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Abstract

Morse theory offers a natural and mathematically-sound tool for shape analysis and understanding. It allows
studying the behavior of a scalar function defined on a manifold. Starting from a Morse function, we can decom-
pose the domain of the function into meaningful regions associated with the critical points of the function. Such
decompositions, called Morse complexes, provide a segmentation of a shape and are extensively used in terrain
modeling and in scientific visualization. Discrete Morse theory, a combinatorial counterpart of smooth Morse
theory defined over cell complexes, provides an excellent basis for computing Morse complexes in a robust and
efficient way. Moreover, since a discrete Morse complex computed over a given complex has the same homology
as the original one, but fewer cells, discrete Morse theory is a fundamental tool for efficiently detecting holes
in shapes through homology and persistent homology. In this survey, we review, classify and analyze algorithms
for computing and simplifying Morse complexes in the context of such applications with an emphasis on discrete
Morse theory and on algorithms based on it.

1. Introduction

Morse theory [Mil63, Mat02] studies the relationships be-
tween the topology of a shape and the critical points of a
real-valued smooth function defined on it. It has been rec-
ognized as an important tool for shape analysis and under-
standing in many applications, including physics, chemistry,
medicine and geography.

Based on Morse theory, we can define a segmentation of
a geometric shape endowed with a scalar function into col-
lections of cells, called Morse and Morse-Smale complexes,
based on the critical points of such function. Skeletal rep-
resentations rooted in Morse theory, like Reeb graphs and
contour trees, are compact 1-dimensional topological de-
scriptors of the evolution of the level sets of a Morse func-
tion [BGSF08].

Morse theory is defined for smooth functions, but re-
cently a discrete counterpart has been proposed in an entirely
combinatorial setting by Robin Forman for cell complexes
[For98b]. Discrete Morse theory is the basis for computing
Morse decompositions of discretized geometric shapes, and
it provides a tool for retrieving topological invariants, like
homology groups. This survey focuses on a class of tech-

niques, rooted in various approximations of smooth Morse
theory and on discrete Morse theory, for shape analysis
through segmentation, provided by Morse and Morse-Smale
complexes, and through detection of holes in shapes pro-
vided by homological information.

In Section 2, we present Morse theory in the smooth case
and some notions on homology and persistent homology. In
Section 3, we review theoretical tools at the basis of several
algorithms in the literature for computing Morse decompo-
sitions of shapes, namely piecewise linear Morse theory, the
watershed transform, and the flow complex. We then review
and classify algorithms based on such tools, which have been
applied in terrain modeling, shape retrieval and scientific
data visualization.

In Section 4, we present discrete Morse theory and, in
Section 5, we review and classify approaches for comput-
ing a discrete Morse gradient. We distinguish between meth-
ods which conform to a given scalar function, useful for
shape segmentation, and methods which do not have any
constraint, useful for homology computation. In Section 6,
we describe how to extract Morse and Morse-Smale com-
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plexes from a discrete Morse gradient, as well as a combina-
torial representation of such complexes.

Section 7 is devoted to simplification techniques, used to
eliminate less meaningful or noisy morphological features in
a dataset, and to adapt the level of abstraction to the current
application task. In Section 8, we discuss the use of morphol-
ogy in various applications, including multi-resolution mor-
phological models for analysis and visualization of scalar
fields, which encompass a hierarchy of simplifications and
allow extracting a specific level of detail on the fly. Finally,
Section 9 draws some concluding remarks.

2. Background notions

In this section, we present some background notions on cell
complexes, on homology and persistent homology, and on
Morse theory, that we will use in the rest of the survey.

2.1. Cell complexes

Cell complexes are used as a discretization and modeling
tool in a large variety of application domains. Intuitively, a
cell complex defines a decomposition of a geometric shape
into simple subsets, called cells, glued together along their
boundaries.

A k-cell (or cell of dimension k) is a homeomorphic image
of the k-disk Dk = {x ∈ Rk : |x| ≤ 1}. A space Γ ⊆ Rn is
called a (regular) cell complex if Γ is a finite union of cells
with disjoint interiors such that, for each k-cell σ of Γ, the
boundary of σ is in Γ

k−1, where, Γ
i, called the i-skeleton of

Γ, is the union of the cells of Γ with dimension less than or
equal to i. The union of the cells of Γ considered as a point
set forms the domain of Γ.

