In this case, f is called a (multi)filtering function on S , 
and Su is called the sublevel set with respect to the (multi)grade u.
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Fig. 2. (a) A bifiltration of a 2-dimensional simplicial complex. (b) A representation of the corresponding persistence module in degree 0 (connected 
components). For each F2-vector space in the persistence module, the corresponding reference basis is made explicit, e.g., ā is the homology class of the 
vertex a. Each matrix expresses the linear maps with respect to such bases.

Given a multiparameter filtration of a simplicial complex S , homology construction Hkp¨q can be applied to each sublevel 
set in the multifiltration. Each inclusion Su Ď S v between multifiltration sublevel sets induces a linear map ιu,v

k : HkpSuq ÝÑ

HkpS v q.
A homology class is persistent from grade u to grade v if it is not trivial in HkpSuq and still non-trivial in HkpS v q. For each 

homology degree k, the kth persistence module of a multifiltration of S is the family of vector spaces HkpSuq with u P Rn

along with all linear maps ιu,v
k with u ĺ v . In Fig. 2(b), we show the persistence module associated with the bifiltration 

depicted in Fig. 2(a).

1.4. Discrete Morse theory

The algorithm we propose retrieves a combinatorial object, called a discrete gradient, compatible with the multiparameter 
filtration over a simplicial complex S . The relevance of this output has to be considered within the framework of Forman’s 
discrete Morse theory [37]. A (discrete) vector is a pair of simplices pσ , τ q such that σ is a facet of τ . A discrete vector field is 
any collection of vectors V such that each simplex is a component of at most one vector in V . A V -path is a sequence of 
vectors pσi, τiq belonging to V , for i “ 0, . . . , r, such that, for all indexes 0 ď i ď r ´ 1, σi`1 is a facet of τi and σi ‰ σi`1. 
A V -path is said to be closed if σ0 “ σr , and trivial, if r “ 0. A discrete vector field V is a discrete gradient if all of its closed 
V -paths are trivial. Simplices that do not belong to any vector are said to be critical. Given a discrete gradient V , a separatrix
from a critical cell τ k`1 to a critical cell σ k is a V -path from any facet of τ k`1 to any cofacet of σ k .

There are many ways to construct a discrete gradient on a simplicial complex. In this work, we are interested in a 
specific class of discrete gradients, those consistent with a multiparameter filtration. Given a multifiltration S of a simplicial 
complex S , a discrete gradient V over S is called compatible with S if, for each pσ , τ q P V and each filtration grade u P Rn , 
it holds that

σ P Su
ñ τ P Su

A discrete gradient implicitly represents a cell complex called a Morse complex, and generated by navigating the gradient 
V -paths. The cells of a Morse complex M of V are in one-to-one correspondence with the critical simplices of V . For 
any two critical simplices, the incidence between the corresponding cells in M is defined based on the following incidence 
function: given σ , τ in M , κMpσ , τ q “ 1 if and only if the number of separatrices from σ to τ is odd and κM pσ , τ q “ 0
otherwise. Analogously to the simplicial case, κM allows us to define a boundary map and, hence, the homology of the 
Morse complex.

Theorem 4.3 in [51] proves that, for one-parameter filtrations, the persistent homology of the Morse complex of V
is equivalent to that of the original simplicial complex. Corollary 3.2 in [3] proves the same result for multiparameter 
filtrations. From a computational point of view, a key advantage is the size of M with respect to S: M contains fewer cells 
than S , making the computation of the persistence module faster.

2. Related work

In this section, we review related work on the computation of both persistent and multipersistent homology.

2.1. Computing persistent homology

In the one-parameter case, computing the persistence module of a complex, consists of reducing the boundary matrix of 
the complex [32]. The standard algorithm by Edelsbrunner et al. [32] has a cubic time complexity in the worst case but 



S. Scaramuccia et al. / Comput. Geom. 89 (2020) 101623 5
new approaches have been studied, with an improved efficiency. We classify such approaches into three groups: integrated 
optimizations, annotation-based, and preprocessing algorithms.

Integrated optimizations aim at improving the efficiency of the standard approach by either reducing the number of steps 
required for matrix reduction, or by progressively removing columns during computation. Examples of approaches based on 
integrated optimizations are: the twist algorithm [23], the row algorithm [24], the approach based on sparsity presented in 
[50], the one based on spectral sequences [30], and the chunk algorithm [7].

Annotation-based algorithms take advantage of an efficient data structure, the annotation matrix, to compute the persistent 
co-homology of a complex. An annotation [13] is a map that assigns a binary vector to each simplex of a simplicial complex. 
Each annotation provides the coordinate vectors that are used to efficiently identify the homology classes. The notion of 
annotation was originally introduced in [13] for computing localized homology. In [25,12] the approach has been adapted 
and improved for persistent homology computation.

Preprocessing algorithms reduce the size of the input filtration while preserving its persistent homology. In [28], 
homology-preserving techniques, such as reductions, coreductions [52,54,27] and acyclic subspaces [53], are adapted to 
the case of persistent homology. Approaches rooted in discrete Morse Theory [37] compute a discrete gradient V compati-
ble with the input filtration. The theoretical results in [51] guarantee that the Morse complex constructed from V has the 
same persistence module as the input complex. Many algorithms have been developed for computing a discrete gradient 
from a function sampled at the vertices of a cell complex. The algorithm described in [46] is the first one to introduce 
a divide-and-conquer approach for computing a Forman gradient on real data. However, it suffers from the drawback of 
introducing many spurious critical simplices. Two parallel approaches have been defined in [59,60] for 2D and 3D images, 
respectively. They provide a substantial speedup in computing the discrete gradient, but they still create spurious critical 
simplices. In [57], a dimension-agnostic algorithm is proposed that processes each vertex locally. It has been proved that, 
up to the 3D case, the critical cells identified are in one-to-one correspondence with the topological changes in the sub-
level sets, i.e. no spurious critical simplices are created. An efficient implementation of [57] on regular grids is discussed in 
[42]. Similar approaches have been developed for triangle [36] and tetrahedral meshes [62], and for dimension independent 
simplicial complexes [38].

2.2. Computing multiparameter persistent homology

The first issue when computing multiparameter persistent homology is that no complete descriptor exists for the per-
sistence module [18]. The first algorithm for retrieving the persistence module is proposed in [17], where the three tasks 
of computing the k-boundaries, k-cycles and their quotients at each multigrade u are translated into submodule membership 
problems in computational commutative algebra. The algorithm introduces an artifact dependency on the chosen basis, and 
has a time complexity of O p|S|4n3q, where |S| is the number of simplices in the complex and n is the number of inde-
pendent parameters in the multifiltration. The algorithm in [40] acts on the multifiltration at the chain level rather than at 
homology level. First, k-cycles and k-boundaries are expressed in terms of the same basis. Then, the Smith Normal Form 
reduction [55,2] is applied at each multigrade u in the multifiltration leading to a worst time complexity of O p|S|3μ̄nq, with 
μ̄ :“ maxi“0,...,n μi , where μi is the number of multigrades in the multifiltration along the ith-axis. The algorithm has been 
implemented in the Topcat library [56]. Recently, a new algorithm based on a generalized matrix reduction technique has 
been published on Arxiv [26] with a worst-case time complexity of O p|S|4q in the 2-parameter case.

