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a b s t r a c t

We address the problem of simplifying Morse–Smale complexes computed on volume datasets based on
discrete Morse theory. Two approaches have been proposed in the literature based on a graph
representation of the Morse–Smale complex (explicit approach) and on the encoding of the discrete
Morse gradient (implicit approach). It has been shown that this latter can generate topologically-
inconsistent representations of the Morse–Smale complex with respect to those computed through the
explicit approach. We propose a new simplification algorithm that creates topologically-consistent
Morse–Smale complexes and works both with the explicit and the implicit representations. We prove
the correctness of our simplification approach, implement it on volume data sets described as
unstructured tetrahedral meshes and evaluate its simplification power with respect to the usual Morse
simplification algorithm.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A volume dataset is characterized by a finite set of points,
regularly or irregularly distributed over a domain, and by a scalar
value associated with each of them. Morse theory [1] has been
recognized as an important tool for studying the morphology of a
scalar field in several applications, including physics, chemistry,
medicine, geography, etc.

When working with real data, the size of the morphological
segmentation and the presence of noise require specific tools for
analysis and visualization. Multi-resolution models are then
defined to provide domain experts with an interactive tool for
the exploration of such data. At the base of the definition of a
multi-resolution model stands the definition of a simplification
algorithm, used for building the model.

The operator defined in Morse theory for topologically simplify
a dataset is called cancellation. Cancellation removes two critical
points by locally modifying the integral lines originating and
converging in the two points [2]. Two different approaches have
been defined for applying such operator onto real data. The first
approach uses a graph representation of the connectivity of the

critical points [3]. The geometry of the Morse complexes is
explicitly stored in the representation, attached to the graph
nodes. For this reason, this approach is also known as explicit.
Removing two critical points corresponds to deleting two nodes of
the graph and merging the attached entities.

The second approach is based on discrete Morse theory [4], a
combinatorial counterpart of smooth Morse theory, where the notion
of discrete Morse gradient (also called a Forman gradient) is defined. A
Forman gradient field is a collection of critical simplices (correspond-
ing to the critical points of a smooth function f) and a set of gradient
paths, simulating the integral lines of f. From a Forman gradient field,
the Morse cells can be computed navigating the gradient paths and,
thus, they do not need to be stored explicitly.

Alongside with the notion of critical point and Morse complex
also the cancellation operator has been defined in this combina-
torial framework. Applying the cancellation operator on a Forman
gradient corresponds to eliminating a pair of critical simplices and
changing the direction of the gradient arrows along the path
between them. This update implicitly modifies the Morse cells
accordingly. Thus, this approach is also know as implicit.

Simplifications performed with the explicit method are gener-
ally faster thanks to the graph-based representation, and thus
preferable when high performance is needed. On the other hand,
the implicit method avoids the extraction of the Morse cells and is
preferable when compactness is more relevant. However, even if
the two methods are equivalent in 2D, the implicit representation
may present inconsistencies when working in higher dimensions.
The origin of the problem, described in [5] for 3D scalar fields, is
attributed to the structure of the discrete gradient pairs along the
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paths connecting 1-saddles to 2-saddles. This makes the implicit
approach useless in practice when simplifying volumetric data.

Different multi-resolution models have been defined in the
literature based on an explicit simplification sequence [6,7]. The
resulting models have been proven to be efficient for interactively
modifying and visualizing Morse features but they are lacking in
compactness. In this direction, the Forman gradient would be a
perfect candidate for defining a compact model but, due to the
inconsistency problem described in [5], no models have been yet
defined for volumetric data.

In this work we consider the problem of defining a simplification
algorithm, for the implicit method, based on an efficient representa-
tion and free from the topologically inconsistencies that affect the
standard implicit method. Our approach is described and implemen-
ted for unstructured tetrahedral meshes, but it is entirely dimension-
independent. Thus, the major contributions of this work are:

(i) the definition of a compact data structure for the efficient
simplification of a Forman gradient (see Section 4);

(ii) a method for removing shared gradient paths (see Section 7);
(iii) an algorithm for simplifying a volume dataset, that generates a

topologically-consistent simplification sequence (see Section
8).

By using this algorithm we are able to obtain a simplification
sequence free from topological inconsistencies, based on which a
compact multi-resolution model can be defined and implemented.

2. Discrete Morse theory

Morse theory [1] studies the relationships between the topol-
ogy of a manifold M and the critical points of a real-valued
function f defined on M. Recently, a discrete counterpart of Morse
theory has been proposed by Forman for cell complexes [4]. Cell
complexes provide a compromise between the theoretical concept
of topological space and the intuition of a discretized shape. They
encompass both the notions of simplicial and cubical complex,
which can be intuitively described as collections of simplices or
elementary cubes on a regular grid, respectively. Here, we will
review discrete Morse theory in the context of simplicial com-
plexes for simplicity.

A simplex of dimension k (k-simplex) is the convex hull of kþ1
affinely independent points. Given a k-simplex τ, any simplex Σ
which is the convex hull of a non-empty subset of the points
generating τ is called a face of τ. Conversely, τ is called a coface of
Σ. A simplicial complex Σ is a finite set of simplices, such that each
face of a simplex in Σ belongs to Σ, and each non-empty
intersection of any two simplices in Σ is a face of both. We define
the dimension of a simplicial complex Σ, denoted as dimðΣÞ, as the
largest dimension of its simplices.

