
1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

1

TopoCluster: A Localized Data Structure for
Topology-based Visualization

Guoxi Liu, Federico Iuricich, Riccardo Fellegara, and Leila De Floriani

Abstract—Unstructured data are collections of points with irregular topology, often represented through simplicial meshes, such as
triangle and tetrahedral meshes. Whenever possible such representations are avoided in visualization since they are computationally
demanding if compared with regular grids. In this work, we aim at simplifying the encoding and processing of simplicial meshes. The
paper proposes TopoCluster, a new localized data structure for tetrahedral meshes. TopoCluster provides efficient computation of the
connectivity of the mesh elements with a low memory footprint. The key idea of TopoCluster is to subdivide the simplicial mesh into
clusters. Then, the connectivity information is computed locally for each cluster and discarded when it is no longer needed. We define two
instances of TopoCluster. The first instance prioritizes time efficiency and provides only a modest savings in memory, while the second
instance drastically reduces memory consumption up to an order of magnitude with respect to comparable data structures. Thanks to the
simple interface provided by TopoCluster, we have been able to integrate both data structures into the existing Topological Toolkit (TTK)
framework. As a result, users can run any plugin of TTK using TopoCluster without changing a single line of code.

Index Terms—Data visualization, data structures, topological data analysis, simplicial meshes, tetrahedral meshes

F

1 INTRODUCTION

P ROCESSING irregularly distributed data has always posed
challenges in scientific visualization. Most tools (e.g., Paraview

[1], VisIt [5], or Inviwo [21]) prioritize the analysis of regularly
distributed data (i.e., 2D and 3D images), whose encoding is both
simple and efficient. The same tools present relevant overheads
when analyzing irregularly distributed data that require more
involved data structures to be encoded.

This work focuses on data defined on tetrahedral meshes and
aims at simplifying the processing and encoding of such data.
Specifically, our goal is to define a data structure that is both
compact and easy to integrate into existing visualization tools. We
tackle this problem by introducing a new data structure called
TopoCluster. TopoCluster partitions a simplicial complex into
clusters and processes its simplices with a two-level technique.
At the global level, only the minimum amount of information is
stored. At the local level, the full information is extracted within
each cluster and discarded when no longer needed. The result is a
data structure capable of self-adjusting its memory consumption at
run time.

The main contributions of this work are two instances of
TopoCluster designed with opposite intents. While one instance
prioritizes time performance, the second instance focuses on
reducing the memory footprint with a consequent loss in time
efficiency. Both data structures are designed to easily adapt to
existing frameworks for mesh processing and visualization. To
prove their flexibility, we have integrated our data structures into
the Topological Toolkit (TTK) [30]. Such integration is transparent
to a user or a developer. That is, TTK plugins can be executed

• G. Liu and F. Iuricich are with School of Computing, Clemson University,
Clemson, SC, 29631. E-mail: {guoxil, fiurici}@clemson.edu.

• R. Fellegara is with Institute for Software Technology, German Aerospace
Center (DLR), Braunschweig, Germany. E-mail: riccardo.fellegara@dlr.de.

• L. Floriani is with University of Maryland, College Park, MD, 20742.
E-mail: deflo@umd.edu.

Manuscript received ; revised .

either by using the original data structure provided by TTK, or our
proposed structures, without changing a single line of code.

The structure of the paper is organized as follows. In Sections
2 and 3, we present background notions and related work,
respectively. In Section 4, we provide an overview of the main
features of TopoCluster, while, in Section 5 and Section 6, we
describe two instances of TopoCluster. In Section 7, we describe
performance optimization strategies used in both data structures.
In Section 8, we discuss our experimental setup and compare
the performance of TopoCluster against its natural competitors.
Finally, in Section 9, we conclude the paper with some remarks
and directions for future works.

2 BACKGROUND

A simplex of dimension k, k-simplex for short, is defined as the
convex hull of k+1 linearly independent points in the Euclidean
space. A k-simplex σ is a (proper) face of an m-simplex τ , with
k < m, if σ is a proper subset of τ . In this case, τ is said to be a
coface of σ . A simplex which is not the proper face of any other
simplex in Σ is called top simplex. The set of cofaces of a simplex
σ forms the star of σ .

A simplicial complex Σ is a collection of simplices such that
every face of a simplex σ is also in Σ, and the intersection of any
two simplices σ and τ is either a face of both, or it is empty. The
dimension d of Σ is the largest dimension of its simplices. Even if
a simplicial complex can be defined in any dimension, we focus on
its 3D instances, called tetrahedral meshes.

2.1 Topological relations
In a simplicial complex, simplices are involved in topological
relations. A boundary relation maps a simplex to its faces, for
instance, σ is on the boundary of τ iff σ is a face of τ . Vice versa,
τ is said to be on the coboundary of σ . Two k-simplices τ1 and
τ2 are said to be adjacent if they share a (k−1)-simplex on their
boundaries. Informally, we say that two 0-simplices (vertices)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

2

(a) (b) (c)

Fig. 1. (a) Tetrahedral mesh composed by two tetrahedra sharing a
triangle. (b) V E relational operator for the vertex v0 (c) EF relational
operator for the edge e2.

are adjacent if they share the same 1-simplex (edge) in their
coboundaries. A relational operator associates a simplex σ to
a set of simplices having a specific topological relation with σ .

In the remainder of this paper, we only consider relational
operators for tetrahedral meshes. We use capital letters to indicate
whether the operator involves vertices (V), edges (E), triangles (F),
or tetrahedra (T), and each operator is specified with a pair of letters.
For example, EF indicates the relational operator associating an
edge (E) to the triangles (F) on its coboundary. On a tetrahedral
mesh we have six boundary operators (EV , FV , TV , FE, T E,
T F), six coboundary operators (V E, V F , V T , EF , ET , FT), and
four adjacency operators (VV , EE, FF , T T). Figure 1 shows
two examples of relational operators. Figure 1(b) shows operator
V E(v0) = {e0,e1,e2} representing the edges e0,e1 and e2 which
are in the coboundary of vertex v0. Figure 1(c) shows operator
EF(e2) = { f0, f1} representing the triangles f0 and f1 which are
on the coboundary of edge e2.

3 RELATED WORK

Generally speaking, data structures differ in the type of simplices
and relational operators they encode. Data structures described
in Section 3.1 are static (as opposed to dynamic structures)
where relational operators are computed for the entire mesh in
a preprocessing step. In Section 3.2, we describe the Stellar
decomposition, a model for dynamic structures where relational
operators are computed and discarded at runtime.

3.1 Static data structures

There has been extensive research on topological data structures
for simplicial complexes, especially for triangle and tetrahedral
meshes [8].

The incidence graph [11] encodes explicitly all simplices plus
all boundary and coboundary operators, which makes it the most
general data structure for simplicial complexes. Multiple data
structures have been defined to reduce the extremely large memory
requirements of the incidence graph, either by cutting down the
number of relational operators or by limiting the simplices encoded.
The Simplex tree [2] is a variant of the incidence graph which
organizes all simplices in a trie [14] and avoids encoding boundary
operators. When data size increases, representing all simplices
is no longer feasible. For this reason, alternative representations
have been designed to prevent encoding simplices of specific
dimensions. The half-edge [23] is a well-known data structure for
triangle meshes, which drastically reduces memory consumption
by encoding only the relational operators involving edges.