If Γ is a cell complex, and τ and σ are two cells of Γ, τ is
called a (proper) face of σ if τ is contained in the boundary
of cell σ; σ is called a (proper) coface of τ. Any cell of Γ,
which is not a face of any other cell of Γ, is called a top cell.

The star of a cell τ ∈ Γ is the set of cells σ ∈ Γ which are
cofaces of τ and is denoted as St(τ). A k-cell τ is said to be
adjacent to a k-cell τ

′ if τ and τ
′ share a (k− 1)-face. The

link of a cell τ ∈ Γ, denoted as Lk(τ), is the set of cells γ ∈ Γ

such that γ is a face of a coface of τ, and is not incident in τ.

2.1.1. Simplicial and cubical complexes

Simplicial and cubical complexes are special subclasses of
cell complexes widely used for shape discretization. Sim-
plicial complexes are built upon the concept of simplex. A
simplex of dimension k, (or a k-simplex) is the convex hull
of k+1 affinely independent points in Rn. Given a k-simplex
σ, any simplex τ, which is the convex hull of a non-empty
subset of the points generating σ, is called a face of σ. A
simplicial complex Σ is a finite set of simplices, such that
each face of a simplex in Σ belongs to Σ, and the non-empty

intersection of any two simplices in Σ is a face of both. A
simplicial complex is called a complex of order d if d is
the maximum of the dimensions of its simplices. Simpli-
cial d-complexes with a manifold domain are usually called
simplicial meshes, which are triangle meshes for d = 2 and
tetrahedral meshes for d = 3. Recall that a d-manifold M
is a Hausdorff space that is locally homeomorphic to the d-
dimensional Euclidean space.

An elementary (hyper-)cube of dimension k is the Carte-
sian product η = I1×·· ·× Ik of k elementary intervals. The
dimension of η is the number of non-degenerate intervals in
the product decomposition, and a face of η is the product
of a non-empty subset of the intervals I1, · · · , Ik. A (hyper)-
cubical complex Q in Rk is a finite collection of elementary
cubes in Rk such that, if an elementary cube belongs to Q,
then all of its faces belong to Q, and each non-empty inter-
section of any two elementary cubes inQ is a face of both.

Cubical complexes, also called regular grids, have been
extensively used for discretization of the domain of a scalar
field, such as an image or a terrain. They admit very compact
data structures. By simply storing a matrix of field values,
we can retrieve all cells and their mutual adjacencies and in-
cidences. On the other hand, simplicial and cell complexes
require data structures which explicitly maintain connectiv-
ity information (see [DH05] for a survey).

2.2. Homology and persistent homology

Homology and persistent homology are powerful tools in
shape analysis, since they provide invariants for shape de-
scription and characterization. These notions can be defined
for any discretization of a geometric shape such as a cell,
simplicial or hyper-cubical complex. For the sake of gener-
ality, we define homology and persistent homology for cell
complexes.

Given a cell complex Γ, it is possible to define a chain
complex associated with Γ. This latter is a pair C∗(Γ) =
(Ck(Γ),∂k)k∈Z, where Ck(Γ) is the Z2-vector space gener-
ated by the k-cells of cell complex Γ, and ∂k : Ck(Γ) →
Ck−1(Γ) is a homomorphism, called boundary map, which
encodes the boundary relations between the k-cells and the
(k− 1)-cells of Γ such that ∂

2 = 0. We denote as Zk(Γ) =
ker∂k the Z2-vector space of the k-cycles of Γ and as
Bk(Γ) = Im∂k+1 the Z2-vector space of the k-boundaries of
Γ. Then, the kth homology group of Γ (with coefficients in
Z2) is defined as Hk(Γ) = Hk(C∗(Γ)) = Zk(Γ)/Bk(Γ).

Roughly speaking, homology groups reveal the presence
of "holes" in a shape. The non-null elements of each homol-
ogy group are cycles, which do not represent the boundary
of any collection of cells of the cell complex Γ.