In discrete Morse theory, a discrete function F is defined on all
the simplices of Σ, and it is called a discrete Morse function (or a
Forman function) if any k-simplex σ of Σ has F value greater than its
(k-1)-faces and lower than its (kþ1)-faces, with at most one
exception (see Fig. 1(b)). A k-simplex is called a critical k-simplex
(or a k-saddle) if there is no exception. In particular, a 0-saddle is
called a minimum and, a d-saddle a maximum, when d ¼ dimðΣÞ.
The unique exception to the above rule, which holds for any non-
critical simplex, allows for pairing such simplex with one of its
faces, or one of its cofaces. Such pair can be depicted as an arrow
from a k-simplex σ (tail) to a (kþ1)-simplex τ (head) (see Fig. 1(c)).

A discrete vector field V on a simplicial complex Σ is a collection of
pairs (σ,τ) such that each simplex of Σ is in at most one pair of V. A
Forman function F induces a discrete vector field VF , called a discrete
gradient Morse vector field (or, simply, a Forman gradient). In Fig. 1(a),

a scalar field defined on a simplicial complex is shown. In Fig. 1(b), a
Forman function is defined which extends the values at the vertices
to each edge (green numbers) and triangle (red numbers). In Fig. 1(c),
the corresponding Forman gradient is built pairing each k-simplex
with the (kþ1)-simplex having the same value. Those simplices that
remain unpaired (vertex 1, edge 6 and triangle 8) are the critical ones.

Many algorithms have been defined for building a Forman
gradient field on a simplicial or cubical complex by starting from a
function given at the vertices of the complex. Most of such
algorithms avoid the computation of the Forman function and
provides directly the gradient. In our work we have used the
algorithm described in [8] adapted for simplicial complexes. The
interested reader is referred to [9] for a survey of algorithms for
computing a Forman gradient field.

A V-path (or gradient path) is a sequence ½ðσ1; τ1Þ; ðσ2; τ2Þ;…;

ðσr ; τrÞ� of pairs of k-simplices σi and (kþ1)-simplices τi, such that
ðσi; τiÞAV ;σiþ1 is a face of τi, and σiaσiþ1. A V-path with r41 is
closed if σ1 is a face of τr different from σr�1. It can be proven that
a discrete vector field V is the gradient vector field of a discrete
Morse function F if and only if V has no closed V-paths. Given two
critical simplices τ and σ, we call separatrix V-path between τ and σ
each sequence ½τ; ðσ1; τ1Þ; ðσ2; τ2Þ;…; ðσr ; τrÞ;σ� such that all the
pairs form a V-path from a face σ1 of τ to a coface τr of σ. Given
two critical simplices τ, σ, we define the multiplicity of the
incidences between τ and σ to be the number μðτ;σÞ of separatrix
V-paths between τ and σ. In Fig. 1(c) we have two separatrix V-
paths between the critical edge 6 and the critical vertex 1. They are
identified by following the sequence of (vertex, edge) pairs
starting from the boundary of edge 6 and ending on vertex 1.
The two separatrices are ½6; ð3;3Þ;1� and ½6; ð5;5Þ; ð2;2Þ;1�. The
multiplicity of the incidences between edge 6 and vertex 1 is two.

Given a Forman gradient V on a simplicial complex Σ, the notion of
descending and ascending Morse complexes is defined based on the
behavior of the gradient arrows of V on Σ. Given a k-critical simplex τ,
its corresponding descending k-cell is the collection of the k-simplices
of Σ belonging to a V-path starting at τ. Dually, its corresponding
ascending (d-k)-cell is the collection of all the k-simplices belonging to
a V-path that converges to τ. The collection of all the descending
[ascending] cells form the descending Morse complex Γd [ascending
Morse complex Γa] (see Fig. 2(b) and (c)). The Morse–Smale (MS)
complex ΓMS consists of the connected components of the intersection
of descending and ascending Morse cells. The 1-skeleton of the Morse–
Smale complex ΓMS is the subcomplex of ΓMS composed only of its 0-
cells and 1-cells (see Fig. 2(d)).

2.1. Simplifying discrete Morse complexes

Topology-based simplification of scalar fields [10,11] is a
powerful tool known in literature for removing insignificant
features while preserving relevant parts of the data (see Fig. 2(e)).

An operator (called cancellation) has been defined in the
literature for removing pairs of critical points [2]. The discrete
counterpart of this operator has been introduced in [4] and allows
the elimination of a pair of critical simplices. Let Σ be a simplicial
complex endowed with a Forman gradient V. Given two critical
simplices τ and σ of Σ, with dimension kþ1 and k respectively,
ðσ; τÞ is a valid cancellation pair for ðΣ;V Þ if μ(τ, σ)¼1, i.e., if the
two simplices are connected through a unique separatrix V-path.
Under such assumption, k-cancellation(σ, τ) is the operator which
removes the critical simplices σ and τ, reversing the gradient
arrows along the unique separatrix V-path from τ to σ. More
precisely, if ½τ; ðσ1; τ1Þ; ðσ2; τ2Þ;…; ðσr ; τrÞ;σ� is a separatrix V-path, a
new V-path on Σ is created as ½ðσ; τrÞ; ðσr ; τr�1Þ;…; ðσ2; τ1Þ; ðσ1; τÞ�.
The Forman gradient V 0 obtained in this way is still a Forman
gradient on Σ with the same critical simplices with the exception
of σ and τ. Fig. 3 shows the effect of 1-cancellation(σ, τ) on a
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Forman gradient V defined on a triangle mesh Σ: σ is a critical edge
and τ and τ0 are two critical triangles. Starting from σ, the
separatrix V-path, connecting τ to σ, is reversed. As a consequence,
τ and σ are not critical. The two separatrix V-paths, connecting τ to
α1 and α2, are extended with the reversed V-path, and now
connect τ0 to α1 and α2. The two separatrix V-paths starting from
σ and reaching ρ1 and ρ2 become non-separatrix V-paths.