More recently, compact representations have been developed
to maintain the same expressive power of the incidence graph
while halving the space required [3], [7], [9]. The novelty of

these data structures relies in the encoding of adjacency operators,
instead of the more expensive coboundary operators. Examples
include the Indexed data structure with Adjacencies [24], [25], the
Corner-Table data structure [27] and its several extensions proposed
specifically for triangle meshes [16], [22] and tetrahedral meshes
[17]. The generalized indexed data structure with adjacencies
(IA∗) [4] is the first data structure extending this approach to non-
manifold simplicial complexes of arbitrary dimension. Among
static data structures for non-manifold simplicial complexes, the
IA∗ is the most compact [15].

3.2 Stellar decomposition
The Stellar decomposition [12] represents a family of data struc-
tures in which relational operators are computed and discarded, at
runtime, based on user requests. For this reason, they are called
dynamic as opposed to the static data structures discussed in Section
3.1. The Stellar decomposition is based on three elements:
• an input simplicial complex Σ (represented by an indexed

mesh representation encoding the vertices and the top sim-
plices),

• a subdivision ∆ of the vertices of Σ into clusters,
• a map associating elements of Σ to clusters of ∆.
The simplicial complex is processed with a localized approach.

Instead of extracting relational operators altogether in a prepro-
cessing step, the localized approach extracts operators, inside each
cluster, at runtime. Given a k-simplex σ and a relational operator
o, the simplices in relation with σ (i.e., o(σ)) will be extracted as
follows:

(i) locate the cluster c of ∆ containing σ ;
(ii) compute the relational operator o for all the k-simplices

contained in c;
(iii) return the set of simplices in relation with σ (i.e., o(σ));
(iv) discard (delete) o.

The first data structure implementing this model was the PR-
star octree [32], which was explicitly defined for tetrahedral meshes
embedded in R3. Successively, this has been generalized by the
Stellar tree [12], which can encode simplicial complexes embedded
in any dimension and with arbitrary domain. The Stellar tree uses
a hierarchical decomposition H (an n-dimensional bucketed Point
Region quadtree [28]) to organize the mesh vertices. Relational
operators are extracted locally to the leaf nodes of such hierarchy,
following the Stellar decomposition model. As a result, the Stellar
tree is even more compact than adjacent-based data structures like
the IA∗ data structure [4]. On the other hand, simplices in a Stellar
tree can only be accessed through a visit of the hierarchy H, which
introduces an additional layer of complexity for the developer (see
Appendix A). As a consequence, algorithms need to be re-designed
to adapt to the data structure processing model.

Our work aims to maintain the low memory footprint of the
Stellar tree while providing an easy interface for implementing and
running topological algorithms.

4 TOPOCLUSTER

The goal of all data structures for simplicial complexes is that of
providing easy access to the relational operators. The proposed
data structure, called TopoCluster, inherits the localized approach
for extracting relational operators from the Stellar decomposition.
Different from the Stellar decomposition, it aims at enumerating all
the simplices of the simplicial complex Σ through an enumeration
schema. An explicit enumeration of the simplices of Σ provides

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

3

(a) (b)

Fig. 2. Tetrahedral mesh Σ formed by two clusters. (a) Subdivision of
vertices and edges across two clusters depicted with red and blue colors.
(b) Enumeration of the edges of Σ.

multiple benefits from a developer perspective. A practical example
is shown in Appendix A.

In the following, we describe the enumeration schema used by
TopoCluster. In the remainder of this paper, σi indicates a simplex
σ based on its index i; σ̄ indicates a simplex σ based on its vertices
{v0, ...,vk}.
Cluster-based enumeration. Given any subdivision ∆ that di-
vides the vertices of the simplicial complex Σ into clusters, we
define an enumeration schema by assigning each k-simplex to a
single cluster. We assume that each vertex v is associated to a single
cluster c. We say that v is internal to c, and c contains v.

For edges, triangles, and tetrahedra we define a k-simplex, with
k > 0, internal to a cluster c as follows.

Definition 4.1. Without loss of generality, we assume a total order
on the clusters of ∆. Given a cluster c ∈ ∆ and a k-simplex σ ∈ Σ,
with 0 < k≤ d, σ is internal to c iff. c is the first cluster containing
a vertex of σ .

In Figure 2(a), vertices and edges are depicted with the same
color if they belong to the same cluster. In this example, we assume
that the red cluster is the first cluster (i.e., c0) and the blue cluster
is the second cluster (i.e., c1). Thus, vertex v0 is internal to cluster
c0, while vertex v2 is internal to cluster c1. Edge e1 is internal to
c0 since one of its vertices (i.e., v0), is internal to c0. Following the
same assumption, edge e6 is internal to c1 since both its vertices
are internal to c1.

The cluster-based enumeration is obtained by enforcing the
following rules:
• k-simplices internal to a cluster c are enumerated within a

closed interval [l,u], where u− l + 1 is the number of k-
simplices internal to c;

• For any pair of clusters, the corresponding intervals do not
overlap. As a consequence, for any pair of clusters ci,c j, with
i < j, k-simplices in c j have indices greater than those in ci.

The result is an explicit enumeration of the simplices of Σ,
where each simplex is associated with a unique integer. Figure 2(b)
shows the cluster-based enumeration for the edges of a tetrahedral
mesh. Edges internal to the red cluster (i.e., c0), are enumerated
from 0 to 2. Edges internal to the blue cluster (i.e., c1), are
enumerated from 3 to 8.

Once defined the enumeration schema, we describe how such
enumeration is encoded in the data structure. To this end, we
have designed two strategies. The first strategy, named Explicit,
prioritizes the time efficiency (see Section 5), while the second
strategy, named Implicit, prioritizes the memory efficiency (see
Section 6).

Fig. 3. Table on the left shows the global layer of Explicit TopoCluster for
the tetrahedral mesh on the right. V encodes the coordinates of each
vertex, I stores the cluster index of each vertex, TV stores the boundary
vertices of each tetrahedron, E and F are hash maps encoding indices for
edges and triangles respectively, Text stores indices of external tetrahedra,
SE , SF , and ST are arrays storing the enumeration intervals for edges,
triangles and tetrahedra respectively.

5 EXPLICIT TOPOCLUSTER

The first approach for encoding the enumeration schema is that of
explicitly storing the index associated with each simplex of Σ. This
is the strategy implemented by the first data structure introduced in
this paper called Explicit TopoCluster. We recall that the idea
behind TopoCluster is that of computing relational operators
at runtime. To allow for this interaction, Explicit TopoCluster
organizes information into two layers: the global, and the local
layer.

The global layer, described in Section 5.1, is the static part
of Explicit TopoCluster. The local layer, described in Section 5.2,
is the dynamic part of Explicit TopoCluster. This layer is where
topological relations are computed, stored for a short period, and
then discarded to keep memory usage under control.

5.1 Global layer
The global layer of Explicit TopoCluster includes the input
tetrahedral mesh Σ, the input subdivision ∆, the enumeration
schema, and the list of simplices intersecting each cluster defined
in ∆.
Tetrahedral mesh. Mesh Σ is represented through an indexed
representation, in which the vertices and tetrahedra are encoded
in two arrays, V and TV , respectively. V encodes the coordinates
of each vertex, while TV stores the boundary vertices of each
tetrahedron (i.e., TV operator). For example, as shown in Figure
3, vertex v0 has coordinates (0.1,0.2,0.3), and tetrahedron t0 has
vertices v0,v1,v2 and v4 on its boundary.
Clustering. The subdivision ∆ is encoded with an array I, storing
the cluster index of each vertex v in the simplicial mesh. For
example, in Figure 3, vertex I[v0] = 0 since it belongs to cluster
c0. The value of I for any other vertex is equal to 1 since they all
belong to cluster c1.
Enumeration. As described in Section 4, the enumeration assigns
a unique integer to each simplex of Σ. The enumeration of vertices
and tetrahedra is defined by their order in the arrays V and TV . The
enumeration of edges and triangles is encoded by two hash tables, E
and F , respectively. Table E associates each edge (represented with
a pair of vertex indices) with the corresponding index. Similarly,
table F encodes the index associated with each triangle. Table E
and F are defined using the hash table implementation provided by
Boost library [29]. In Figure 3, edge e0 is formed by vertices v0
and v1. Similarly, triangle f0 is formed by vertices v0, v2 and v4.
Internal and external simplices. Finally, we need to encode how
simplices are distributed across the clusters of ∆. Specifically,

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

4

Fig. 4. The local layer of Explicit TopoCluster. An initialized cluster c1
contains only external edges and triangles denoted by Eext and Fext
respectively. The full cluster stores two additional arrays containing FE
and FV relational operators.

for each cluster c, we encode the simplices internal to c and the
tetrahedra intersecting c that are internal to some other cluster. This
information provides the full connectivity of the simplicial complex
and will be used to compute relational operators (see Section 5.2).