Given a cell complex Γ, we call the dimension βk of its kth

homology group the kth Betti number of Γ. For each k, the
kth Betti number βk measures the number of independent,
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non-bounding, k-cycles in Γ. Thus, β0 counts the number of
connected components of the complex, β1 counts the num-
ber of tunnels and holes, β2 counts the number of voids or
cavities, and so on.

Homology can be defined with coefficients in any Abelian
group. The most complete homological information use Z as
coefficient group, which is capable of dealing with the pres-
ence of torsion in a shape. It can be proven (see [AH35],
Chapter X) that simplicial complexes embeddable in R3

have no torsion and thus, their Z-homology groups reduce
to Z2-homology.

Independently of the coefficient group, computation of
homology is a difficult task. The classical way to compute
homology describes the boundary maps ∂k through matrices
and reduces these boundary matrices by using an algorithm
similar to Gauss elimination, called a Smith Normal Form re-
duction [Ago05, Mun84]. Unfortunately, the time complex-
ity of such reduction algorithm is super-cubical in the num-
ber of cells of the cell complex.

Persistent homology [EH08, Zom05] aims at overcom-
ing some intrinsic limitations of classical homology. Let
Γ be a cell complex. A filtration F of Γ is a finite se-
quence of subcomplexes {Γm |1 ≤ m ≤ M} of Γ such that
Γ1 ⊆ Γ2 ⊆ ·· · ⊆ ΓM = Γ. The p-persistent kth homology
group H p

k (Γm) of Γm consists of k-cycles included from
Ck(Γm) into Ck(Γm+p) modulo boundaries. Persistent ho-
mology provides more information about a shape than clas-
sical homology: while homology captures cycles in a shape
by factoring out the boundary cycles, persistent homology
allows the retrieval of cycles that are non-boundary cycles at
a certain step of the filtration and that turn into boundaries in
some subsequent step. The persistence of a cycle during the
filtration gives quantitative information about its relevance
for the analysis of the shape.

Persistent homology can be computed using a Smith Nor-
mal Form reduction algorithm, and, by restricting to persis-
tent homology with coefficients in a field (such as Z2), it
can be retrieved more efficiently [Zom05]. For this reason,
in spite of the fact that persistent homology admits arbitrary
coefficients, in the literature it is always computed with co-
efficients in Z2.

2.3. Morse theory and Morse complexes

Morse theory [Mat02, Mil63] studies the relationships be-
tween the topology of a d-manifold M ⊆ Rn and the criti-
cal points of a C2-differentiable real-valued function defined
on it. A point p ∈ Rn is a critical point of f if and only if
the gradient 5 f of f vanishes on p, i.e., 5 f (p) = 0. If the
determinant of the Hessian matrix Hessp( f ) of the second-
order partial derivatives of f , evaluated in p, is not null
(i.e. det(Hessp( f )) 6= 0), then p is a non-degenerate criti-
cal point. The number of negative eigenvalues of Hessp( f )

is called the index k of a critical point p and p is called a k-
saddle, with 0≤ k≤ n. A 0-saddle is called a minimum and a
d-saddle a maximum. The corresponding eigenvectors define
the directions in which function f is decreasing. A function
f is a Morse function when all its critical points are not de-
generate. As a consequence of the Morse Lemma [Mil63],
each non-degenerate critical point is isolated and, therefore,
it has a neighborhood which does not contain other critical
points.

An integral line of a function f is a maximal path ev-
erywhere tangent to the gradient of f . An integral line fol-
lows the direction in which the function has the maximum
growth. An integral line, which connects a critical point p of
index k to a critical point q of index k + 1, is called a sep-
aratrix line. The integral lines cover the entire domain of f
and they form cells, each corresponding to a critical point.
Integral lines that converge to a critical point p of index k
form a k-cell, called the descending manifold of p. Integral
lines that originate from a critical point p of index k form a
(d−k)-cell, called the ascending manifold of p. The ascend-
ing/descending manifolds are pairwise disjoint and partition
the domain of M into cells, which form a cell complex since
the boundary of each cell is the union of lower-dimensional
cells. The collection of all the descending [ascending] man-
ifolds form the descending Morse complex ΓD [ascending
Morse complex ΓA]. The two Morse complexes are mutually
dual.