3. Related work

In the literature, several strategies have been proposed for
topologically simplifying the morphological representation of a
dataset [12].

The problem of simplifying a Morse–Smale complex has been
addressed in 2D [3,13,14], 3D [6,15] and in nD [16]. A common
characteristic of all simplification algorithms is the ordering of the
available simplifications based on a priority schema. Priority
measures the importance of pairs of critical points which are
candidate for deletion, and is defined in such a way to cause the
removal of less important critical pairs first. Algorithms have been
proposed based on different priority measures. Persistence [10] is
the most widely used; it estimates the importance of a pair of
critical points according to the absolute difference of function
values between the two points. More recently, other methods for
measuring the importance of pairs of critical simplices have been
proposed with the purpose of taking into account also the
geometry of the underlying simplicial or cubical complex, namely
separatrix persistence [14,17] and topological saliency [18].

We distinguish between two types of algorithms for simplifying
an MS complex: algorithms working on a graph-based representa-
tion of the complex [13,6,19] (also called explicit methods), like the
Morse Incidence Graph discussed in Section 4, and algorithms
based on the Forman gradient [14,15,20] (also called implicit
methods). All algorithms for 2D scalar fields are equivalent in the
sense that they can produce the same simplification sequence, and

the resulting simplification process is monotonic, i.e., after each
simplification, all the new simplifications have higher persistence
value. Differences arise when working in three or higher dimen-
sions (see [5] and Section 5).

In [13,6], two data structures have been defined implementing
the graph representation for triangle meshes and for cubical
complexes, respectively. In both cases, geometric attributes of the
Morse cells and of the 1-skeleton of the itMS complex are explicitly
encoded (i.e., vertices, edges, triangles and voxels forming such
cells). Simplifications are performed by deleting nodes in pairs and
merging together the geometrical representations of the Morse
cells. In [19], a lightweight version of the same structure has been
used encoding only the d- and 0-cells of the two Morse complexes,
all the other cells being retrieved by intersection. However, since
this latter operation is particularly time-consuming, the resulting
data structure is less significative for practical usage.

Algorithms defined in [14,15,20] take full advantage of the
Forman gradient for defining a simplification algorithm with a low
storage consumption. In [14,20], simplifications are performed on
the Forman gradient defined on a 2D regular grid and on a 2D

Fig. 1. (a) A simplicial complex with scalar values defined on its vertices. (b) Values are extended to each simplex defining a Forman function and in (c) the corresponding
Forman gradient is depicted. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 2. (a) For a terrain dataset function f corresponds to the height function and its critical points are peaks (red dots), saddles (green dots) and pits (blue dots).
(b) Descending Morse complex decomposes the terrain in a collection of 2-cells in one to one correspondence with the peaks while (c) the 2-cells forming the ascending
Morse complex are in one-to-one correspondence with the pits. (d) The separatrix lines for a terrain dataset always connect a saddle with a maximum or a saddle with a
minimum. (e) Effects of topological simplification performed on the 1-skeleton of the Morse–Smale complex shown in (d). Note that function values (height values of the
terrain) are not modified by the topological simplification; the simplified 1-skeleton represents the two main peaks and the pit only. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. Effect of the 1-cancellation(σ, τ) on a Forman gradient V defined on a triangle
mesh, The original V (left side) has two critical triangles τ and τ0 (in red) and one
critical edge σ (in green). Red arrows indicate the V-path involved in the
simplification. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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simplicial complex, respectively. In [15], a similar simplification
algorithm is implemented for the Forman gradient defined on a 3D
regular grid. Due to the inconsistency problem, that we will
discuss in Section 5, the incidence relations among the critical
simplices need to be locally recomputed after each simplification.

4. Representing Morse complexes

Two kinds of representation are used for Morse complexes: a
graph-based representation [10,13,6], which explicitly encodes the
cells of the Morse complexes and their topological relations, and
one based on the encoding of the Forman gradient, which
represents such relations implicitly [15,5]. We motivate why the
implicit representation is preferable when aiming at a compact
data structure for simplifying Morse complexes. Moreover, we
propose a new compact graph-based representation coupling the
efficiency of the explicit graph-based representation and the
compactness of gradient-based one.

4.1. Gradient-based representation

The standard gradient-based representation encodes the arrows
defining a Forman gradient field V on a simplicial or cubical
complex Γ. Since a Forman gradient field is a collection of pairs
of cells on Γ, we need a representation for Γ, in which all cells and
their mutual incidence relations are explicitly encoded, as in the
Incidence Graph (IG) [21]. This latter is the most common and
general data structure for cell complexes, being an implementation
of the Hasse diagram of the complex. The Forman gradient V can be
implemented in a straightforward way on an IG as a Boolean
function associated with the arcs of the IG. For a cubical complex,
the arcs of the IG are encoded implicitly by indexing the cells of the
complex. Moreover, since V defines a pairing between incident cells,
V is encoded as a bit vector based on the same indexing [15].

For simplicial complexes, a data structure encoding all sim-
plices and their incidence relations is too verbose. The most
compact data structures for simplicial complexes only encode
the vertices and the top simplices, i.e., those simplices which are
not on the boundary of any simplex [22]. Such data structures
make the computation of the Forman gradient and of the Morse
and Morse–Smale complexes on simplicial complexes of large size
feasible. In [23], an encoding for the Forman gradient, which
associates the gradient pairs with the top simplices, has been
defined for tetrahedral meshes. This compact gradient encoding
associates with a tetrahedron σ a subset of the pairs involving its
faces (i.e., triangles, edges and vertices). All the gradient arrows
inside each tetrahedron can be represented with just two bytes.