To retrieve the simplices internal to each cluster c, the number
of tetrahedra, triangles, and edges encoded in c are stored in three
global arrays named ST , SF , and SE respectively. As mentioned
in Section 4, a cluster ci contains tetrahedra with index in the
interval [u, l]. This interval is stored in the array ST (i.e., [ST [i−
1]+1,ST [i]]). In a similar fashion, indices of triangles and edges
internal to ci are retrieved using SF and SE , respectively.

Finally, an indexed array Text stores the list of external
tetrahedra for each cluster. As shown in Figure 3, cluster c0 has no
external tetrahedra as the internal tetrahedron t0 is the only one in
the boundary of vertex v0. Cluster c1 has t0 as external tetrahedron.

5.1.1 Initializing global structures
All information in the global layer are either received as input,
or computed at initialization time. Vertex coordinates (i.e., array
V), TV operators (i.e., array TV), and clustering function I are
provided as input. Vertices and tetrahedra are reindexed in order
to conform with the enumeration property. In practice, this means
assigning contiguous indices to vertices(/tetrahedra) contained in
the same cluster which takes O(|V |+ |T |) time. The array of
external tetrahedra Text and array ST are populated in O(|T |) time
by iterating over the array TV .

Hash tables E and F are initialized by visiting the clusters
in any order. For each cluster c, internal edges and triangles are
enumerated by checking the list of tetrahedra intersecting c. Since
each internal tetrahedron is visited exactly once, and each external
tetrahedron is visited at most four times, hash tables E and F are
computed in O(|T |). Arrays SE and SF are initialized during the
same step with no additional cost.

Encoding the input mesh requires O(|V |+ |T |) memory. This
cost includes the coordinate values of the each point and the TV
operator of each tetrahedron. The size of SE , SF , and ST arrays
have size linear in the number of clusters (i.e., O(|C|)). The size
of the hash maps E and F are determined by the number of
edges and triangles in the mesh. Then, the global layer requires
O(|V |+ |E|+ |F |+ |T |+ |C|) memory.

5.2 Local layer: clusters
The local layer is where relational operators are computed and
stored. Once a relational operator for a simplex σ is required,
TopoCluster locates the cluster ci containing σ , computes the
relational operators of the simplices internal to ci, and returns the
relational operator of σ .

Algorithm 1 computeVT(c)
1: Input: c, cluster
2: Output: V T , tetrahedra incident in each vertex of cluster c
3:
4: V T = {} // create empty table
5: for each tetrahedron ti intersecting c // both internal and

external do
6: for each vi in TV [ti] do
7: if vi internal to c then
8: V T [vi]← ti // save ti in the list associate to vi
9: end if

10: end for
11: end for
12: return V T

The cluster ci is considered to be empty until a new relational
operator is requested. Upon request, the cluster is initialized by
retrieving the information necessary to compute the relational
operator. After a relational operator is computed and stored in ci,
we refer to ci as full.

5.2.1 Initializing clusters
Initializing the cluster ci means computing the list of internal and
external simplices for ci. Internal simplices are deduced from the
arrays ST , SF , and SE . The list of external tetrahedra intersecting
the cluster is encoded in the global layer, specifically the array
Text [i]. Upon initialization, the cluster ci creates two arrays, Eext and
Fext , encoding the list of external edges and triangles of c. Array
Eext is computed by cycling on the list of external tetrahedra Text [i].
For each external tetrahedron t̄ = {v1,v2,v3,v4}, for each pair of
vertices ē = {v j,vk} such that {v j,vk} ∈ t̄ and v j 6= vk, the index
e j is retrieved from the global hash map E (i.e., e j = E(ē)) and
added to Eext . Array Fext is built in a similar fashion by considering
triples of vertices for each tetrahedron.

When both Eext and Fext are computed, ci is said initialized.
Since the number of vertices per tetrahedron is constant, the
initialization of cluster ci requires O(|Text [i]|) time. Figure 4 shows
the information encoded in c1 after the initialization step. Indices
of external edges e0,e1 and e2 are listed in Eext , and, similarly,
external triangles f0, f1 and f2 are listed in Fext .

5.2.2 Computing relational operators
Relational operators for a cluster ci are computed only after the
cluster is initialized. In the following, we describe as an example
the extraction of relational operators V T and FE.

V T operator represents the set of tetrahedra incidents in each
vertex. Algorithm 1 describes the steps performed in extracting such
an operator. The only information required by the algorithm is the
list of tetrahedra intersecting c (line 5). These are computed during
the initialization step and are the indices of internal tetrahedra,
encoded in ST , and the external tetrahedra, encoded in Text . For each
tetrahedron ti, the list of vertices is retrieved using the TV operator
(line 6). Then, for each vertex vi internal to c, ti is associated to the
list of co-faces of vi (line 8).

Algorithm 2 describes the extraction of the FE operator. This
operator encodes, for each triangle, the indices of the three edges
in its boundary. Since this operator involves edges and triangles, it
also requires the local FV operator that computes for each internal
triangle fi, its list of vertices (line 4). For each pair of such vertices
(line 9), we retrieve the index ei of the corresponding edge using

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

5

Algorithm 2 computeFE(c)
1: Input: c, cluster
2: Output: FE, edges of each triangle of cluster c
3:
4: FV ← computeFV(c) // retrieve local information
5: FE = {} // create empty table
6: for each internal triangle fi in c do
7: for each pair of vertices ē = {vi,v j} in FV [fi] do
8: ei = E(ē) // retrieve edge index
9: FE[fi]← ei

10: end for
11: end for
12: return FE

the global hash table E (line 10). Finally, ei is added to the set of
edges on the boundary of fi (line 11).

Figure 4 shows an example of the full cluster c1. The FV array
encodes, for each internal triangle, the index of its three vertices.
The indexed array FE stores, for each triangle, the list of boundary
edges. The time complexity of extracting a relational operator in the
explicit data structure is linear to the number of higher dimensional
simplices involved. For example, the complexity of extracting the
FE operator is linear to the number of triangles in the cluster c,
i.e., O(|Fc|).

6 IMPLICIT TOPOCLUSTER

Explicit TopoCluster fully encodes the enumeration of edges and
triangles with the two hash tables E and F . We defined a second
data structure, called Implicit TopoCluster, implementing a different
strategy. Instead of encoding the two hash tables E and F in the
global layer, the indexing of edges and triangles is computed on-
the-fly when accessing a cluster. This drastically reduces the total
cost of the global layer to O(|V |+ |T |+ |C|).

In the following, we describe the local layer of Implicit
TopoCluster since the initialization of the global layer is as in
the Explicit TopoCluster (see Section 5).