In the 2D case (see Figure 1), the integral lines converg-
ing to a maximum/saddle/minimum form a 2-cell/1-cell/0-
cell of the descending Morse complex, respectively (see Fig-
ures 1 (a) and (c)). Dually, the integral lines originating from
a minimum/saddle/maximum form a 2-cell/1-cell/0-cell of
the ascending Morse complex, respectively (see Figures 1
(b) and (d)). In 3D, the set of integral lines converging to
a maximum/2-saddle/1-saddle/minimum form a 3-cell/ 2-
cell/1-cell/0-cell of the descending Morse complex, respec-
tively. The dual situation happens in the ascending Morse
complex.

A Morse function f is called a Morse-Smale function if
and only if the descending and ascending Morse complexes
intersects transversally. The connected components of the in-
tersection of the descending and ascending cells decompose
M into a Morse-Smale (MS) complex, denoted ΓMS . If f is
a Morse-Smale function, then there is no integral line con-
necting two different critical points of f of the same index.
Note that, in a d-dimensional MS complex, each 1-saddle is
connected to exactly two minima and each (d−1)-saddle is
connected to exactly two maxima, not necessarily distinct.
The 1-skeleton of the Morse-Smale complex, i.e., is the sub-
complex composed of its 0-cells and 1-cells, is often called
the critical net.
The intersection of the descending and ascending Morse
complexes of Figures 1 (c) and (d) forms the Morse-Smale
complex illustrated in Figure 1 (e). For each critical point

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



L. De Floriani, U. Fugacci, F. Iuricich, P. Magillo / Morse complexes for shape segmentation and homological analysis

(a) (b) (c) (d) (e) (f)

Figure 1: Red and blue triangles indicate maxima and minima. Green squares indicate saddles. (a) The set of integral lines
converging to a maximum and forming the (red) descending cell. (b) The set of integral lines originating from a minimum
and forming the (yellow) ascending cell. The set of all the descending and ascending cells forming (c) the descending Morse
complex ΓD and (d) the ascending Morse complex ΓA. (e) Resulting Morse-Smale complex and (f)1-skeleton of the Morse-Smale
complex.

p, the descending and ascending cells of p intersect only
at p. Thus, the 0-cells of the Morse-Smale complex are the
critical points. The 1-cells are the separatrix lines connect-
ing pairs of critical points. The distinctive feature of Morse-
Smale cells is the uniform gradient flow inside each of them.

A combinatorial representation for both ascending and
descending Morse complexes is provided by an incidence
graph. A Morse Incidence Graph (MIG) is a labeled graph
G = (N,A,ϕ), in which the set of nodes N is partitioned into
d + 1 subsets N0, N1,...,Nd , such that there is a one-to-one
correspondence between the nodes in Ni (i-nodes) and the
i-cells of the descending complex ΓD, (and thus the (n− i)-
cells of the ascending complex ΓA), and there is an arc join-
ing an i-node p with an (i + 1)-node q if and only if the
corresponding cells p and q differ in dimension by one, and
p is on the boundary of q in ΓD, (and thus q is on the bound-
ary of p in ΓA). Each arc a connecting an i-node p to an
(i+1)-node q is labeled with the number ϕ(a) of times i-cell
p (corresponding to i-node p) in ΓD is incident to (i+1)-cell
q (corresponding to (i+1)-node q) in ΓD. Thus, the MIG is a
representation of the Hasse diagram [Ede87] of the ascend-
ing and descending Morse complexes and is the combina-
torial representation of the 1-skeleton of the Morse-Smale
complex.