An alternative to the persistence module is computing invariants providing partial information. A non-complete descrip-
tor for multiparameter persistent homology is the rank invariant, introduced in [18]. For each pair of multigrades u ĺ v
the rank invariant is the rank of the corresponding inclusion-induced map, which is the number of homology classes from 
multigrade u still persistent at multigrade v . The rank invariant value over a single pair pu, vq can be easily derived from 
the persistence module representation. However, computing the full rank invariant means computing its value for each pos-
sible pair of multigrades pu, vq satisfying u ĺ v , which is 1

2 μ2, where μ is the cardinality of all multigrades considered in 
the multifiltration (typically very large).

The persistence space [21,22] is equivalent to the rank invariant but it avoids computing the persistence module. The per-
sistence space can be computed based on the foliation method [10]. With such approach, the persistence space is constructed 
incrementally by slicing the space of the input multiparameter filtrations and by constructing a number of one-parameter 
filtrations on which classic persistence homology is computed. The persistence pairs obtained on each slice form the per-
sistence space. The first approach for computing the persistence space has been limited to the case of 0th-homology [10]. 
An approximate version of the persistence space is proposed in [9] for two-parameter filtrations, also called bifiltrations: 
a selection of slices is performed to guarantee a fixed tolerance for the matching distance [14] among persistence spaces. 
This method has found applications in shape comparison in the PHOG library [11], where the authors use the approximate 
persistence space to deal with photometric attributes of a 3D shape.

Limitedly to bifiltrations, a visualization tool for the persistence space is RIVET [49]. RIVET uses bigraded Betti num-
bers [47,34] to locate multigrades where homology classes born or die. This procedure requires time O pμ3λq, where λ
is the product of λxλy with λx and λy the number of x- and y-coordinates of such multigrades. RIVET computes an ar-
rangement of lines such that all the filtrations within the same cell of the arrangement, have the same barcode template. A 
barcode template is constructed in O pμ3λ ̀ pμ ̀ log λqλ2q time.
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Fig. 3. (a) A multiparameter filtration pS, f q where S is a triangle mesh. (b) Value of the indexing I for each simplex of S . (c) Within the index-based lower 
star of LowI p3q, simplices are subdivided and paired based on their value of f . (d) The final discrete gradient V .

Most optimization methods developed for classic persistent homology have not yet found a counterpart in the multi-
parameter case. Limitedly to the study of 0th-homology the algorithm proposed in [20] is the first approach capable of 
reducing the size of an input complex S without affecting its persistence module.

The approach proposed in [3] can be seen as a Morse-based method generalizing to the multiparameter case the one 
proposed in [46]. The algorithm computes a discrete gradient field having the same persistence module as the input com-
plex. Like its one-parameter counterpart [46], it suffers from introducing many spurious critical simplices. In a successive 
paper by Allili et al. [5], authors propose to construct the discrete gradient locally inside the lower star of the simplices of 
S . The resulting discrete gradient is proven to induce a Morse complex with the same persistence module as the original 
multifiltration. However, the algorithm requires a global ordering of all the simplices of S and does not scale well with the 
size of the data. In Section 4, we will discuss this issue further when analyzing our approach.

A new reduction algorithm has been proposed by Fugacci et al. [39] inspired by the chunk algorithm [7]. The latter works 
on a matrix-based representation of the simplicial complex S called boundary matrix. Each column of the boundary matrix
represents a simplex σ in S by storing the facets of σ . The method in [39] and the Morse-based approach discussed in this 
paper have been experimentally compared showing that the one in [39] is an order of magnitude faster than ours on triangle 
meshes. On the other hand, the Morse-based approach has other valuable characteristics. Above all, with the Morse-based 
approach, we are able to maintain a complete mapping between the original simplicial complex and the obtained Morse 
complex. This means that, once we have computed multiparameter persistent homology on the Morse complex, we are able 
to project back the results on the simplicial complex for studying, for example, the distribution of the critical simplices on 
the original complex.

3. Local computation of a discrete gradient over a multiparameter filtration

In this section, we present a new algorithm for computing a discrete gradient vector field compatible with a multipa-
rameter filtration. To make the exposition easier, we describe the algorithm by focusing on simplicial complexes, although 
the approach is valid for any cell complex satisfying the intersection property, such as cubical complexes.

In Section 3.1 we provide a high-level description of the algorithm workflow. A detailed description of the auxiliary 
functions is given in Section 3.2, while in Section 3.3 we discuss the algorithm complexity.

3.1. Overview

The proposed algorithm receives a multiparameter filtration as input and produces a compatible discrete gradient. In the 
following, we describe the input multiparameter filtration as a pair pS, f q, where S is a d-dimensional simplicial complex 
and f : S0 ÝÑ Rn is a vector-valued function defined on the vertices of S . We indicate with f ipvq the i-th component of 
the vector associated with a vertex v . f i is extended to any simplex σ of S by f ipσ q “ maxvPσ f ipvq, for each 0 ď i ď n, 
and induces the multifiltration that we denote as Sp f q, as described in Section 1.3.

Without loss of generality, we require function f to be component-wise injective on the vertices, i.e., it is injective on 
the vertices for each component. In applications, any function can be transformed into a component-wise injective one by 
means of simulation of simplicity [33]. The output of the algorithm is a pair pV , Mq, where V is the set of paired simplices 
of S and M is the set of the critical (unpaired) simplices. When proving correctness, we will show that V is a discrete 
gradient compatible with the filtration, and that M contains the cells of its Morse complex.

The main strategy of the algorithm consists of decomposing S according to an indexing I defined on its vertices. The 
use of I allows partitioning S into disjoint sets and then run the pairing algorithm in parallel on each set. In this way we 
avoid the global ordering used in the algorithm by Allili et al. [5]. A full comparison of the two approaches is provided in 
Section 4. Notice that the final result is independent of the choice of I (Lemma 2 in Section 4).

The algorithm consists of three main steps: vertex-based decomposition, multigrade grouping, and pairing. A running exam-
ple is depicted in Fig. 3.

In the first step we decompose S to obtain a partition of the simplices in S . In this step, we only require that simplices 
belonging to the same multigrade also belong to the same group in the decomposition. This is performed by algorithm
ComputeDiscreteGradient (Algorithm 1) as follows:
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Algorithm 1 ComputeDiscreteGradient(S, f ).
Input: S , a simplicial complex; f : S0 ÝÑ Rn , a component-wise injective function;
Output: V , list of simplices pairs; M , list of critical simplices;
1: define V and M as two empty lists
2: I Ð ComputeIndexingpS0, f q

3: for all v in S0 do
4: LI Ð ComputeIndexLowerStar pv, I, Sq

5: for all Lu in SplitIndexLowerStarp f , LI q do
6: pV u , Muq Ð HomotopyExpansionpS, I, Luq

7: add V u to V
8: add Mu to M
9: return pV , Mq

• an indexing I : S0 ÝÑ R is computed for the vertices of S (line 2). The indexing is extended to the other simplices 
σ P S by setting Ipσ q :“ maxvPσ Ipvq. The indexing used must be well-extensible, i.e., I must satisfy, for all simplices 
σ , τ P S , the following property:

f pσ q ĺ f pτ q ñ Ipσ q ď Ipτ q. (1)

• S is subdivided into lower stars according to I (line 4). We recall that the star of a simplex σ , denoted by Starpσ q, 
is the set of its cofaces. Then, the index-based lower star of a simplex σ , denoted as LowI pσ q, is the set of its cofaces 
having a value of I lower or equal to σ . Formally,

LowI pσ q :“ tτ P Starpσ q | Ipτ q ď Ipσ qu.

In Fig. 3(b) we indicate for each simplex the corresponding value of I . The well-extensible indexing I and the index-based 
lower star Low I satisfy two fundamental properties:

• each simplex σ belongs to the index-based lower star of exactly one vertex (see Lemma 1 in Section 4);
• if two simplices have the same value of f , then they belong to the index-based lower star of the same vertex (see 

Lemma 2 in Section 4).