6.1 Local layer: clusters

The local layer of Implicit TopoCluster resembles that of Explicit
TopoCluster. Also in this case, a cluster ci is said empty until a
new relational operator is requested. Upon request, the cluster is
initialized by retrieving the information necessary to compute the
relational operator. After a relational operator is computed and
stored in ci, we refer to ci as full.

6.1.1 Initializing clusters
Upon initialization, cluster ci computes the hash tables of external
edges and triangles (i.e., Eext and Fext) as in the Explicit TopoClus-
ter. Additionally, two hash tables are computed associating the
enumeration of edges and triangles to their vertices (i.e., hash tables
E and F). The latter encodes the same information of the hash
tables used by Explicit TopoCluster, but instead of being stored
globally, these are stored locally to ci and encode information
limitedly to edges and triangles internal to ci.

Figure 5 shows an example of the information encoded in
cluster c1. Hash tables E and F encode the enumeration of edges
and triangles, respectively, and Eext and Fext arrays encode the list
of external edges and triangles, respectively.

Fig. 5. The local layer of Implicit TopoCluster. An initialized cluster c1
contains the hash maps for edges and triangles denoted by E and F
respectively, and external edges and triangles denoted by Eext and Fext
respectively. The full cluster stores and additional array containing the
EF relational operator.

All structures are generated by iterating the list of tetrahedra
intersecting ci. First, we create hash tables E and F by computing
a local enumeration of the internal edges and internal triangles
defined over a closed interval [0, p], where p is either the total
number of internal edges or the total number of internal triangles.
Global indices for the edges are obtained by shifting the local
enumeration according to the global enumeration, i.e., [SE [i−1]+
1,SE [i]] = [l,u]. If an edge has local index j, its global index is
j+ l. Global indices for triangles are retrieved in a similar way. The
time complexity for computing the local enumeration is O(|Tint |),
where |Tint |= ST [i]−ST [i−1] is the number of internal tetrahedra
of ci.

External edges and triangles are retrieved by iterating the list of
external tetrahedra Text [i], similarly to the Explicit TopoCluster. The
difference is that the index of each external simplex is no longer
provided by global hash maps. To get the index corresponding
to an external edge or triangle, we have to access the cluster c j
containing it and compute the internal simplices of c j. This step
requires O(∑n

j=0 |T
j

int |) time, where |T j
int | indicates the tetrahedra

internal to the cluster c j, sharing a simplex with cluster ci. Hence,
initializing the cluster ci requires O(|Tint |+∑

n
j=0 |T

j
int |) time in

total.

6.1.2 Computing relational operators
The strategy for computing relational operators for the Implicit
TopoCluster is similar to the Explicit TopoCluster. For example, let
us consider the extraction of EF operator (as detailed in Algorithm
3). We recall that the EF operator encodes, for each internal edge,
the indices of the triangles in its star. In the initialization phase,
internal edges and triangles are enumerated to create the local hash
tables E and F , while the local hash map of external triangles Fext
is obtained by querying external clusters sharing a triangle with
c (line 5). At this point, the extraction of the relational operators
begins. The function requires visiting both internal and external
triangles (line 7). For each pair of vertices ē of fi, we check if ē is
internal (line 9). If it is the case, we retrieve the index of ē from
map E and associate fi to ei (line 11).

Similar to the Explicit TopoCluster, the time complexity of
extracting a relational operator is linear to the number of higher
dimensional simplices involved. For example, the complexity of
extracting the EF operator is linear to the number of triangles in
the cluster, i.e., O(|F ∪Fext |).

7 PERFORMANCE OPTIMIZATION STRATEGIES

To optimize memory and time performance, we have defined two
strategies: a preconditioning approach, and a cache system.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

6

Algorithm 3 computeEF(c)
1: Input: c, cluster
2: Output: EF , triangles incident in each edge of cluster c
3:
4: // Initialize the cluster c
5: E, F , Fext ← initialize(c)
6: EF = {} // create empty table
7: for each triangle f̄ in (F ∪Fext) // both internal and external

do
8: for each pair of vertices ē = {vi,v j} of f̄ do
9: if ē is internal to c then

10: if f̄ is internal to c then
11: fi = F(f̄)
12: else
13: fi = Fext(f̄)
14: end if
15: EF [E[ē]]← fi
16: end if
17: end for
18: end for
19: return EF

The first strategy adopts the same preconditioning approach
used by TTK [30]. A developer declares the set of relational
operators required by an algorithm. Then, clusters will be initialized
only with information for those relational operators. For example,
suppose we implement an algorithm using only VV and TV
operators. The data structure will never enumerate edges and
triangles at generation time and it will never compute the associated
structures when initializing a cluster. In practice, all structures
depicted in green (for edges) and yellow (for triangles) in Figures
3, 4 and 5, are subject to the preconditioning system. This strategy
enhances the time and memory efficiency when an algorithm
requires only a limited subset of relational operators.

Both Explicit and Implicit TopoCluster use the same approach
for computing relational operators. Specifically, they compute and
discard information each time a cluster is accessed. This introduces
a clear drawback when a cluster is accessed multiple times. To
tackle this problem, we have defined a second technique inspired
by the Stellar tree [12]. This strategy defines a cache system for
the clusters based on the Least Recently Used (LRU) replacement
strategy. Each time a full cluster ci is computed, it is saved in
the cache. The cluster in the cache will be replaced based on the
last time it was accessed. Since the cache size (i.e., the maximum
number of clusters that the cache can maintain) is controlled by
a user-defined parameter, the memory requirements cannot be
estimated theoretically, but we provide an experimental analysis in
Section 8.3.

8 EVALUATION OF PERFORMANCE

Explicit and Implicit TopoClusters have been implemented as two
modules of the Topology Toolkit (TTK version 0.9.7) [30], and use
the same interface as the abstractTriangulation class of TTK. As a
result, all modules implemented in TTK can run seamlessly with
TopoCluster.

We recall that TopoCluster requires a clustering for the vertices
of the tetrahedral mesh to be provided in input. In the following
evaluation, we use a clustering technique based on the Point
Region (PR) octree [28]. An octree uses a hierarchical domain

TABLE 1
Overview of the experimental datasets. For each dataset, we list the

type, the number of vertices |V |, edges |E|, triangles |F | and tetrahedra
|T |. Regular means the dataset comes from 3D regular grids, while

Irregular means the dataset comes from a tetrahedral mesh with
irregularly distributed points.

Data Type |V | |E| |F | |T |

Red Sea Regular 0.95M 6.33M 10.58M 5.20M

Engine Regular 1.39M 9.14M 15.18M 7.43M

Cat Irregular 1.97M 13.24M 22.25M 10.99M

Sphere Irregular 2.62M 17.54M 29.46M 14.53M

Foot Regular 4.60M 30.79M 51.51M 25.32M

Shapes Irregular 7.87M 52.37M 87.63M 43.13M

Hole Irregular 9.26M 63.70M 108.29M 53.85M

Stent Regular 17.37M 118.79M 201.40M 99.98M

decomposition based on a nested refinement of the unit cube.
The containment relationship on such cubes defines a hierarchical
relationship among the nodes in the octree. The PR octree is
constructed by defining the maximum number of vertices allowed
in any leaf node of the octree. In the end, vertices belonging to
the same leaf node in the PR octree form a cluster in TopoCluster.
We select this clustering approach for its generality since any
spatially-embedded mesh can be decomposed into clusters using
this subdivision.

The following performance analysis is conducted on tetrahedral
meshes with the number of vertices between 950K and 17M and
with number of tetrahedra between 5.2M and 100M (see Table
7). Four datasets (i.e., Red sea [31], Engine, Foot, and Stent)
are obtained by thresholding and tetrahedralizing points from 3D
regular grids. The remaining four datasets are tetrahedral meshes
with irregularly distributed points [20]. All experiments have been
performed on a desktop equipped with a 3.2 GHz Intel i7-8700
CPU and 32 Gigabytes of RAM.