4.2. Graph-based representation

The graph representation is the so-called Morse Incidence Graph
(MIG), which is a weighted graph G¼(N,E, μ) in which: the set of
nodes N is partitioned into dþ1 subsets N0;N1;…;Nd, such that
there is a one-to-one correspondence between the nodes in Nk (k-
nodes), the k-cells of the descending complex Γd, and the (d-k)-cells
of the ascending complex Γa. Each arc in E, connecting a k-node σ
to a (kþ1)-node τ, represents the incidence relation between the
Morse cells corresponding to σ and τ, and is labeled with the
number μðτ;σÞ of times that k-cell σ is incident into (k þ 1)-cell τ.
Thus, the MIG is an incidence-based representation of the two
Morse complexes and provides also a combinatorial representation
of the 1-skeleton of the Morse–Smale complex. In the applications,
attributes are attached to the nodes in N storing the geometric
information associated with the Morse cells. In Fig. 4, an example of
a 2D MIG is shown, representing the combinatorial structure of the
1-skeleton of the MS complex depicted in Fig. 2(d).

In [6], an extended MIG has been defined storing the cells of
both the ascending and descending Morse complexes explicitly.
We discuss here such representation for the case of tetrahedral
meshes, but it can be extended to arbitrary simplicial complexes as
well. We refer here to compact data structures where only the
vertices and top simplices are encoded, like the well-known
Indexed data structure with Adjacencies (IA data structure) [22].

Considering a tetrahedral mesh encoded in the IA data struc-
ture, tetrahedra and vertices are explicitly stored and indexed.
Thus, they are denoted by their index (4 bytes). Triangles and
edges are not encoded and they are denoted as a pairs of adjacent
tetrahedra (8 bytes) and as pairs of adjacent vertices (8 bytes),
respectively.

In a tetrahedral mesh, the geometric embedding is defined as a
labeling on the simplices forming the Morse cells [23]. We consider
the subset of tetrahedra, triangles, edges and vertices in Σ belonging
to the cells of either the ascending Morse complex Γa or the
descending one Γd. With each of such simplices, we associate a

Fig. 4. The MIG computed on the terrain dataset shown in Fig. 2(d). The nodes of
the graph are the maxima (red nodes), saddles (green nodes) and minima (blue
nodes) of the scalar field function. Arcs (black lines) connect two nodes if there
exist a separatrix line connecting the corresponding critical points. Nodes corre-
sponding to maxima are enhanced with the geometrical representation of the
corresponding descending 2-cells (relation depicted with red lines) while minima
nodes refer to the ascending 2-cells (relation depicted with blue lines). (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Table 1
Evaluation of the storage costs using the DMIG compared to the extended MIG and
the Forman gradient. For each dataset, we indicate the number of vertices and
tetrahedra (columns jΣ0 j and jΣ3 j ), the number of critical points (#C) and the
ratios between the cost of the extended MIG and the cost of the DMIG and the ratio
between the cost of the DMIG and that of encoding the Forman gradient on the
entire mesh.

Dataset jΣ0 j jΣ3 j # C MIG
DMIG

DMIG
Gradient

Shockwave 2M 12M 3.2K 6.9x 1.001x
Bonsai 4.2M 24.4M 0.8M 27.6x 1.17x
Vismale 4.6M 26.5M 1.2M 28.6x 1.12x
Foot 5.0M 29.5M 1.98M 30.1x 1.24x

Fig. 5. Example of a 1-cancellation(σ, τ) operator. Red dots correspond to maxima,
purple dots to 2-saddles, green dots to 1-saddles. Dotted lines corresponds to the
arcs of the MIG. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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label indicating its corresponding cell in Γa or Γd. Each tetrahedron
(which corresponds to a maximum) belongs to a descending 3-cell,
and forms an ascending 0-cell, while a vertex (which corresponds to
a minimum) belongs to an ascending 3-cell and forms a descending
0-cell. Triangles identify a descending 2-cell and an ascending 1-cell,
while edges identify a descending 1-cell and an ascending 2-cell. The
extended MIG has been used for fast rendering of Morse cells during
a simplification [refinement] process [6].

However, computing and storing all the Morse cells during
simplification leads to inefficiencies in terms of storage.

To overcome this problem, we have defined a Discrete Morse
Incidence Graph (DMIG) combining the MIG with the compact
representation provided by the Forman gradient V. This latter
differs from the extended MIG by the geometric attributes
attached to the graph nodes. Using the compact representation
provided by V, we associate with each node n in Nk the corre-
sponding critical k-simplex σ in V instead of the entire geometrical
embedding for the Morse cell corresponding to σ. If we consider
the case of tetrahedral meshes encoded in a compact data
structure, like the IA data structure, implicitly representing the
geometrical embedding with the critical simplices requires only
one integer for each critical maximum or minimum, correspond-
ing to a tetrahedron and a vertex respectively, and two integers for
each 1- and 2-saddle (corresponding to triangles and edges,
respectively, where triangles are represented as pairs of tetrahedra
and edges as pairs of vertices). In Table 1, we compare the storage
cost of the DMIG with respect to the storage cost of the extended
MIG, as described above, and versus the space required by just
encoding the Forman gradient. The DMIG results to be 7–30 times
more compact then the extended MIG and its size is always
comparable with that of the direct encoding of the Forman
gradient.

5. Simplifying an MIG

The Morse Incidence Graph (MIG) can be simplified by adapting
the cancellation operator. We consider an MIG G¼ ðN; E;μÞ, and a
pair of nodes τ and σ in N of dimension kþ1 and k, respectively,
connected through an arc in E. We denote as A¼ fαi; i¼ 1;…; imaxg
the k-nodes of the MIG different from σ and connected to node τ,
and as B¼ fβj; j¼ 1;…; jmaxg the ðkþ1Þ-nodes of the MIG different
from τ and connected to the node σ.