As a consequence, a well-extensible indexing and the index-based lower stars implicitly provide a partition of S . Thanks 
to these properties we can guarantee that, by processing the vertices independently, we are identifying valid pairings (see 
Section 4 for a formal proof).

The second step requires grouping the simplices in the set LI “ LowI pvq, with v P S0, having the same multigrade (line 
5). The latter is performed by SplitIndexLowerStar, which organizes the simplices in a collection of sets, where each 
set Lu contains simplices with the same multigrade u, i.e., Lu “ tσ P LowI pvq| f pσ q “ uu, u P Rn . In Fig. 3(c), simplices 
belonging to the index based lower star LowI p3q are partitioned based on their value of f .

In the third step (line 6), each level set Lu is independently processed by HomotopyExpansion and the gradient pairs 
are computed. Paired and critical simplices found in the level set Lu will contribute to the final discrete gradient. Fig. 3(d) 
shows the final discrete gradient V computed by our algorithm on the multiparameter filtration depicted in Fig. 3(a). Since 
simplices are subdivided based on their multigrade, each simplex in S appears in exactly one level set and it will be 
classified, as either paired or critical, only once. This makes the approach easy to parallelize.

3.2. Detailed description

This section provides additional information about the auxiliary functions used in Algorithm 1.
ComputeIndexing computes a well-extensible indexing on the vertices of S . There are many ways to obtain a well-

extensible indexing I , here we have chosen to sort all the vertices of S according to the values of the first component of 
f . The total order obtained naturally generates an indexing which is guaranteed to be well-extensible, since, for each pair 
of simplices σ and τ , f pσ q ĺ f pτ q implies f1pσ q ĺ f1pτ q. Thus, a vertex v P τ exists such that f1pvq ě f1pwq for every 
vertex w P σ . This implies Ipvq ě Ipwq, for every vertex w P σ and we conclude that Ipσ q ď Ipτ q.

ComputeIndexLowerStar computes the index-based lower star LowI pvq of a vertex v with respect to indexing I . 
For each vertex v P S0, the function extracts the set of simplices of LowI pvq incident into v . To do so, we assume that 
each k-simplex σ is represented by the list of its k ̀ 1 vertices rv0, v1, . . . , vks stored in decreasing order of I , i.e., Ipv0q ą
Ipv1q ą ¨ ¨ ¨ ą Ipvkq. Thus, it is sufficient to collect those simplices whose first vertex is v .

Each index-based lower star LowI pvq is then partitioned into level sets by SplitIndexLowerStar according to multi-
grades. This function creates an associative array, by cycling on the simplices of LowI pvq, that maps each multigrade u
(represented as a vector of floats) to the set of simplices sharing the same multigrade.

Function HomotopyExpansion classifies simplices with the same multigrade. We present its pseudocode in Algo-
rithm 2. The algorithm extends the one in [57]. A k-simplex σ and a pk ̀ 1q-simplex τ are considered pairable only when 
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Algorithm 2 HomotopyExpansion(S, I, Lu).

Input: S , a simplicial complex; I , a well-extensible indexing; Lu , a list of cells in S forming a level set u w.r.t. f ;
Output: V u , list of discrete vectors; Mu , list of critical simplices;
1: define V u and Mu two empty lists
2: define Ord0 and Ord1 two empty ordered sets
3: define declared an array of length |Lu| with Boolean values equal to false
4: for all τ in Lu do
5: if num_undeclared_facets(τ , Lu )“ 0 then
6: insert(τ ,Ord0,I)
7: else if num_undeclared_facets(τ , Lu )“ 1 then
8: insert(τ ,Ord1,I)
9: while Ord1‰ H or Ord0‰ H do

10: while Ord1‰ H do
11: τ Ð delete(Ord1)
12: if num_undeclared_facets(τ , Lu )“ 0 then
13: insert(τ ,Ord0,I)
14: else
15: ρ Ð unpaired_facet(τ , Lu )
16: append(pρ, τ q,V u )
17: declaredrρs Ðtrue , declaredrτ s Ðtrue
18: add_cofacets(ρ ,Lu ,I ,Ord1)
19: add_cofacets(τ , Lu ,I ,Ord1)
20: if Ord0‰ H then
21: τ Ð delete(Ord0)
22: append(τ ,Mu )
23: declaredrτ s Ð true
24: add_cofacets(τ , Lu ,I ,Ord1)
25: return pV u , Muq

σ is the only unclassified facet of τ . The main objective of HomotopyExpansion is that of pairing as many simplices as 
possible and to classify them as critical only when no pairable simplices are available.

Two ordered sets Ord0 and Ord1 are used to keep track of those simplices that have exactly zero unpaired facets 
and one unpaired facet, respectively. Intuitively, simplices in Ord0 are candidates to be classified as critical or as tails 
of arrows in the discrete vector, since they have no face to be paired with. Simplices in Ord1 are the candidates to be 
heads of arrows in a discrete vector. Within the two sets Ord0 and Ord1, a simplex σ is represented by the sequence, in 
decreasing order, of the values of I on its vertices. The two sets are organized based on the lexicographic ordering of such 
sequences. Auxiliary function insert is used to compute the corresponding sequence for any simplex σ and to insert σ
in a set. Auxiliary function delete is used to extract the first simplex σ in the set, according to the lexycographic order. 
The two sets are initialized by cycling on the simplices in the input set (lines 4 to 8 of Algorithm 2). Auxiliary function
num_undeclared_facets is used to count the number of unclassified facets for each simplex. Array declared keeps 
track of the simplices already classified (i.e., either paired or declared critical). At the beginning, all entries of declared
are set to false.

Simplices are classified within the two nested while loops (lines 9 to 24). If Ord1 is not empty, we extract the first 
simplex τ in Ord1 and we verify if the number of unclassified facets of τ has not changed (line 12). Notice that the 
number of unpaired facets can only decrease. If this number is now zero (i.e., its facet has been classified), we insert τ
into Ord0. Otherwise, we retrieve its unique unclassified facet σ (line 15), we use function append to add (σ ,τ ) to the 
set of pairs V u , and we update the array declared accordingly. After classifying σ and τ , add_cofacets adds all their 
unclassified cofacets to either Ord1 or Ord0, if they have one or zero unclassified facets, respectively (lines 18 and 19).

When no pairable simplex is available (i.e., Ord1 is empty) the first simplex σ in Ord0 is extracted and declared critical 
by adding σ to the set of critical simplices Mu (lines 21 to 23). Each cofacet of σ is added to Ord1 if it has exactly one 
unclassified facet. The algorithm terminates when both lists are empty.

3.3. Complexity

In this section, we discuss the computational complexity of ComputeDiscreteGradient and its auxiliary functions. 
The parameters involved in the analysis are expressed in terms of cardinality | ̈ | of sets. We indicate with Starpσ q the star 
of a simplex σ P S , and simply with Star any star with maximal cardinality in the simplicial complex S . Notice that, in a 
d-dimensional simplicial complex, | Star | is not bounded from above by a constant and is possibly as large as |S|, this is not 
the case for more regular cell complexes like, for example, cubical complexes.

To simplify the runtime analysis and the exposition we make a few assumptions:

• for each simplex σ P S , we assume Starpσ q to be computed and stored in the data structure encoding S . Computing 
Starpσ q on the fly would require O p| Starpσ q|q time [15].

• Ord0, Ord1 are implemented as balanced binary search trees. Inserting, or removing an element from any such tree 
has a logarithmic cost in its size.
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• For each k-simplex σ P S , f pσ q can be retrieved in O pkq time by retrieving the filtration values of the vertices of σ . 
We will overestimate k by considering the dimension d of the simplicial complex S .