8.1 Computing relational operators
In this section, we compare our data structures against the Stellar
tree [12] and TTK triangulation [30]. All four data structures
use the same encoding for the underlying mesh, that encodes in
two arrays the vertex coordinates and the TV operator of each
tetrahedron σ , i.e., the list of vertices in the boundary of σ .
TTK Triangulation. TTK triangulation [30] precomputes rela-
tional operators at generation time and stores them in multiple
lookup tables. Lookup tables, as well as the list of edges and
triangles, are extracted in O(|T |) by enumerating all pairs/triplets
of vertices. This approach achieves best time performance at
runtime since the data structure will provide fast access to all
necessary relational operators. At the same time, this strategy is
very demanding in terms of memory since relational operators are
stored, for the entire execution of the algorithm.
Stellar tree. The Stellar tree is the first data structure defined
upon the Stellar decomposition model [12]. It uses a hierarchical
decomposition (a Point Region octree [28]) to organize the mesh
vertices. The hierarchy H is encoded through a tree structure used
to navigate the mesh. A bucketing threshold is used for limiting
the number of vertices per leaf node. In our experiments, we
use the bucketing threshold 400 and 800 following the guidelines

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

7

Fig. 6. Memory (in Megabytes) and time (in seconds) required for computing all relation operators with TTK triangulation, Stellar tree, Explicit
TopoCluster and Implicit TopoCluster. kL and kS indicate a Stellar tree computed with either the larger (800) or smaller (400) bucketing threshold.

from the original paper [12]. Another difference compared with
TopoCluster is the internal representation of simplices. The Stellar
tree enumerates globally only vertices and tetrahedra while it avoids
enumerating edges and triangles and represents such simplices as a
tuple of vertices.

We compare the performance of the four data structures for
extracting relational operators. We start by computing all relational
operators involving vertices. Then, we move to edges, triangles,
and tetrahedra. Notice that TopoCluster requires two user-defined
parameters. The first parameter is the cache size which defines the
maximum number of clusters stored in cache (see Section 7). The
second parameter is the cluster size which defines the maximum
number of vertices contained in each cluster. The appropriate
selection of these parameters is discussed in Section 8.3. For this
experiment, we use a fixed cluster size (10000) and a fixed cache
size (1% of the number of clusters).

Figure 6 shows the results obtained with the four data structures.
As expected, Implicit TopoCluster and the Stellar tree show better
scalability. They are the only data structures capable of running on
all datasets. TTK triangulation goes out of memory on the larger
three datasets, while Explicit TopoCluster goes out of memory on
the largest dataset.

Regarding the memory footprint, Explicit TopoCluster provides
a good improvement compared to TTK triangulation. Memory
usage decreases by three times when using Explicit TopoCluster.
Implicit TopoCluster is always the most compact data structure
requiring 10% less memory than the Stellar tree.

Considering execution time, Implicit TopoCluster is always the
slowest at extracting relational operators. On average, it requires
up to 20% time more than the Stellar tree, 70% more time than
the Explicit, and it is twice slower than TTK triangulation. TTK
triangulation and the Explicit TopoCluster have overall similar
performance, even if the latter requires on average 20% more time
than TTK triangulation.

Compared to TTK triangulation, the scalability provided by
TopoCluster is of practical relevance. Implicit TopoCluster is twice
slower than TTK triangulation, but it is also ten times more compact.
Explicit TopoCluster is 20% slower than TTK triangulation, but it
is also three times more compact.

Compared to the Stellar tree, Implicit TopoCluster is 20%
slower, but also 10% more compact. Explicit TopoCluster uses

three times the memory than a Stellar tree, but it is also 30% faster.
We recall that each simplex is referenced as a unique number in
TopoCluster. The generation of such enumeration schema requires
more time, which is why TopoCluster is slower than the Stellar
tree. Since the enumeration lets us represent each simplex as a
single integer, this also explains why Implicit TopoCluster is more
compact.

Overall the main advantage of the enumeration strategy im-
plemented in TopoCluster is the easy integration with existing
frameworks. In the following sections, we drop the comparison
with the Stellar tree, since it does not allow for such integration,
and we compare TTK Triangulation and TopoCluster performance
by running existing TTK plugins.

8.2 Plugins for topology-based visualization
TTK offers several plugins for topology-based visualization [19].
For the sake of our comparison, we are interested in distinguishing
plugins based on how they process the input mesh.

Some plugin visits simplices in a sequential order follow-
ing the enumeration schema. As a consequence, TopoCluster
will access clusters in the same sequential order. We select
TTKScalarFieldCriticalPoints as an example of a plugin of this
kind. Conversely, other plugins visit simplices in a pseudo-random
fashion which will force TopoCluster to visit clusters in a random
order, possibly initializing the same cluster multiple times. We
select TTKMorseSmaleComplex as an example of a plugin of this
kind.
TTKScalarFieldCriticalPoints. This plugin is used for comput-
ing critical points from a given input scalar function. Cluster sizes
5000, and 10000 are chosen for Explicit and Implicit TopoCluster,
respectively. Cache size of 1% is selected for both structures.

This plugin requires extracting VV and V T operators. Moreover,
V F and FT operators are computed to identify the list of boundary
vertices. We recall that a vertex v is on the mesh boundary if at
least one of the triangles incident in v has only one tetrahedron on
its coboundary.

Figure 7 shows the performance of the three data structures.
Implicit TopoCluster uses 60% of the memory required by Explicit
TopoCluster, since it stores local hash maps for the triangles instead
of a global map. We notice that TTK triangulation requires twice
the memory of Implicit structure, and it goes out of memory on the

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

8

Fig. 7. Memory (in Megabytes) and time (in seconds) required for computing critical points (plugin ScalarFieldCriticalPoints) with TTK triangulation
(TTK), Explicit TopoCluster (Explicit), and Implicit TopoCluster (Implicit).

(a) (b)

Fig. 8. Memory (in Megabytes) and time (in seconds) required for computing Morse-Smale complex (plugin MorseSmaleComplex) with TTK
triangulation (TTK), Explicit TopoCluster (Explicit), and Implicit TopoCluster (Implicit).

(a) (b)

Fig. 9. The changes of memory and time usage on TTKScalarFieldCriti-
calPoints plugin for Foot dataset with Implicit and Explicit TopoCluster
when (a) cache rate changes from 1% to 50% and (b) cluster size
changes from 10 to 1,000,000.

three larger datasets. Thanks to the precomputing step executed by
TTK, it is 1.8 times faster than Explicit TopoCluster and two times
faster than Implicit TopoCluster.
TTKMorseSmaleComplex. This plugin is used for computing
a Morse-Smale (MS) complex from an input scalar function f
defined on a simplicial complex Σ. An integral line is a path on
Σ which is everywhere tangent to the gradient of f . Integral lines

(a) (b)

Fig. 10. The changes of memory and time usage on TTKMorseSmale-
Complex plugin for Foot dataset with Implicit and Explicit TopoCluster
when (a) cache rate changes from 1% to 30% and (b) cluster size
changes from 10 to 10,000.

connect pairs of critical points of f . Intuitively, the MS complex is a
segmentation of the input scalar field in regions where integral lines
are connected to the same pair of critical points. Many algorithms
have been proposed in the last twenty years [10] to compute MS
complexes both in 2D and 3D. Among these, approaches based
on discrete Morse theory [13] have proved to be efficient, simpler
to implement, and more scalable [18], [26], [33]. The algorithm

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

9

implemented in TTK, also based on discrete Morse theory, requires
almost all relational operators (i.e., V E, V F , V T , EF , ET , FE,
FT and T F operators) [30].