A cancellation pair ðσ; τÞ is feasible on an MIG G if μðτ;σÞ ¼ 1. Its
effect is as follow (see Fig. 5):

– delete nodes τ and σ,
– delete all arcs incident in either node τ or node σ,
– introduce an arc ðβj;αiÞ for each αiAA and each βjAB (if such

arc does not already exist),
– set μðβj;αiÞ ¼ μðβj;σÞμðτ;αiÞþμðβj;αiÞ.

As investigated in [5], the simplification of the same pair of
critical simplices performed on an MIG and on the corresponding
Forman gradient may give different results on the connectivity of
the critical simplices when working in three dimensions or higher.
We illustrate this problem by using the example in Fig. 6. Recall
that the weighted arcs in the MIG are in correspondence with the
separatrix V-paths in the Forman gradient. Fig. 6(a) shows a
cancellation applied to delete 1-saddle σ and 2-saddle τ on the
MIG. As a result of the cancellation, all the arcs connected to either
σ or τ are deleted, and the new arcs introduced connect nodes
which were previously connected with σ and τ. In Fig. 6(b), the
same configuration is depicted on a Forman gradient showing the
separatrix V-paths between the critical simplices connected to σ
and τ. When performing the same cancellation as before, the

Fig. 6. Morse Incidence Graph (a) and Forman gradient (b) before and after the 1-cancellation(σ, τ) operator and (c) MIG computed from the Forman gradient. Green edges
denote 1-saddles and purple triangles denote 2-saddles. In (b), simplices forming the V-paths are depicted with green (edges) and purple (triangles) dots. Arrows between
two dots indicate a gradient pair, while a straight line between two dots indicates the incidence relation between the corresponding simplices. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 7. Examples of a 1-remove(σ, τ) operator. Red points correspond to maxima, purple points to 2-saddles, green points to 1-saddles. Dotted lines corresponds to the arcs of
the MIG. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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arrows in the separatrix V-path between σ and τ are swapped. As a
consequence, following the gradient arrows outgoing from the
remaining 2-saddles (purple triangles), the new separatrix V-paths
will end at the two 1-saddles (green edges), on the left, only. The
MIG configuration extracted from the original Forman gradient
and the one simplified are shown in Fig. 6(c).

We can observe that this situation occurs each time a cancella-
tion involves a separatrix V-path originating from different critical
simplices and converging to different critical simplices, which
merge and split in a common V-path, that we call a shared V-path.
More precisely, a V-path π is called a shared V-path if it is contained
in at least two separatrix V-paths π0, between τ0 and σ0, and π″,
between τ″ and σ″, such that τ0aτ″ and σ0aσ″.

6. Shared V-paths and the remove operator

In [16], a dimension-independent simplification operator,
called k-remove(σ, τ), has been defined for limiting the number
of new arcs introduced in the MIG during a k-cancellation(σ, τ),
since this latter deletes two nodes (the two critical points) but it is
likely to increase the number of mutual incidences among critical
cells represented as arcs in the MIG. When k¼ f0; d�1g, k-remove
(σ, τ) is equivalent to k-cancellation(σ, τ). When 0okod�1, k-
remove(σ, τ) operator can be consider as a cancellation with
stronger feasibility conditions.

A k-remove(σ, τ) collapses a k-saddle σ and a ðkþ1Þ-saddle τ,
that are connected through a unique separatrix V-path, if there is
at most one k-saddle, different from σ, connected with τ or, at
most one ðkþ1Þ-saddle, different from τ, connected with σ. Since

the similarity between a k-remove(σ, τ) and a k-cancellation(σ, τ),
we can describe the effects of a k-remove(σ, τ) on the MIG as a
k-cancellation(σ, τ) in which #A⩽1 or #B⩽1 (see Section 5). Its
effect in terms of updates on the Forman gradient or on the MIG
are the same as the cancellation operator.

When feasibility conditions are not satisfied, i.e., when #A4
1 and #B41, a suitable sequence of extremum-saddle operators is
performed to obtain a valid configuration for k-remove(σ, τ). Such
sequence of simplifications forms a macro-operator. As an exam-
ple, we consider the macro-operator which collapses a 2-saddle τ
and a 1-saddle σ into another 2-saddle τ0 (see Fig. 7). For all the 2-
saddles βj connected to σ and different from τ and τ0, a 2-remove
involving βj is performed. When τ and τ0 are the only 2-saddles
connected to σ, the 1-remove(σ, τ) is performed.

Because of the similarity between k-remove(σ, τ) and k-
cancellation(σ, τ), the remove operator is still affected by the
problems of inconsistencies arising when performing the graph-
based or the gradient-based simplification. However, it guarantees
a fundamental property that makes k-remove(σ, τ) the first
ingredient for our simplification algorithm: a k-remove(σ, τ) never
introduces shared V-paths in V.

Proposition 1. Let Σ be a simplicial complex endowed with a
Forman gradient V, which does not contain any shared V-path. Let
ðσ; τÞ be a valid cancellation pair for ðΣ;VÞ, let V 0 be the Forman
gradient obtained from V by applying k-cancellation(σ, τ). Then, V 0

does not contain any shared V-path if and only if k-cancellation(σ,
τ) is a feasible k-remove(σ, τ) for ðΣ;V Þ.