These assumptions are consistent with the implementation of ComputeDiscreteGradient used in our experimental 
evaluation (see Section 4.2.1).

3.3.1. Analysis of the auxiliary functions
Here, we present the time and storage costs of the auxiliary functions introduced in Section 3.2.
For creating the well-extensible indexing with ComputeIndexing we sort the vertices according to a single component 

of the input function. This requires O p|S0| log |S0|q time and O p|S0|q extra space for storing the new sorted list of vertices, 
where S0 is the set of vertices of S .

The lower star of each vertex v is extracted by ComputeIndexLowerStar. The lower star of a vertex is extracted 
from the precomputed star Starpvq by selecting those simplices having v as the first vertex. This requires O p| Starpvq|q time.

Once a lower star is extracted, the level sets are created by means of SplitIndexLowerStar. Given a simplex σ , 
computing the value of each component by f ipσ q “ maxvPσ f ipvq takes linear time in the number of vertices of σ . Then, 
the filtration value of σ is computed in O pdnq time, by overestimating the dimension of σ with the dimension d of the 
complex S . Searching for the set of simplices associated with a specific level set takes at most O plog | LowI pvq|q time. Thus, 
the overall time complexity of SplitIndexLowerStar is CL S pvq “ O p| LowI pvq|pdn ̀ log | LowI pvq|qq.

In the third step, HomotopyExpansion classifies the simplices in each level set Lu . For each simplex σ in Lu , num_un-
declared_facets requires visiting its facets whose number is limited from above by a constant and inserting each 
simplex in the set requires O plog |Lu|q time. Then, preparing Ord1 and Ord0 requires O p|Lu| log |Lu |q time.

Within the two while loops, each simplex is added to a list at most once and it is also classified once. Then, for each 
simplex σ :

• retrieving its facets (num_undeclared_facets or unpaired_facets) requires a constant number of operations,
• retrieving its cofacets (add_cofacets) takes at most O p|Lu|q time as the number of cofacets is not limited from 

above by any constant number,
• adding the simplex σ to Lu takes O plog |Lu|q time.

Overall the time complexity of HomotopyExpansion is C H E pLuq “ O p|Lu |2 ` 2|Lu | logp|Lu |qq “ O p|Lu |2q.

3.3.2. Analysis of algorithm ComputeDiscreteGradient
By analyzing the complexity of all auxiliary functions we obtain a worst-case time complexity for algorithm Compute-

DiscreteGradient of:

O

¨

˝|S0| log |S0| `
ÿ

vPS0

¨

˝| Starpvq| ` CL S pvq `
ÿ

LuĎLowI pvq

C H E pLuq

˛

‚

˛

‚ .

In the internal summation, Lu can be as large as the entire index-based lower star. Thus, for any vertex v , we can estimate 
O  

´

ř

LuĎLowI pvq C H E pLuq

¯

“ O p| LowI pvq|2q time. Each k-simplex appears in the star of its k ̀ 1 vertices. Thus, we write 

O  
´

ř

vPS0
| Starpvq|

¯

“ O p|S|pd ̀ 1qq again by overestimating the dimension k of each simplex with the dimension d of the 
complex S .

Each simplex appears in exactly one index-based lower star. Thus, we can estimate the worst-case time complexity 
of SplitIndexLowerStar by O  

´

ř

vPS0
CL S pvq

¯

“ O p|S|pd ̀ logpmaxvPS0 | LowI pvq|qq time. For the same reason, we 

can estimate the worst-case time complexity for HomotopyExpansion by O  
´

ř

vPS0
C H E pvq

¯

“ O pmaxvPS0 | LowI pvq|2q. 
Moreover, we notice that maxvPS0 | LowI pvq| ď | Star |.

Based on these observations we can rewrite the overall worst-case time complexity as

O p|S0| log |S0| ` |S|pd ` | Star |
2
qq.

In general, the cardinality of a vertex star is not bounded from above. In practice its size becomes negligible with 
respect to the total number of simplices in S , i.e., when working with low dimensional simplicial complexes or 2D and 3D 
images. In those cases, we can consider d and | Star | to be constant factors which lead to a worst-case time complexity of 
O p|S0| log |S0| ̀ |S|q.

4. Comparison with the Matching algorithm and proof of correctness

The Matching algorithm introduced by Allili et al. [4] computes a discrete gradient on a multifiltration by using a global 
queue. In this Section, we compare algorithm ComputeDiscreteGradient to algorithm Matching. In Subsection 4.1, 
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we first describe algorithm Matching. In Subsection 4.2, we provide a formal comparison of the two approaches and, in 
Subsection 4.2.2, we prove their equivalence.

4.1. Globally computing a discrete gradient for multiparameters

The Matching algorithm [4,5] acts on a simplicial complex S and a function f : S0 ÝÑ Rn required to be component-
wise injective on vertices, and extended to higher dimensional simplices, as defined in Section 3. The pair pS, f q defines a 
multifiltration of S obtained by sublevel sets. Additionally, the Matching algorithm requires an indexing J on S , i.e., an 
injective map J : S ÝÑ R. The indexing J has to satisfy the following property for every σ ‰ τ P S ,

σ is a face of τ or f pσ q ň f pτ q ñ Jpσ q ă Jpτ q. (2)

That is, J has to be compatible both with the coface partial order among simplices and with the value ordering under f .
The algorithm cycles on all simplices in S relying on a global queue. Simplices are processed according to increasing 

values of J . This makes unfeasible implementing the approach in parallel.
An auxiliary Boolean vector of length |S|, called classified, is initialized with all entries set to false. For each 

simplex σ , algorithm Matching checks whether σ is classified so that only non-classified simplices are processed. We 
denote by P the set of all simplices σ P S , also called primary simplices, that are still unclassified when Matching starts 
processing their lower star. A non-classified simplex σ is passed to an auxiliary function extracting the lower star of σ with 
respect to f

Low f pσ q :“ tτ P Starpσ q | f pτ q ĺ f pσ qu.

Afterwards, HomotopyExpansion (pseudocode reported in Algorithm 2) is run with input pLow f pσ q, Jq and returns a pair 
of lists pV Low f pσ q, MLow f pσ qq. All entries in the auxiliary vector classified corresponding to the simplices in the two lists 
are set to true. The global output is obtained with the independent contributions of all pairs pV Low f pσ q, MLow f pσ qq.

Theorem 9 in [5] proves that the union of all the discrete gradients, computed locally to the lower star Low f pσ q of each 
simplex σ , forms a discrete gradient. Moreover, Proposition 8 in [5] proves that the same gradient is compatible with the 
input multifiltration pS, f q. Specifically, Proposition 15 in [5] directly implies that for primary simplices σ P P , lower stars 
Low f pσ q form a partition of S .

4.2. Comparison of algorithms Matching and ComputeDiscreteGradient

In this section, we compare ComputeDiscreteGradient to Matching from three different standpoints: complexity, 
performance, and quality of output. We recall that P indicates the primary simplices in Matching, i.e., those simplices 
in S that were still unclassified when Matching processed their lower stars. Both ComputeDiscreteGradient and
Matching build a discrete gradient by running HomotopyExpansion on a partition of the input complex S:

• Matching finds the discrete gradient over each lower star Low f pσ q with σ a primary simplex of P ,
• ComputeDiscreteGradient finds the discrete gradient independently over each level set Lu in a index-based lower 

star LowI pvq with v P S0.