First, a discrete gradient is computed by visiting the simplices of
the mesh, dimension by dimension, with an embarrassingly parallel
process. After all vector pairs have been computed, simplices that
are left unpaired are called critical. The cells of the MS complex
are computed by visiting the discrete gradient starting from the
critical simplices.

For the sake of our evaluation, it is important to underline that
the extraction of the MS complex requires visiting clusters in a
random fashion. That is, starting at a critical simplex σ , the visit is
not limited to the cluster containing σ , but it may expand to the
surrounding clusters. Then, there is no limit to the number of times
each cluster is visited. This represents a worst-case scenario for
TopoCluster, which is forced to recompute topological operators
multiple times during the plugin execution.

For this experiment, the cluster size is set to 50, while the
cache size is set to 10% for both Explicit and Implicit structure
(see Section 8.3). Figure 8(a) shows the comparison of memory
consumption. We notice that TTK triangulation uses about twice
the memory required by Explicit TopoCluster and can only run on
the four smaller datasets.

We can also observe how the memory footprint of TopoClus-
ter does not increase monotonically when using datasets with
increasing size. This is a consequence of reducing the memory
footprint of relational operators. With only a limited amount of
memory dedicated to relational operators, the memory requirement
of TopoCluster becomes output-sensitive (i.e., it depends on the
size of the MS complex). For this reason, the dataset with a more
complicated MS complex, e.g., Foot or Engine datasets, uses more
memory than larger datasets.

Figure 8(b) shows the run time comparison. On the four datasets
for which TTK triangulation can complete the extraction, Implicit
TopoCluster is four times slower, while Explicit TopoCluster is two
times slower than TTK triangulation.

8.3 Cache and cluster size

In this section, we discuss the effects that different cache sizes and
cluster sizes have on performance. Since a trend has been observed
for all datasets, we only show the results about the Foot dataset for
brevity.
TTKScalarFieldCriticalPoints. For a sequential algorithm, the
cache size is of limited importance. Increasing cache size only
results in increased memory usage with limited effects on run time.
Figure 9(a) shows the trend for the TTKScalarFieldCriticalPoints
with different cache sizes on two TopoCluster instances. Varying
cache size from 1% to 50% of the total number of clusters, we
see a sharp increase in memory usage with no significant speedup.
However, since each cluster is visited only once by the plugin, a
larger cache size does not necessarily improve time performance.

Different cluster sizes, instead, affect both execution time and
memory usage. Figure 9(b) shows trends for the Foot dataset when
varying cluster size from 100 to 1,000,000. As expected, using
larger clusters reduces the number of tetrahedra shared by multiple
clusters, and this leads to reduced memory consumption and faster
algorithm execution. However, if the cluster accommodates too
many vertices, the time and memory consumption will spike.
TTKMorseSmaleComplex. Unlike the sequential access pattern,
the cache size parameter plays an important role in the algorithm

that accesses clusters in a pseudo-random way. Figure 10(a) shows
the speedup and compression factor obtained by varying cache size
with TTKMorseSmaleComplex plugin. The largest cache size here
is 30% since both Explicit and Implicit TopoCluster run out of
memory when the cache size is larger than 30%. For this plugin,
increasing the cache size leads to faster execution at the cost of
memory requirements.

Timings increase when increasing the cluster size (see Figure
10(b)). This is explained by the fact that clusters are visited more
than once, and re-computing larger clusters take more time. Similar
to the sequential algorithm, memory consumption slightly decreases
when larger clusters are used.

The lesson learned is that small cluster size is beneficial when
an algorithm accesses clusters in a pseudo-random fashion. The
available system memory should guide the choice of the optimal
cache size since a larger cache size is always beneficial as long as
the program does not run out of memory.

8.4 Parallel processing

TTK allows multithread execution by using OpenMP [6]. The main
problem in allowing the use of OpenMP with TopoCluster is the
cache system. A global LRU cache becomes the main bottleneck
since each thread needs exclusive access to it. To address this
problem, we have implemented a thread-based caching system. In
practice, each thread has a dedicated cache.

If the thread-based cache solves the bottleneck issue, the cache
size requires some adjustment since the maximum number of
clusters stored in each cache will be multiplied by the number of
threads. To this end, TopoCluster provides the functionality of a
dynamic caching system, which allows the user to specify the size
of the cache for a specific subset of the algorithm. In practice, the
user can increase the cache size for serial sections, and divide the
cache size across multiple threads for parallel sections.

The performance of the new thread-based caching system
has been evaluated with TTKScalarFieldCriticalPoints and
TTKMorseSmaleComplex plugins, using the same cluster size of
the serial execution and using 12 threads. Since the main goal
of TopoCluster is to provide control over memory usage, we
balance the cache size requested for multi-thread and single-thread
executions. We select a 12% cache size for the single-thread
execution, while in parallel sections the cache size is reduced to 1%.

The algorithm implemented in TTKScalarFieldCriticalPoints is
embarrassingly parallel. Thus, the cache size is maintained at 1%
for the entire algorithm. Figure 11 (a) and (b) show memory usage
and run time for the plugin, respectively.

The memory consumption is roughly the same as the serial
execution for all data structures. Among the three data structures,
Implicit TopoCluster always uses less memory and is the only data
structure that can execute the plugin on all the datasets.

Although the run time improves for all data structures, general
trends remain similar to the single-thread run. Implicit TopoCluster
uses 50% less memory than the TTK triangulation but is 1.5x
slower. Implicit TopoCluster has similar time performance as
Explicit TopoCluster, while using only 60% of the memory.

Figure 11 (c) shows the speedup of the multi-thread execution
for all three data structures compared with the single-thread version
using 12% cache size. Both Explicit and Implicit TopoCluster get
an average 3x speedup over the single-thread execution, while
TTK triangulation is on average 2.5x faster. This is due to the

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

10

(a) (b) (c)

Fig. 11. The results obtained computing critical points (i.e., plugin TTKCriticalPoints) with TTK triangulation (TTK), Explicit TopoCluster (Explicit), and
Implicit TopoCluster (Implicit) and enabling OpenMP support. (a) Memory consumption when 1% cache rate is used for TopoCluster. (b) Time usage
when 1% cache rate is used for TopoCluster. (c) Speedup for all three data structures compared to serial execution.

(a) (b) (c)

Fig. 12. The results obtained computing Morse-Smale complex (i.e., plugin TTKMorseSmaleComplex) with TTK triangulation (TTK), Explicit
TopoCluster (Explicit), and Implicit TopoCluster (Implicit) and enabling OpenMP support. (a) Memory consumption when 1% cache rate is used for
TopoCluster. (b) Time usage when 1% cache rate is used for TopoCluster. (c) Speedup for all three data structures compared to serial execution.

preprocessing step in TTK triangulation. Since relational operators
are computed using a mix of parallel and sequential operations in
the preprocessing phase, this limit the speedup obtained by TTK
triangulation when using multiple threads.

Finding general trends in the TTKMorseSmaleComplex plugin
is more challenging since not all steps can be executed in parallel.
In this case, we use the dynamic caching system allocating 12%
cache size for sequential steps, and 1% cache size for the parallel
ones.

Figure 12 (a) and 12 (b) show the overall memory usage and
timings. Implicit TopoCluster always uses less memory, on average
40% of the memory required by TTK triangulation and 70% of
the memory required by Explicit TopoCluster. This compactness
is ”paid” at run-time, where Implicit TopoCluster is on average
4 times slower than TTK triangulation and 2 times slower than
Explicit TopoCluster.