“)”. Let us assume that k-remove(σ, τ) is feasible for ðΣ;VÞ. By
hypothesis, V has no shared V-path. Thus, any shared V-path in V 0

should be contained in one of the separatrix V-paths newly
created by k-remove(σ, τ). Since k-remove(σ, τ) is feasible for
ðΣ;VÞ, at least one of the sets A and B has cardinality equal to
one, so no shared V-path can be created in V 0.

An example of this is shown in Fig. 8. Since 1-remove(σ, τ) is
feasible, at most one simplex β1 of the same dimension of τ is
connected to σ. Thus, the new created V-paths cannot be shared V-
paths since they will have a common origin (i.e., β1).

“)”. Assume that k-cancellation(σ, τ) is not a feasible k-remove
(σ, τ) for ðΣ;V Þ. Let us call π the separatrix V-path
½τ¼ τ0; ðσ1; τ1Þ; ðσ2; τ2Þ;…; ðσr ; τrÞ;σrþ1 ¼ σ�. Let σl be the first
simplex of π which belongs to a separatrix V-path between
βjAB and σ. Dually, let τm be the last simplex of π which belongs
to a separatrix V-path between αiAA and τ. Since V has no shared
V-path,mo l and each newly created separatrix V-path between βj
and αi will contain the V-path π0 ¼ ½ðσl; τl�1Þ;…; ðσmþ1; τmÞ�. Since
both #A and #B are greater than 1, π0 is a shared V-path for ðΣ;V 0Þ.

Conversely to the example shown in Fig. 8, the configuration
depicted in Fig. 9 is not valid for 1-remove(σ, τ) since multiple 2-
saddles are connected with σ (i.e., β1, β2 and β3). As a result of
applying 1-cancellation(σ, τ) we introduce a shared V-path,
depicted in red, created overlapping the new V-paths having
different origin and destination.

Fig. 8. 1-remove(σ, τ) operator not introducing any shared V-path.

Fig. 9. 1-cancellation(σ, τ) operator introducing a shared V-path. (For interpretation
of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 10. Shared V-path identified (a) and disambiguated inserting dummy critical simplices σ1 and τ1 (b).
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7. Shared V-path disambiguation algorithm

In this section, we propose a preprocessing step aimed to untie
the shared V-paths in a tetrahedral mesh Σ endowed with a
Forman gradient V . The idea at the basis of the shared V-path
disambiguation algorithm is to modify the separatrix V-paths
between 1-saddles and 2-saddles, inserting new dummy critical
simplices in such a way that all the separatrix V-paths sharing the
same path will end (or start) at the same critical saddle. When
looking at the separatrix V-paths connecting maxima with 2-
saddles and minima with 1-saddles, this property is guaranteed by
construction, i.e., V-paths starting from a maximum can only split,
while V-paths reaching a minimum can only merge.

Fig. 10 illustrates the key ideas of the algorithm. The traversal
starts from critical edge σ and continues visiting the triangles in
the separatrix V-path by navigating the arrows in reverse order. At
triangle τ1, three separatrix V-paths split, then the triangle is
identified as part of the shared path. Continuing the traversal, on
edge σ1 different separatrix V-paths merge. Thus, σ1 is identified
as the beginning of the shared path, and τ1 and σ1 are introduced
as critical (see Fig. 10(b)).

Algorithm 1. IdentifySharedPath(V).

1: INPUT: V is an discrete gradient field
2: for all critical edges σ in V do

3: F :¼ startingVPaths(σ);
4: for all triangles τi in F do
5: Stack S :¼ ∅
6: S.push(τi);
7: while S.notEmpty(); do
8: τi :¼ S.pop();
9: nSplit :¼ countSplittingSeparatrix (τi,V);
10: if nSplit 41 then
11: σi :¼ visitSharedPath(τi,V);
12:
13: F :¼ adjacentPaired(τi,V);
14: for all triangles τj in F do
15: S.push(τj);

Algorithm 1 shows the pseudocode description of the algo-
rithm for disambiguation of V-paths. Starting from a critical edge
σ, the separatrix V-paths converging in it are considered (lines
2-4). For each separatrix V-path, the first triangle incident into σ
and belonging to the path is pushed onto a stack S (lines 4–6).
While S is not empty, the first triangle τi is popped from the stack
and the number of separatrix V-paths outgoing from its boundary
edges are computed (function countSplittingSeparatrixðτiÞ). If there
are multiple separatrix V-paths that split at τi (see τ1 in Fig. 10(a)),
the visit of a shared path begins (line 11).

Algorithm 2 describes the traversal of a shared V-path. Starting
from the triangle τi on which the shared V-path splits, the edge σi,
paired with it, is extracted (line 3). Function adjacentPaired returns
the set F of triangles different from τi and incident in σi that are in
some separatrix V-path (line 4). If F has cardinality equal to one,
we are still visiting the shared V-path (line 5). Otherwise, if the
cardinality of F is greater than one, we are on an edge σi on which
multiple separatrix V-paths are collapsing (see σ1 in Fig. 10(a)). If
this is the case, τi and σi are introduced as dummy critical
simplices and the arrows between them are reversed (lines 12-
13). If #F was zero, we ended into a single critical triangle, thus we
were not on a real shared V-path and no critical simplices are
introduced. Note that, during the visit of a shared V-path, triangle
τi can be updated if another triangle, closer to τi, is found onwhich
separatrix V-paths split (lines 7–10).