The two algorithms differ in the number of stars they compute and visit. ComputeDiscreteGradient computes a lower 
star for each vertex in the input complex. This means that, in our case, the exact number of stars visited by ComputeIn-
dexLowerStar is |S0|.

On the contrary, Matching computes a lower star for each primary simplex in P . In the best case, the primary simplices 
P are exactly the vertices of S , i.e., |P | “ |S0|. Then, the two algorithms compute the same number of lower stars. In the 
worst case, the number of primary simplices |P | is equal to the total number of simplices |S|, which greatly affects the 
performances of Matching, as shown in Subsection 4.2.1.

4.2.1. Performance comparison
We recall that the input of both algorithms is described as a pair pS, f q, where S is a simplicial complex and f :

S0 ÝÑ Rn is a component-wise injective function. Here, we focus on the case where S is a triangle mesh embedded in the 
Euclidean 3D space and f assigns to each vertex its x and y coordinates (i.e., for v “ px, y, zq, f pvq “ px, yq). The algorithm 
in [5] is defined to work in combination with a data structure that encodes all the simplices of a simplicial complex S . This 
approach does not scale well when the size and the dimension of S increase. The only way to guarantee scalability is that 
of encoding S with an indexed-based representation based on its top simplices [38]. For a fair comparison, both algorithms 
have been implemented by using the FG_Multi library [35] which provides a compact encoding for the triangle mesh as well 
as for the discrete gradient.
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Table 1
Datasets used for the experiments. For each of them, we indicate the number of 
independent parameters in the multifiltration (column Parameters), the number of 
simplices in the original dataset (column Original), number of critical simplices re-
trieved by ComputeDiscreteGradient and Macthing (column Critical) and the 
compression factor (column Original/Critical).

Dataset Parameters Simplices Compression factor

Original Critical Original/Critical

Torus 2 1.3M 0.035M 37.9
5.3M 0.11M 45.3
21.5M 0.77M 27.7
2.9M 0.28M 10.2

Sphere 2 11.7M 0.11M 10.2
47.1M 0.46M 10.1
3.8M 0.4M 9.5

Gorilla 2 15.2M 1.6M 9.4
60.9M 6.4M 9.4

Fig. 4. Timings (in seconds) required by ComputeDiscreteGradient (in blue) and Matching (in orange).

Simplicial complex representation A triangle mesh S is a simplicial complex of dimension two formed by vertices, edges, and 
triangles. The FG_Multi library implements an incidence-based data structure for compactly encoding the relations among 
these simplices. Vertices and triangles are the only simplices that are explicitly encoded for a total of |S0| ̀ |S2| entities. 
Each vertex encodes the list of triangles incident in it, while each triangle encodes a reference to its three vertices. Thus, 
since each triangle references three vertices, the triangle-vertex relation costs 3|S2| while encoding also the vertex-triangle 
relation doubles this cost leading to a total of 7|S2| ̀ |S0|. The filtering function f is stored with each vertex encoding a 
vector of floating point values, one value for each component of f .

Discrete gradient representation The discrete gradient V is encoded by adopting the representation described in [36]. The 
latter focuses on encoding all the gradient pairs locally to each triangle. The encoding uses the following rationale. Since 
each triangle can be paired with at most three edges, and each edge can be paired with two vertices, we have 9 possible 
pairs for each triangle. If we consider also the pairs between an edge of σ and an adjacent triangle, we get 12 possible 
gradient pairs and, thus, 212 “ 4096 possible combinations. However, a discrete gradient imposes certain restrictions, i.e., 
each simplex can be involved in at most one pairing. As a consequence, we have only 97 valid cases for a triangle. These 
cases can be encoded using only one byte per triangle and, thus, encoding the gradient only requires |S2| bytes. This 
approach has been generalized to tetrahedral meshes [62] and to d-dimensional simplicial complexes [38].

The datasets used in this comparison are originated by three triangle meshes. The experiments have been performed on 
a dual Intel Xeon E5-2630 v4 CPU at 2.20 GHz with 64 GB of RAM. For each mesh, we have produced two refined versions 
at increased resolution by recursively applying Catmull-Clark algorithm [19]. The nine triangle meshes are presented in 
Table 1. Column Original indicates the number of simplices composing the mesh. Column Critical indicates the number of 
unpaired (critical) simplices identified by both reduction approaches, while the resulting compression factor is reported in 
column Original/Critical. Timings are shown in Fig. 4. ComputeDiscreteGradient takes between 0.89 seconds and 4.8 
minutes depending on the dataset and it is generally 7 times faster than our efficient implementation of the Matching
algorithm. Time performances show the practical efficiency of the local approach compared with the global one. As discussed 
in Section 3.3, both algorithms have linear time complexity when the number of simplices within each star is negligible. In 
Fig. 5(left), we show the trends as the number of simplices increases. This confirms that the number of stars to be retrieved 
and visited has a direct consequence on the algorithm performance. In ComputeDiscreteGradient we need to process 
each vertex star only once, while Matching requires processing a star for each grade.
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Fig. 5. On the left, timings (in seconds) required by ComputeDiscreteGradient (in blue) and Matching (orange). On the right, maximum peaks of 
memory (in gigabytes) required by ComputeDiscreteGradient (in blue) and Matching (in orange).

Other than time efficiency, our strategy also requires less memory. In Fig. 5(right), we report the maximum peak of 
memory used by the two algorithms. ComputeDiscreteGradient uses up to 10 gigabytes of memory versus more 
than 20 gigabytes used by Matching. The storage cost difference between the two implementations grows linearly with 
the number of simplices in the datasets. The advantage is due to the different memory consumption at runtime. Specif-
ically, Matching stores a global queue over all the simplices in the dataset and needs to track all classified simplices.
ComputeDiscreteGradient performs these steps over each level set.

4.2.2. Equivalence of the outputs
We now show that ComputeDiscreteGradient and Matching produce the same gradient when the indexing I

used in ComputeDiscreteGradient is well-extensible and the filtering function f is componentwise injective on the 
vertices. These assumptions will be maintained throughout this section. Here, we first state the results required to draw 
such conclusions, while the detailed proofs can be found in Appendix A.

The proof consists of two parts. First, we show that the two algorithms apply HomotopyExpansion to the same 
partition of the input simplicial complex. Then, given for one algorithm any valid order for processing the simplices in
HomotopyExpansion we prove that a valid order for the other algorithm exists such that the two provide the same 
output. We start by proving that the partitioning strategies of ComputeDiscreteGradient and Matching are the 
same. In ComputeDiscreteGradient we partition S according to the level sets Lu of f in LowI pvq, for all vertices v
and grades u. In Matching S is partitioned according to Low f pσ q, with σ varying in the set of primary simplices P , i.e. 
simplices that do not belong to the lower star with respect to f of any other simplex.

We start showing that the partition provided by sets Low f pσ q, with σ in P , is a refinement of the one provided by the 
sets LowI pvq with v P S0.

Lemma 1. For every σ P S, and, hence, in particular for σ P P , there is exactly one vertex v P S0 such that Low f pσ q Ď LowI pvq.

Next, we show that, for every vertex v , any level set Lu of the filtering function f restricted to LowI pvq coincides with 
the lower star Low f pσ q of some primary simplex σ .

Lemma 2. Let Lu be a non-empty level set of f in LowI pvq for some grade u P R and some vertex v P S0 . There exists a unique simplex 
σ P Lu such that Low f pσ q “ Lu . Moreover, σ P P .

Lemmas 1 and 2 allow us to conclude that both ComputeDiscreteGradient and Matching run HomotopyEx-
pansion on the same subsets Lu “ Low f pσ q. Now we need to show that HomotopyExpansion does so by processing 
the simplices of these subsets in the same order.