Figure 12 (c) shows the speedup obtained by each structure
compared with the results obtained using a single thread. We
limit the comparison to the multithreaded execution, excluding the
extraction of MS cells which is performed by a single thread. We
notice that TTK triangulation provides a 2x speedup independently
of the dataset size or the output size.

Since the complexity of the MS complex impacts on the
performance of TopoCluster (see Section 8.2), datasets with a
more complicated MS complex gets a lower speedup. For example,
the speedup on Foot dataset is 1.8x for Explicit, and 1.6x Implicit
TopoCluster. In general, Explicit TopoCluster gets an average 3.2x
speedup, and Implicit TopoCluster gets an average 2.5x speedup.

In general, TTK triangulation provides best time performance,
but it can only be used with meshes of limited size. If the user needs
to limit memory consumption while maintaining competitive time
performance, Explicit TopoCluster is a satisfactory pick. Implicit
TopoCluster is the best choice with very large datasets or when the
system has limited memory.

9 CONCLUSION

In this work, we have designed two new data structures, Explicit
and Implicit TopoCluster, based on the Stellar decomposition model
[12]. The scope of both data structures is to improve scalability
by reducing memory consumption. Both data structures divide
the simplicial mesh into clusters in order to process the mesh
locally. Explicit TopoCluster encodes more information in the
global layer and guarantees run-time efficiency while requiring
more memory. On the contrary, Implicit TopoCluster encodes less
information in the global layer and guarantees lower memory
consumption with limited overhead. We have integrated both data
structures in the Topology Toolkit [30], which provides an easy-
to-use interface to developers and practitioners in topological data
analysis. TopoCluster supports shared memory parallelization based
on OpenMP [6], and it can be used with any plugin implemented
in TTK.

In our experimental evaluation, we have compared Explicit and
Implicit TopoCluster with TTK triangulation [30] and the Stellar
tree [12]. Compared to TTK triangulation, Explicit TopoCluster
requires half of the memory while still having comparable time

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

11

performance. When minimal memory usage is crucial, Implicit
TopoCluster requires an order of magnitude less memory but is
twice slower than TTK triangulation. Compared to the Stellar tree,
Explicit TopoCluster uses twice the memory while being 30%
faster. Implicit TopoCluster uses 20% less memory while being up
to 25% slower than the Stellar tree. However, TopoCluster provides
a much easier interface for developers, and it is easier to integrate
into existing frameworks for mesh processing.

Even though TopoCluster is currently designed for tetrahedral
meshes, it is straightforward to adapt the data structure for
triangle meshes. Generalizing TopoCluster to higher dimensions
by enumerating all simplices is possible, but this could lead to
severe performance decay since the number of simplices grows
exponentially with the increase of the complex dimension. This
problem affects all data structures that enumerate simplices in full
[12].

By enabling OpenMP support in TopoCluster, we have observed
that the local processing of the relational operators provides a
higher speedup than TTK triangulation. A promising direction
of our research is designing a new version of TopoCluster for
distributed environments where groups of clusters are distributed
across multiple machines.

ACKNOWLEDGMENTS

The source code for the TopoCluster can be found at
https://github.com/guoxiliu/TopoCluster. This work has been par-
tially supported by the US National Science Foundation under
grant number IIS-1910766. It has also been performed under the
auspices of the German Aerospace Center (DLR) under Grant DLR-
SC-2467209. The authors would like to thank Philips Research,
Hamburg, Germany, for the Foot dataset, General Electric for the
Engine dataset, and Michael Meißner, Viatronix Inc. for the Stent
dataset. The Red Sea dataset is courtesy of the Red Sea Modeling
and Prediction Group (PI Prof. Ibrahim Hoteit). The remaining
tetrahedral meshes (Cat, Sphere, Shapes, and Hole) are courtesy of
Yixin Hu from New York University.

REFERENCES

[1] U. Ayachit, The ParaView Guide: Updated for ParaView Version 4.3,
L. Avila, Ed. Los Alamos: Kitware, 2015.

[2] J.-D. Boissonnat and C. Maria, “The Simplex tree: An efficient data
structure for general simplicial complexes,” Algorithmica, vol. 70, no. 3,
pp. 406–427, 2014.

[3] D. Canino and L. De Floriani, “Representing simplicial complexes
with Mangroves,” in Proceedings of the 22nd International Meshing
Roundtable. Springer, 2014, pp. 465–483.

[4] D. Canino, L. De Floriani, and K. Weiss, “IA∗: An adjacency-based
representation for non-manifold simplicial shapes in arbitrary dimensions,”
Computers & Graphics, vol. 35, no. 3, pp. 747–753, 2011.

[5] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,
A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant,
J. M. Favre, and P. Navrátil, “VisIt: An End-User Tool For Visualizing and
Analyzing Very Large Data,” in High Performance Visualization–Enabling
Extreme-Scale Scientific Insight, Oct 2012, pp. 357–372.

[6] L. Dagum and R. Menon, “OpenMP: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[7] L. De Floriani, D. Greenfieldboyce, and A. Hui, “A data structure
for non-manifold simplicial d-complexes,” in Proceedings of the 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing.
ACM, 2004, pp. 83–92.

[8] L. De Floriani and A. Hui, “Data structures for simplicial complexes: an
analysis and a comparison,” in Proceedings of the third Eurographics
symposium on Geometry processing. Eurographics Association, 2005,
pp. 119–es.

[9] L. De Floriani, A. Hui, D. Panozzo, and D. Canino, “A dimension-
independent data structure for simplicial complexes,” Proceedings of the
19th International Meshing Roundtable, pp. 403–420, 2010.

[10] L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo, “Morse Complexes
for Shape Segmentation and Homological Analysis: Discrete Models and
Algorithms,” Computer Graphics Forum, vol. 34, no. 2, pp. 761–785,
2015.

[11] H. Edelsbrunner, Algorithms in combinatorial geometry. Springer Verlag,
1987, vol. 10.

[12] R. Fellegara, K. Weiss, and L. De Floriani, “The Stellar decomposition: A
compact representation for simplicial complexes and beyond,” Computers
& Graphics, vol. 98, pp. 322–343, Aug. 2021.

[13] R. Forman, “Morse theory for cell complexes,” Advances in Mathematics,
vol. 134, no. 900145, pp. 90–145, 1998.

[14] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, no. 9,
pp. 490–499, 1960.

[15] U. Fugacci, F. Iuricich, and L. De Floriani, “Computing discrete Morse
complexes from simplicial complexes,” Graphical Models, vol. 103, p.
101023, May 2019.

[16] T. Gurung, D. Laney, P. Lindstrom, and J. Rossignac, “SQuad: Compact
representation for triangle meshes,” in Computer Graphics Forum, vol. 30,
no. 2. Wiley Online Library, 2011, pp. 355–364.

[17] T. Gurung and J. Rossignac, “SOT: a compact representation for
tetrahedral meshes,” in Proceedings SIAM/ACM Geometric and Physical
Modeling, ser. SPM ’09, San Francisco, USA, 2009, pp. 79–88.

[18] A. Gyulassy, P.-T. Bremer, and V. Pascucci, “Shared-memory parallel
computation of Morse-Smale complexes with improved accuracy,” IEEE
Transactions on Visualization and Computer Graphics, vol. 25, no. 1, pp.
1183–1192, Jan. 2019.

[19] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth, “A survey of topology-based
methods in visualization,” Computer Graphics Forum, vol. 35, no. 3, pp.
643–667, Jun. 2016.

[20] Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo,
“Tetrahedral meshing in the wild,” ACM Trans. Graph., vol. 37, no. 4, pp.
60:1–60:14, Jul. 2018.