Algorithm 2. VisitSharedPathðτi;VÞ.
1: INPUT: τi is a triangle
2: INPUT: V is an discrete gradient field
3: σi :¼ V. getFEpair(τi);
4: F :¼ adjacentPaired(σi,V);
5: if #F ¼ 1 then
6: τj :¼ F;
7: nSplit :¼ countSplittingSeparatrix(τj,V);
8: if nSplit 41 then
9: // if a new splitting face is found τi is updated
10: τi :¼ τj;
11: return visitSharedPath(τj,V);
12: if #F41 then
13: reversePath(σi, τi,V);

Algorithm 2 has a linear time complexity in the number of
simplices in the identified shared V-path. Algorithm 1, instead, visits
all the separatrix V-paths once for each 1-saddle. Thus, it has a worst-
case time complexity of Oðs1 � sV Þ, where s1 is the number of 1-saddles
and sV the number of simplices forming the separatrix V-paths.

Once all shared V-paths have been identified and disambigu-
ated, we perform a simplification step for removing all the dummy
critical simplices. Since the insertion of a pair of critical simplices
(σ, τ) can be seen as the undo of a cancellation, performing
cancellations would restore the initial inconsistency situations in
the complex. Thus, we use only remove operators that will trigger
macro-operators working on extremum-saddle pairs.

7.1. Dummy critical points and obstructions

Obstructions are critical point configurations that cannot be
simplified either using a cancellation or a remove operator. Speci-
fically an obstruction is a pair of critical points, of consecutive
index connected by multiple paths. The presence of obstructions
can lead to degenerate configurations, called fingers, that cannot
be simplified. Such configurations typically do not appear in the
initial state of the dataset but arise, with the undergoing of
simplifications, in flat areas [24]. Even if flat areas are not allowed,
when computing a Forman gradient with the algorithm described
in [8], obstructions are still present in the data since they describe
the natural behavior of the field.

Fig. 11. Example of obstructions preventing the removal of a dummy critical pair.
Red tetrahedra correspond to maxima, purple triangles to 2-saddles, green edges
are 1-saddles and blue spheres correspond to minima. Red, purple, green and blue
dots correspond to (non-critical) tetrahedra, triangles, edges and vertices, respec-
tively. The white triangle and edge are the dummy critical simplices. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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Let us consider the shared V-paths. When the obstruction is
present inside a shared V-path, the introduction of a dummy
critical simplex can be avoided (since any simplification passing by
that part will be unfeasible). When obstructions involve critical
simplices in the neighborhood, there is a degenerate configuration
that could prevent the removal of the dummy critical points. We
show such configuration in Fig. 11. The 2-saddles (purple triangles)
and the 1-saddles (green edges) are all connected with extrema
(maxima and minima respectively) through multiple paths. Thus,
the macro-operator cannot remove the two dummy critical points
since none of the 2- or 1-saddles in the neighborhood can be
removed. However, it is still important to introduce the pair since
otherwise, the shared V-path could be affected by a swap during
the simplification algorithm. Note that if this is the case, it means
that the dummy pair will be removed in the future.

Dummy critical points that have not been removed during the
simplification process can be removed at the end, with a cancella-
tion, avoiding the visualization of spurious cells.

Even if this can be seen as a degenerate problem that could bring
to uncontrolled results, it is important to notice that the introduc-
tion of a dummy pair never inhibits the application of other remove
operators. In other words, the number of remove operators,
preserving the shared V-paths, that can be applied on a Forman
gradient V without a dummy pair, is always less or equal to the
number of remove operators that can be applied on V after the
insertion of the dummy pair. This is important to guarantee that the
simplification is never obstructed by our disambiguation method.

8. Experimental results

We have combined the shared V-path disambiguation algorithm
with a simplification algorithm based on the remove operator. In
this section, we discuss the results obtained when simplifying real
datasets. Experiments have been performed on a desktop computer
with a 3.2 GHz processor and 16 GB of memory. Datasets chosen for
our experiments are originated from regularly distributed data. The
unstructured tetrahedral meshes are obtained by removing points
(and tetrahedra) corresponding to the empty space and removing
flat areas (adjacent vertices with the same field value) through edge
contractions.

We use a Discrete Morse Incidence Graph (DMIG) (see Section 4)
for representing the pairs of critical simplices connected by a
separatrix V-path. remove operators are applied in ascending order
of persistence using a priority queue. At each step, the simplification
with the lowest persistence value is performed, the gradient arrows
along the path are updated as well as the DMIG, and the new
available simplifications are inserted in the priority queue. Once the
queue is empty, or all the valid simplifications have a persistence

value higher than a user defined threshold, the simplification
algorithm ends.

We have studied the preprocessing step by evaluating its impact
on the overall computation. In Table 2, we present the results
obtained. We can notice that the number of critical simplices
artificially introduced (column #Cins) varies depending on the dataset
and is between 2% and 13% of the total number of critical simplices
and all of the are removed during this phase. The timings of the
preprocessing algorithms can be relevant with respect to the whole
simplification process and, in a worst-case scenario (HYDROGEN), the
time required for identifying and disambiguating shared V-paths and
removing the dummy critical simplices is equal to the time required
for simplifying the entire mesh. The complexity of the preprocessing
step depends on the number of separatrix V-paths between saddles
and on their size, i.e., on the number of simplices forming them. In
Fig. 13, we show the results obtained by simplifying FUEL, BUCKY, NEGHIP

and HYDROGEN tetrahedral meshes. For HYDROGEN mesh, we can notice
that shared V-paths are quite numerous and spread around the
entire mesh, unlike what happens with FUEL, BUCKY and NEGHIP.

We have also studied the remove operations triggered by the
macro-operators during the removal of the dummy critical simplices.
Specifically, we focus on studying the persistence associated with the
deleted nodes in order to ensure that interesting features were not
deleted during the preprocessing step. As discussed in [5], there is a
correlation between noise and shared V-paths. We have found that
98% of the removals applied during the preprocessing step delete
nodes that would be removed by the classical algorithm using a
persistence threshold lower than 0.01% of the maximum persistence.
Nodes in the remaining 2% have a persistence lower than 0.1% of the
maximum persistence. Typically, values of persistence lower than
0.2% of the maximum persistence are considered noise.