Proposition 3. For every valid input pS, f q for ComputeDiscreteGradient, there exists an indexing J : S ÝÑ R valid for 
Matching such that the output of MatchingpS, f , Jq and ComputeDiscreteGradientpS, f q coincide.

As a consequence of this result, from the correctness of Matching, we obtain the correctness of ComputeDiscrete-
Gradient.

Corollary 4. Algorithm ComputeDiscreteGradient with input pS, f q returns a discrete gradient compatible with the multifil-
tration induced by f on S.
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Table 2
Timings (in seconds) and storage costs (in gigabytes) for the persistence module retrieval over the original triangulation 
(columns Original) and the corresponding Morse complex (columns Morse). Columns Simplices and Grades report the num-
ber of simplices in the dataset and the number of level sets along each parameter, respectively. Missing entries indicate 
where the Topcat library runs out of memory. Column Time explicits the timings (in seconds) for obtaining the Morse 
complex using ComputeDiscreteGradient.

Dataset Original Morse Time

Simplices Grades Persistence module Critical 
simplices

Grades Persistence module

Time Memory Time Memory

Sphere 38 8 ˆ 8 0.3 0.24 4 5 ˆ 5 0.18 0.1 0.0264
242 42 ˆ 42 4.4 0.86 20 10 ˆ 10 0.28 0.2 0.0244
2882 482 ˆ 482 – – 278 92 ˆ 89 24.3 1.5 0.0473

Torus 96 16 ˆ 16 0.5 0.1 8 9 ˆ 9 0.25 0.2 0.0255
4608 768 ˆ 768 – – 128 65 ˆ 66 7.96 2.4 0.0643
7200 1200 ˆ 1200 – – 156 70 ˆ 80 12.05 3.0 0.0815

We recall from Section 1.4 that a discrete gradient V implicitly represents a Morse complex consisting only of the 
critical simplices of V and with the incidence relations given by the separatrices originating and having destination in a 
pair of critical simplices. Then, we have proved that our algorithm implicitly computes a Morse complex that has the same 
multiparameter persistent homology of the original complex.

5. Computing multiparameter persistence homology

In this section, we evaluate the impact of our algorithm as a preprocessing method for the computation of the persistence 
module (see Subsection 5.1) and of the persistence space (see Subsection 5.2). Before that, we describe how to compute the 
Morse complex represented by the discrete gradient.

Computing the Morse complex We process all the critical simplices of V and, for each critical simplex σ of dimension k, 
a breadth-first traversal is performed as follows. For each pk ́ 1q-simplex τ1, facet of σ , we extract its paired k-simplex 
σ1, if any. We apply the same rationale to σ1 to continue the visit. As soon as we encounter a pk ́ 1q-simplex τ which is 
unpaired (critical), we classify the two simplices σ and τ as mutually incident.

In the worst case, computing the incidences for a single critical simplex of dimension k requires visiting all k-simplices 
multiple times, in the order of O p|Sk|2q, where Sk is the set of k-simplices in S . If the number of critical simplices is of the 
same order as |Sk| the total worst-case complexity would be cubical in the number of simplices. In practical cases, however, 
the extraction of the Morse complex is very efficient as each k-simplex belongs to a very limited set of gradient paths, 
possibly zero.

5.1. Computing the persistence module

The persistence module is computed by means of the open-source library Topcat [56]. Due to its strong limitations in 
terms of time and memory costs, we used simplified datasets for our experiments. We use six triangle meshes of limited 
size, three representing a torus and three representing a sphere. For each mesh, we use a bifiltration defined by the x and y
coordinates of its vertices. Table 2 presents a description of the input datasets. The number of simplices (column Simplices) 
and number of multigrades (column Grades) are reported for each simplicial complex (column Original) and each Morse 
complex (column Morse). Notice that for a Morse complex M , column Critical Simplices indicates the number of critical 
simplices in the discrete gradient V which is also equivalent to the number of cells in the corresponding Morse complex 
M . The Topcat library uses the boundary matrices of the complex to compute the persistence module. Since it was designed 
to accept only multifiltrations defined on simplicial complexes, we have modified the library for working on multifiltrations 
defined over more general cell complexes, like the Morse complex.

We compute the persistence module, for each homology grade, of both the original simplicial complex and the Morse 
complex generated by our algorithm, and we measure time and storage consumption of the Topcat library. We report 
the results obtained in Table 2, columns Time and Memory. These represent the timings (in seconds) and the memory 
(in Gigabytes) required for computing the persistence module. When the Topcat library runs out of memory, no result is 
reported. Where a comparison is possible, computing the persistence module on the Morse complex takes approximately 
half of the time than computing it on the original simplicial complex.

The memory consumption is the main bottleneck of the Topcat library as it is mainly affected by the number of input 
cells and by the number of multigrades. Using the Morse complex helps to deal with this problem by reducing both quan-
tities. In our experiments, all successful executions have used a limited amount of memory, significantly below the machine 
limit of 64 GB. This suggests a dramatic increase in memory usage in the ones where the computations have failed. For 
instance, the failure of the test over the Sphere dataset with 2882 cells and 482 ̂ 482 multifiltration multigrades suggests 
that computing the persistence module on a Morse complex of the same size would fail as well. We should stress the fact 
that the objective of our experiment is that of evaluating the gain in performances when using our reduction approach and 
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Table 3
Timings (in seconds) required for computing the persistence pairs on 100 uniformly sampled slices. Datasets are reported 
by rows. For each triangle mesh, the first row is for the original dataset and the second one for the Morse complex 
considered over the same 100 slices. Column Simplices reports the number of simplices in the multifiltration. Column Pairs
reports the average number of persistence pairs found per slice.

Dataset Simplices Pairs Morse 
time

Line 
extraction

Foliations time

Building 
pers. input

Computing 
persistence

Reindexing 
pers. output

Foliations 
total

Shark 9491 4744 0.11 0.86 9.04 1.91 1.45 12.42
1111 554 1.15 0.21 0.84 2.22

Turtle 10861 5426 0.12 0.63 10.21 2.11 1.53 13.87
1197 594 1.22 0.22 0.84 2.29

Gun 27826 13873 0.28 0.65 27.49 5.65 2.69 35.85
3144 1532 3.18 0.60 0.99 4.77

Piano 119081 59349 1.14 0.85 118.14 26.56 10.33 155.91
10955 5286 11.09 2.26 1.65 15.01

not that of overcoming the limitations of Topcat. Column Morse Time reports the partial timings required for computing the 
Morse complex. These include the contribution of running ComputeDiscreteGradient together with the retrieval of 
the boundary matrix. We point out that the reduction timings, ranging from 0.0244 to 0.0815 seconds, are negligible with 
respect to the time required for computing the persistence module.

5.2. Computing the persistence space

In this subsection, we evaluate the impact of the reduction method on the computation of the persistence space [22].

The foliation method The persistence space of an n-parameter filtration is a subset of Rn ˆ Rn that can be computed via 
the foliation method [10]. This consists of considering all possible lines � in Rn through two grades u ă v . By restricting 
the n-parameter filtration to the grades belonging to �, we obtain a one-parameter filtration, called a slice. On each slice, 
any technique for one-parameter persistent homology computation can be applied to obtain the corresponding persistence 
diagram [29]. A persistence diagram is a representation, on the Cartesian plane, of a one-parameter persistence module. Each 
point in the persistence diagram represents a discontinuity in the rank invariant created by either a new-born or a vanishing 
homology class. The union of the persistence diagrams for all possible lines � mapped back to Rn ˆRn gives the persistence 
space. In practice, it is possible to compute only a sampling of the persistence space by selecting a finite number of lines. 
The number of lines to consider varies based on the application at hand. As a rule of thumb, the more slices we consider, 
the more accurate is the approximation of the resulting persistence space. Next, we describe our implementation of the 
foliation method.