[21] D. Jönsson, P. Steneteg, E. Sundén, R. Englund, S. Kottravel, M. Falk,
A. Ynnerman, I. Hotz, and T. Ropinski, “Inviwo - a visualization system
with usage abstraction levels,” IEEE Transactions on Visualization and
Computer Graphics, vol. 26, no. 11, pp. 3241–3254, 2019.

[22] M. Luffel, T. Gurung, P. Lindstrom, and J. Rossignac, “Grouper: A
compact, streamable triangle mesh data structure,” IEEE Annals of the
History of Computing, no. 01, pp. 84–98, 2014.

[23] M. Mantyla, An Introduction to Solid Modeling. Computer Science Press,
1988.

[24] G. M. Nielson, “Tools for triangulations and tetrahedralizations and
constructing functions defined over them,” in Scientific Visualization:
overviews, Methodologies and Techniques, G. M. Nielson, H. Hagen, and
H. Müller, Eds. Silver Spring, MD: IEEE Computer Society, 1997,
ch. 20, pp. 429–525.

[25] A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci, “Dimension-
independent modeling with simplicial complexes,” ACM Transactions on
Graphics (TOG), vol. 12, no. 1, pp. 56–102, 1993.

[26] V. Robins, P. J. Wood, and A. P. Sheppard, “Theory and algorithms for
constructing discrete Morse complexes from grayscale digital images,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33,
no. 8, pp. 1646–1658, 2011.

[27] J. Rossignac, A. Safonova, and A. Szymczak, “3D compression made
simple: Edge-Breaker on a Corner Table,” in Proceedings Shape Modeling
International. Genova, Italy: IEEE Computer Society, May 2001.

[28] H. Samet, Foundations of Multidimensional and Metric Data Structures,
ser. The Morgan Kaufmann Series in Computer Graphics and Geometric
Modeling. Amsterdam ; Boston: Elsevier/Morgan Kaufmann, 2006,
oCLC: ocm61731525.

[29] B. Schäling, The Boost C++ Libraries, 2nd ed. Laguna Hills, Calif:
XML Press, 2014.

[30] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux, “The
Topology ToolKit,” IEEE Transactions on Visualization and Computer
Graphics, vol. 24, no. 1, pp. 832–842, Jan. 2018.

[31] H. Toye, P. Zhan, G. Gopalakrishnan, A. R. Kartadikaria, H. Huang,
O. Knio, and I. Hoteit, “Ensemble data assimilation in the Red Sea:
sensitivity to ensemble selection and atmospheric forcing,” Ocean
Dynamics, vol. 67, no. 7, pp. 915–933, Jul. 2017.

[32] K. Weiss, R. Fellegara, L. De Floriani, and M. Velloso, “The PR-star
octree: a spatio-topological data structure for tetrahedral meshes,” in
Proceedings ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2011, pp. 92–101.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

https://github.com/guoxiliu/TopoCluster

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

12

[33] K. Weiss, F. Iuricich, R. Fellegara, and L. De Floriani, “A primal/dual
representation for discrete Morse complexes on tetrahedral meshes,” in
Computer Graphics Forum, vol. 32, no. 3pt3. Wiley Online Library,
2013, pp. 361–370.

Guoxi Liu Guoxi Liu is currently a Ph.D. student
in the School of Computing at Clemson University
and a member of the Visual Computing Lab. He
got his Bachelor’s degree in Computer Science
from Chang’an University (China) in 2014. His
research interests include Scientific Visualiza-
tion, Topological Data Analysis, and Spatial Data
Structures.

Federico Iuricich Federico Iuricich is an as-
sistant professor in the School of Computing
at Clemson University and a member of the
Visual Computing Lab. He received his Ph.D. in
Computer Science at the University of Genova
(Italy) in 2014. Before joining Clemson, he has
been a postdoctoral fellow in the Department of
Computer Science at the University of Maryland,
at College Park. His research expertise lies in
topological methods for data analysis and visual-
ization with a focus on unstructured data.

Riccardo Fellegara Riccardo Fellegara is a Se-
nior Researcher of the Department of Software
for Space Systems and Interactive Visualization,
German Aerospace Center (DLR), Institute for
Software Technology, Germany. He earned his
Master and Ph.D. degrees in Computer Science
at the University of Genova (Italy), in 2010 and
2015, respectively. He has been a Post-Doctoral
Fellow Affiliate at Computer Science and Geo-
graphical Sciences departments of the University
of Maryland, College Park, USA, from 2015 to

2019. His research interests include Spatial Data structures and Al-
gorithms, Scientific Visualization, Topology-based Data Analysis, High
Performance Computing (HPC), Geometric Modeling, and Geographic
Information Systems.

Leila De Floriani Leila De Floriani is a professor
at the University of Maryland at College Park
(USA). De Floriani has been the 2020 Presi-
dent of the IEEE Computer Society. She is an
IEEE Fellow, an IAPR Fellow, an Eurographics
Association Fellow, a Solid Modeling Association
Pioneer, and an inducted member of the IEEE
Visualization Academy and of the IEEE Honor
Society HKN. De Floriani has been the editor-in-
chief of the IEEE Transactions on Visualization
and Computer Graphics (TVCG) in 2015-2018,

and she is currently an associated editor of several international journals,
including Computers and Graphics, ACM Transactions on Spatial Al-
gorithms and Systems, GeoInformatica, and Graphical Models. She
has authored over 300 peer-reviewed scientific publications in data
visualization, geospatial data representation and processing, computer
graphics, geometric modeling, shape analysis and understanding.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

1077-2626 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3121229, IEEE
Transactions on Visualization and Computer Graphics

1

APPENDIX A
Associating unique identifiers to the simplices of a simplicial
complex represents a clear advantage for developers.

Figure 13 shows the snippet of a generic C++ procedure
computeEdgeValues(). The procedure computes and saves a value
for each edge of a simplicial complex. The value is computed based
on the edge vertices.

The code shown in Figure 13 uses two functions provided by
the underlying data structure; getEdgeNumber() returns the total
number of edges in the simplicial complex; getEdgeVertex(k,i)
returns the kth vertex on the boundary of edge i.

Fig. 13. Code snippet for the procedure computeEdgeValues() imple-
mented in TopoCluster.

Fig. 14. Code snippet for the procedure computeEdgeValues() imple-
mented in the Stellar tree.

The code is simplified thanks to the enumeration provided by
TopoCluster. First, results are saved in a simple indexed vector
(row 5). Second, each edge is visited by means of a simple for loop
(row 6). As a consequence, making a parallel version of the same
function would be trivial using OpenMP [6].

Implementing the same procedure without the enumeration
property would require more involved code. Figure 14 shows a
snippet of the C++ code implementing computeEdgeValues() on the
Stellar tree [12]. Similar to TopoCluster, the Stellar tree is defined
upon the Stellar decomposition model [12]. The difference is that it
does not provide an enumeration for all the simplices of the mesh
encoded. Simplices are organized in a hierarchical decomposition
(a Point Region octree [28]) and represented through tuples of
vertices (see Section 3).

The std::vector is now replaced by a std::map since now each
edge is internally represented by a pair of vertices (row 2). The

visit of all the edges is replaced by a breadth-first search of the
hierarchical decomposition. The visit starts at the root of the
hierarchy (row 4) and traverses the entire hierarchy until reaching
the leaf nodes, which are the nodes storing the edges (row 8).
Moreover, since each edge may appear in multiple nodes, duplicate
entries need to be handled accordingly (row 10).

Authorized licensed use limited to: University of Maryland College Park. Downloaded on September 11,2022 at 20:08:50 UTC from IEEE Xplore. Restrictions apply.