Simplification of Morse functions, often necessary to re-
move non-relevant critical points, is achieved by applying an
operator called cancellation [Mat02]. A k-cancellation trans-
forms a Morse function f into a new Morse function g by
removing two critical points, (k+1)-saddle p and a k-saddle
q (with 0 ≤ k < d), and by locally modifying the gradient
field of f around the integral lines of p and q. Critical points
p and q can be canceled if and only if there is a unique inte-
gral line connecting them. After a k-cancellation(p,q), the
two critical points p and q are removed and the integral lines
originated/converging into them are modified as follows:

- the set of integral lines converging to p or q before the
cancellation are transformed into a set of integral lines
converging to those critical points of index j > k, that
were the destination of integral lines starting at p,

- the set of integral lines that originated at q or p before the

(a) (b)

Figure 2: Example of 1-cancellation(p,q) performed on a
2-saddle p and a 1-saddle q.

cancellation are transformed into a set of integral lines
originating at those critical points of index i < k+ 1 that
were the origin of integral lines ending at q.

Figure 2 shows an example of a 1-cancellation performed
on a 2-saddle p and a 1-saddle q. The integral lines that con-
verged before to p and q (Figure 2 (a)) are redirected into
integral lines converging to p′ (Figure 2 (b)). Changes in
the integral lines result in a transformation of the Morse and
Morse-Smale complexes. The effects of a cancellation on
the Morse complexes will be discussed in Section 7.

3. Morse complexes for shape segmentation

In this section, we discuss the most common approaches to
the computation of Morse and Morse-Smale complexes for
segmenting shapes discretized as simplicial or cubical com-
plexes and endowed with a scalar field. Examples are in-
tensity images, terrains, volume data, etc. The approaches
discussed here are based on piecewise linear Morse theory,
on the watershed transform, or on the flow complex. Algo-
rithms based on discrete Morse theory will be reviewed in
Sections 5.2 and 5.3. It has been shown in [VCY12] that the
Morse-Smale complex built on the discretization of a smooth
function has not, in general, the same structure as the ’true’
Morse-Smale complex of the original function.

3.1. Piecewise linear Morse theory

Piecewise linear Morse theory has been introduced by Ban-
choff [Ban67, Ban70] to extend the results of smooth Morse
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(a) (b) (c) (d)

Figure 3: Classification of a vertex according to Banchoff
[Ban67]: (a) minimum, (b) maximum, (c) regular, (d) simple
saddle.

theory to polyhedral surfaces, and, thus, triangulated ones
(see [BDF∗08] for more details).

A triangulated surface is the graph of a real-valued func-
tion f defined at the vertices of a triangle mesh Σ on the
plane, interpolated through linear interpolation. In order to
ensure that critical points are isolated, function f is assumed
to have different values at every pair of vertices connected
by an edge in Σ, i.e., no flat edges are allowed [TIKU95].

Let us consider a vertex v, its star St(v), and the horizontal
plane passing through v (i.e., tangent to the graph of f at v),
as illustrated in Figure 3. Vertex v is a local maximum or
a local minimum if the plane does not intersect St(v); it is
regular if the plane cuts St(v) into two parts; it is a saddle
if the plane cuts St(v) into k parts, with k ≥ 4. The saddle is
simple if k = 4, and multiple otherwise. The multiplicity of
a saddle is equal to k/2− 1. Note the piecewise linear case
includes isolated degenerate critical points, such as multiple
saddles, that do not occur in smooth Morse theory.

The characterization provided by Banchoff [Ban67]
correctly detects critical points in dimensions two and
three, while a more complete characterization for higher-
dimensional spaces is based on Betti numbers (see
[EHNP03]).

In [EHZ01, EHNP03], the notion of Quasi Morse-Smale
(QMS) complex is introduced as a piecewise linear counter-
part of the Morse-Smale complex for triangle and tetrahedral
meshes. The idea behind a QMS, called simulation of dif-
ferentiability, is that of extending the smooth notions to the
piecewise linear case so as to guarantee that the complex has
the same structure of its smooth counterpart. Numerical ac-
curacy is achieved via local transformations that preserve the
structure of the complex. In the 2D case, a QMS complex is
a quadrangulation of the triangle mesh M. In the QMS com-
plex 0-cells are the critical points of f , the 1-cells connect
minima to saddles and maxima to saddles [EHNP03]. In 3D,
the 3-cells of the QMS complex are crystals, the faces of
such crystals are quadrangles with vertices at a minimum,
two 1- saddles and a 2-saddle, or at a maximum, two 2-
saddles and a 1-saddle. Note that 1-cells and 2-cells of a
QMS complex are not necessarily those of maximal ascent /
descent, as they are in a Morse-Smale complex.