We applied the foliation method on bifiltrations induced by some function f : S Ñ R2. The first step consists in selecting 
ω2 lines � with a non-negative slope in R2. Since each line � with positive slope in R2 is determined by the angle λ of 
the line with the x axis, and a base point b on �, we have selected ω values for both λ and b. Values of λ are uniformly 
taken from interval r0, π2 s. Points b are uniformly taken from the segment whose endpoints are the projections of points 
pc1, C2q and pC1, c2q, with Ci :“ maxxPS f ipxq and ci :“ minxPS f ipxq for i “ 1, 2, onto the bisector of the second and fourth 
quadrant along the direction m “ pcospλq, sinpλqq. For each choice of λ and b, we thus determine the line � passing through 
b with direction m “ pcospλq, sinpλqq. By varying the values of λ and b, we obtained the desired ω2 possible lines. The 
second step creates a new one-parameter filtration on S for each line �. If � has parameters λ, b, for each simplex σ P S , 
the grade of σ in the new filtration is given by ��pσ q :“ mini“1,2 mi ¨ maxi“1,2

f ipσ q´bi
mi

. The last step consists of computing 
classic persistent homology for the obtained one-parameter filtration by sublevel sets of �� corresponding to each choice of 
λ and b.

After choosing how to sample slices, the foliation method still requires choosing the number of slices. In what follows, 
we will present results providing insights on both choices, either by varying the number of slices (between 2 and 100), or 
by varying the method for computing persistent homology (taken from the PHAT library [6]).

Here we present results for evaluating the impact of our reduction approach when computing the persistence space by 
using a variable number of slices (between 2 and 100). The meshes considered are from the Princeton Shape Benchmark 
[58]. Table 3 describes the meshes and the results obtained when computing the persistence space by using 100 slices 
and by using the standard algorithm implemented in PHAT [6]. For each mesh reported in Table 3, the first row reports 
data regarding the original mesh, while the second row describes the corresponding Morse complex computed by using 
our reduction method. For each input complex, we show the number of simplices (column Simplices) and the average 
number of persistence pairs found per slice (column Pairs). Timings are reported separately for the computation of the 
Morse complex (column Morse time), for the extraction of slices (column Line Extraction) and for the actual computation 
of the persistence space (column Foliation Time). The latter accounts for the construction of the boundary matrix (column 
Building Pers. input), for the computation of persistent homology (column Computing Persistence), and for reindexing the 
persistence pairs according to the multifiltration (column Reindexing Pers. output). Column Foliation Total shows the sum of 
the partial timings.
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Fig. 6. Time performances (in seconds) plotted with respect to a number of slices varying from 4 to 100 over the same dataset. Datasets considered are 
triangle meshes: (a) Shark and (b) Turtle. In all the figures performances are indicated in blue for the original dataset and in orange for the corresponding 
reduced dataset. On the left we show timings required by the foliation method. On the right, we show timings for computing persistence homology over a 
single slice.

We notice that, by reducing the number of simplices of approximately one order of magnitude, we get a one-order 
reduction on all timings. Looking at column Line Extraction we notice that the time required for extracting the lines is 
almost the same for all the meshes. This happens because we are always considering the same number of slices. For the 
partial timings, the highest contribution is shown in column Building Pers. Input. This is the part where the cells are sorted 
by increasing values under �� and reindexed according to these values. Both this phase and the following one (i.e., the 
actual computation of persistent homology) are affected by the number of input simplices, and the results for the Morse 
complex reflect the one-order reduction in the number of simplices. Results are shown in column Reducing Pers. Output. The 
difference in the results obtained with the original triangle mesh and the corresponding Morse complex suggests that our 
reduction step lets us avoid computation on many spurious persistence pairs. Column Foliation Total indicates timings for 
computing the persistence space as a whole. The total timings required by a Morse complex range from a minimum of 2.22 
seconds (Shark triangle mesh) to a maximum of 15.01 seconds (Piano triangle mesh), whereas, the original datasets require 
from 12.42 (Shark triangle mesh) to 155.91 seconds (Piano triangle mesh).

In Figs. 6 and 7, we compare the time performances of the foliation method when using a number of slices ranging from 
4 to 100. Over each slice, one-parameter persistence is computed by the standard algorithm implemented in PHAT. For each 
dataset, we show, on the left, the global timings for the foliation phase and, on the right, the partial timings required by 
the computation of persistent homology.

Blue lines indicate results obtained for the triangle meshes, green dotted lines present results obtained with the Morse 
complexes accounting for both the reduction algorithm and the foliation step. Orange lines indicate results obtained with 
the Morse complexes exclusively for the foliation phase. As we can see, orange and green lines almost overlap indicating 
that the time used for computing the Morse complex is almost negligible with respect to that required to compute the 
persistence space.

We also notice the linear dependency on the number of slices. For Morse complexes (orange line), the slope coefficient 
is smaller than for the original simplicial complex (blue line). This is more evident for global timings suggesting that a 
preprocessing reduction is preferable independently of the number of slices considered. Notice that, the blue line is below 
the green dashed line only when we are using 4 slices. This is the only case when the preprocessing step could be avoided.

Our tests confirm that the complexity of the foliation method primarily depends on the number of slices considered. Our 
reduction approach impacts the performances by simply reducing the number of cells to be processed. Moreover, our tests 
show that the proposed preprocessing is effective also for a small number of slices.

6. Concluding remarks

We have proposed a new preprocessing algorithm for multiparameter persistent homology suitable for applications to 
large data sets. We have highlighted the local characteristics of our approach as opposed to the global characteristics of the 
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Fig. 7. Time performances (in seconds) plotted with respect to a number of slices varying from 4 to 100 over the same dataset. Datasets considered are 
triangle meshes: (a) Gun and (b) Piano. In all the figures performances are indicated in blue for the original dataset and in orange for the corresponding 
reduced dataset. On the left we show timings required by the foliation method. On the right, we show timings for computing persistence homology over a 
single slice.

equivalent existing approach by Allili et al. [5]. With real data, the use of the Morse complex allowed us to successfully 
compute multiparameter persistent homology. We increased about 50 times the size of the input complex that can be 
managed, and up to about 250 times the size of the filtration that can be treated. Our local preprocessing has shown its 
advantages, especially when computing the persistence space [21] through the foliation method. We found that the Morse 
complex outperforms the corresponding original filtration, regardless of the number of slices used in the foliation method. 
By using the Morse complex for computing the persistence module we still have experienced efficiency problems, even with 
small datasets. This suggests that our preprocessing is not powerful enough to make the persistence module computation 
feasible and that optimizations of current algorithms require further improvements. As new algorithms for computing the 
persistent module arise, such as the approach by Dey and Xin [26], our preprocessing approach may prove its importance 
for computing multipersitent homology.

We think that the idea of a discrete gradient compatible with a multifiltration deserves further investigations. Currently, 
we are expanding the set of visual features that can be extracted from a discrete gradient for data analysis and visualization 
by studying the relationships between the critical simplices identified by our method and the multigraded Betti numbers
computed by RIVET [49]. This may help us constructing a bridge between the discrete notions of critical simplices and the 
piecewise linear notions of Pareto sets [44] and Jacobi sets [31].