Studying the entire simplification algorithm, we have verified
experimentally the correctness of our approach comparing the graph
updated during the simplification process and the one extracted from
the simplified Forman gradient after each simplification step.

Table 2
Evaluation of the preprocessing step and the remove-based simplification. For each dataset we indicate, the original size and the number of vertices, tetrahedra and critical
points (columns Size, jΣ0 j , jΣ3 j and #C respectively) in the tetrahedral mesh. In column Preprocessing, we show the number of critical points introduced during the
preprocessing step and the timings for: identifying the shared V-paths, insert the critical points and remove them. Column Simplification shows the total number of
simplifications performed and the time required by the algorithm. Column Mem. Peak indicates the maximum amount of memory used.

Dataset Size jΣ0 j jΣ3 j #C Preprocessing Simplification Mem. Peak (GB)

#Cins Time Rem Time

Bucky 323 32K 0.17M 2K 156 2.4 s 1K 6.39 s 0.09

Fuel 643 13K 0.06M 2.7K 54 0.65 s 1.3K 4.13 s 0.05

Silicium 98x34x34 66K 0.36M 2.1K 290 1.6 s 1K 17.5 s 0.1
Neghip 643 0.12M 0.64M 12.6K 234 10.7 s 6.3K 3.8 min 0.2

Shockwave 64x64x512 1.2M 7M 1.1K 55 20.1 s 582 2.8 min 2.4
Blunt 256x128x64 1.0M 6M 11.2K 1378 10.4 min 5.5K 22.2 min 1.9
Hydrogen 1283 0.6M 3.9M 15.1K 2133 24.1 min 7.5K 24.3 min 2.2

Fig. 12. Nodes deleted by the remove-based (columns on the right) and cancella-
tion-based (columns on the left) algorithms using different simplification errors.
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Moreover, we have compared our remove-based simplification
algorithm with a standard cancellation-based algorithm testing
whether the number of critical simplices in the fully simplified
Forman gradient are comparable. The graph depicted in Fig. 12
shows the number of critical simplices deleted using different
simplification errors. For each mesh, the column on the right
indicates the results obtained with the remove-based algorithm,
while the results obtained with the cancellation-based algorithm
are shown in the columns on the left. As we can notice, the
number of critical simplices removed is comparable in both
approaches. This result guarantees that the simplification
sequence obtained using the remove operator removes features
in a controlled and progressive way, as the cancellation-based
method.

9. Concluding remarks

We have presented a new simplification algorithm for a discrete
Morse gradient that guarantees the topological consistency of the
Morse and Morse–Smale complexes generated from the simplifica-
tion. The algorithm works on a new compact graph-based data
structure representing such complexes efficiently with a minimum
loss in storage cost. We have proved the correctness of our
approach, and we have evaluated experimentally its performances
with respect to a classical cancellation-based approach. Note that
the remove operators and the Forman gradient have been defined in
a dimension-independent way, and also the gradient encoding
proposed is dimension-independent. A further development of
the work presented here is to apply the proposed simplification

Fig. 13. Topologically consistent simplification of the FUEL, BUCKY, NEGHIP and HYDROGEN. The original scalar field (a) and the shared paths depicted in red (b). The original
1-skeleton of the MS complex (c) and its simplified version (d) computed with a persistence threshold of 0.01% with respect to the maximum persistence for FUEL, 0.2 for
BUCKY and HYDROGEN and 0.3% for NEGHIP. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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approach in higher dimensions for computing homology and
persistent homology efficiently.

The algorithm proposed here is the basis for a tool on which both
geometric and morphological simplifications can operate concur-
rently to reduce the complexity and to enhance the understanding of
available volume datasets. In our future work, we plan to combine
the simplification algorithm proposed with a simplification of the
underlying tetrahedral mesh which does not affect the critical
simplices, thus being able to control also geometric resolution.

In the applications, however, topological simplification cannot
be considered as a suitable tool on its own. In several contexts,
multi-resolution models are preferable to produce an interactive
framework for scientists and domain experts. Generally speaking, a
multi-resolution model is the basic tool for producing different
representations of a spatial object at different levels of detail, which
can be uniform or vary over the object. In order to define a multi-
resolution topological model based on the Forman gradient, we
need to encode a coarse Forman gradient V (i.e., the gradient with
the minimum number of critical simplices) obtained from the initial
gradient through a sequence of simplifications, a set of refinement
operators and a dependency relation between such operators. Each
refinement operator will be the inverse of a remove, thus introdu-
cing a pair of critical simplices under the same assumptions as in
remove. The dependency relation will make a refinement operator
introducing two critical simplices σ and τ depend on all refinements
in the multi-resolution model which introduce critical simplices to
which σ and τ need to be connected. If we use an implicit
representation, because of the undecidability introduced by the
shared V-paths, these conditions could not be determined a priori
but they would have to verified on the fly, navigating the Forman
gradient, before each refinement. The resulting loss of efficiency
would make the model useless for an interactive experience. This is
the reason why our proposed approach is fundamental for design-
ing and implementing a topological multi-resolution model.

Finally, inspired by the work done in [20] for the 2D case, we
plan also to adapt our data structure for working with the spatio-
topological index there defined, the PR-star tree. This would lead
to a distributed approach for the simplification algorithm as well
as to a consistent reduction in the storage cost for encoding the
underlying complex on which the Forman gradient is defined.
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