Also, we plan to evaluate the scalability of our approach to higher dimensional simplicial complexes. So far, the alter-
native approach by Fugacci and Kerber [39] has shown its advantages when working on triangle meshes. However, the 
algorithm requires a global representation of the facets of each simplex while our approach only requires the encoding of 
the top simplices only. While this type of encoding has its drawbacks in lower dimensions, as shown by the timings in [39], 
it has been proven by Fugacci et al. [38] that it provides better scalability when the dimension of the simplicial complex 
increases.

A current limitation of our approach is that of requiring a componentwise injective function. From this property, the 
algorithm’s correctness (see Section 4) and its time complexity follow (see Section 3.3). Moreover, it guarantees the mini-
mality of the critical simplices this algorithm identifies, proved by Landi and Scaramuccia in [48]. It would be interesting 
for future work to extend our results to functions that are not componentwise injective or defined on all the simplices of 
the simplicial complex.
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Appendix A

In this appendix, we report all the proofs of the results provided in Subsection 4.2.2.

Proof of Lemma 1. Let σ P S . Because the sets LowI pvq, with v P S0, form a partition of S , there is a unique vertex v of 
S such that σ belongs to LowI pvq. By definition of lower star, v is a face of σ , and Ipσ q ď Ipvq. Because I is extended 
from the vertices to other simplices by taking the maximum over all vertices, it also holds that Ipvq ď Ipσ q, and hence 
Ipvq “ Ipσ q.

Let τ be a simplex in Low f pσ q. Again by definition of lower star and because f is defined by max-extension as well, 
we similarly get that σ is a face of τ and f pτ q “ f pσ q. Since I is well-extensible, this implies that Ipτ q “ Ipσ q, and hence 
Ipτ q “ Ipvq. Because v ă σ ă τ we can thus conclude that τ P LowI pvq. Therefore, Low f pσ q Ď LowI pvq. l

Proof of Lemma 2. In order to prove uniqueness, assume by contradiction that there are two simplices σ , σ 1 P S such that 
Low f pσ q “ Lu “ Low f pσ 1q. Hence, σ 1 P Low f pσ q and σ P Low f pσ 1q, implying that σ 1 is a coface of σ and σ is a coface of 
σ 1 . Thus, σ 1 “ σ .

In order to prove existence, we take σ to be the maximal common face of all simplices of Lu . Since v P τ for every 
τ P Lu , σ is non-empty and belongs to LowI pvq. In particular, σ belongs to Lu . Indeed, on one hand, for every τ in Lu , 
f pσ q ĺ f pτ q “ u, because f does not decrease with the coface relation. On the other hand, since f is obtained by max-
extension from the vertices of a component-wise injective function, for every i “ 1, . . . , n there is a unique vertex wi such 
that ui “ f ipwiq. Hence, for all τ P Lu , it holds that ui “ f ipτ q ě f ipwiq “ ui , implying that wi is a vertex of τ for all τ P Lu . 
By definition of σ , wi is also a vertex of σ . Therefore, f ipσ q ě f ipwiq “ ui . Because this holds for every i “ 1, . . . , n, we 
deduce that u ĺ f pσ q, which together with f pσ q ĺ u yields f pσ q “ u. In conclusion, σ belongs to Lu .

We now claim that Low f pσ q “ Lu . We easily see that Lu is contained in Low f pσ q because, by definition of σ , all 
simplices τ P Lu are cofaces of σ , and by definition of level set, f pσ q “ f pτ q “ u. Conversely, to prove that Low f pσ q Ď Lu , 
let τ be a simplex in Low f pσ q. Lemma 1 ensures that τ P LowI pvq, so it is sufficient to prove that f pτ q “ u. We have 
already proved that f pσ q “ u, hence the claim follows by using again the fact that, for all τ P Low f pσ q, f pτ q “ f pσ q.

To conclude the proof, it remains to show that σ is a primary simplex for Matching. Recall that a simplex is primary, 
i.e. σ P P , if and only if there is no other simplex τ such that σ P Low f pτ q. By contradiction, let us assume such simplex 
τ exists. Hence Low f pσ q Ď Low f pτ q. By Lemma 1, σ and τ belong to the same index-based lower star LowI pvq. Since 
σ P Low f pτ q, we get u “ f pσ q “ f pτ q. Thus, Lu “ Low f pσ q Ď Low f pτ q Ď Lu , implying that Low f pσ q “ Low f pτ q, and hence 
σ “ τ . l

Proof of Proposition 3. To prove the claim, we show how to construct an indexing J on S valid as an input of Matching
such that each call of HomotopyExpansion with simplices of Low f pσ q “ Lu taken in the order of J gives the same result 
as ComputeDiscreteGradient.

For each σ P P , we indicate by Jσ the indexing on simplices of Low f pσ q “ Lu built in HomotopyExpansion(S, I, Luq

when called by ComputeDiscreteGradient. By construction, it is increasing with the coface relation, and consistent 
with the orderings of the lists Ord0 and Ord1.

Let g : P ÝÑ R be any injective function compatible with f , i.e., f pσ q ĺ f pτ q implies gpσ q ď gpτ q (obtained, for 
example, by topological sorting). For every simplex τ P S , we can consider the map Q : S Ñ P such that Q pτ q “ σ , with 
σ the unique primary simplex σ P P such that τ P Low f pσ q. Thus, we can extend g from P to S by taking G “ g ˝ Q . By 
construction, G is still compatible with f .

Therefore, for any simplex τ P S , we get a pair of real numbers pGpτ q, J Q pτqpτ qq. The set of all such pairs can be 
lexicographically ordered, and we can finally take J : S ÝÑ R to be an injective map giving a total order equivalent to such 
lexicographic order.

We need to show that J is a valid ordering for Matching, that is it satisfies condition (2). If σ ă τ , we have f pσ q ĺ
f pτ q because f is defined by max-extension from the vertices. By compatibility of G with f , this implies that Gpσ q ď Gpτ q. 
In the case Gpσ q ă Gpτ q, by the equivalence of J with the lexicographic order on all the pairs pGpτ q, J Q pτqpτ qq with τ P S , 
we get Jpσ q ă Jpτ q. In the case Gpσ q “ Gpτ q, by injectivity of g , it follows that Q pσ q “ Q pτ q. Because J Q pσ q is increasing 
with the coface relation, we get Jpσ q ă Jpτ q. Hence, in any case, σ ă τ implies Jpσ q ă Jpτ q. Let us now assume that 
f pσ q ň f pτ q. From f pσ q “ f ˝ Q pσ q and f pτ q “ f ˝ Q pτ q, it follows that f ˝ Q pσ q ň f ˝ Q pτ q. Necessarily, Q pσ q ‰ Q pτ q. 
Thus, by injectivity of g , g ˝ Q pσ q ă g ˝ Q pτ q. Because G “ g ˝ Q , we conclude that Jpσ q ă Jpτ q by equivalence of 
J with the lexicographic order on the pairs considered above. Therefore, we have proved that J satisfies condition (2)
and is a valid ordering for Matching. In conclusion, by Lemma 2, Matching and ComputeDiscreteGradient call
HomotopyExpansion with the same input and, provided that Matching uses the ordering J , they also process simplices 
in the same order. Hence, Matching and ComputeDiscreteGradient produce the same output. l
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Proof of Corollary 4. By Proposition 3, for any valid input pS, f q for ComputeDiscreteGradient there is a valid input 
pS, f , Jq for Matching such that ComputeDiscreteGradientpS, f q is equal to MatchingpS, f , Jq. By Proposition 8 
and Theorem 9 in [5], MatchingpS, f , Jq returns a discrete gradient V that is compatible with the multifiltration induced 
by the pair pS, f q. Therefore, so does ComputeDiscreteGradientpS, f q. l
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