3.2. Watershed in the smooth and discrete cases

The watershed transform is an alternative framework to
Morse theory. It has been first defined for grey-scale images,
and several definitions exist in the discrete case [Mey94,
VS91]. The watershed transform has also been defined for
C2-differentiable functions f over a connected domain D,
having the property that the gradient ∇ f is non-null every-
where except possibly at some isolated points. This includes
Morse functions. Basic notions in the watershed transform
are catchment basins and watershed lines, both defined in
terms of topographic distance [Mey94, RM00].

The topographic distance TD(p,q) between two points p
and q belonging to the domain D of f is

TD(p,q) = inf
P

∫
P

||∇ f (P(s))||ds

where P is a smooth path inside D such that P(0) = p,
P(1) = q. This definition ensures that the path which min-
imizes the topographic distance between p and q is the path
of steepest slope, if it exists.

Given a minimum mi of function f , the catchment basin
CB(mi) of mi is defined as the set of points which are closer
in terms of topographic distance to mi than to any other min-
imum. The watershed (or watershed lines) WS( f ) of f is
defined as the set of points in D which do not belong to any
catchment basin. When f is a C2-differentiable Morse func-
tion, then the closure of the catchment basins of the minima
of f are the closure of the 2-cells of the ascending Morse
complex of f , and watershed lines form a subset of separa-
trix lines that connect saddles to maxima. Symmetrically, the
closure of the catchment basins of function − f provides the
closure of the 2-cells of the descending Morse complex of f .

The watershed transform in the discrete case uses a dis-
crete version of the topographic distance [Mey94] defined
for an undirected labeled graph, H = (NH ,AH , f ), where the
nodes in NH are labeled through function f . The nodes of
graph H can be the pixels or the voxels in an image, or the
vertices of a cell complex. The arcs can represent the adja-
cencies of the top cells in a grid or of the 1-cells of a cell
complex. The lower slope at a node p is the maximal slope
linking p to any of its neighbors of lower function value. A
cost is associated with the arcs of H defined in terms of the
lower slope. Given a path π between two nodes p and q in H,
the π-topographic distance is given by the sum of costs for
traversing all directed arcs composing π. The topographic
distance T (p,q) between p and q is the minimum of the π-
topographic distances along all paths π between p and q.

The topographic distance is actually not a true distance
function because it is equal to zero on distinct nodes of
H, if they belong to the same plateau. A plateau is a con-
nected set of nodes in H having the same function values.
The definition of a catchment basin in graph H is similar to
the smooth case. Given a minimum mi of function f , where
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mi can be a single node or a plateau, the catchment basin
of mi is defined as CB(mi) = {p ∈ D : f (mi)+ T (p,mi) <
f (m j)+T (p,m j), j ∈ I−{i}}.

3.3. Flow complex

The notion of flow complex [GJ08, DGG03] has been intro-
duced in order to segment a shape defined through a finite
set of points P in Rd belonging to its boundary. No scalar
function is given in this case. Thus, the idea is to consider
the distance function h which associates with each point in
Rd its distance value from the nearest point of P. Even if, in
general, h is not a smooth function, flow theory allows defin-
ing a vector field and a flow on Rd simulating the gradient
and the integral lines of h, respectively. Critical points of the
distance function h are the intersection points of the Voronoi
diagram and its dual Delaunay diagram of the finite set of
points P. The relation between the segmentation computed
and Morse theory has been studied in [Ede03]. Analogously
to the notion of descending manifold of a critical point in
Morse theory, the stable manifold S(p) of a critical point p
of h is defined as the set of all points of Rd that flow into p.

3.4. Classification of the algorithms

Algorithms for computing Morse decompositions can be
classified based on different criteria, such as the input
they accept, the output they generate, and the algorithmic
approach they apply (for a more detailed discussion see
[ČDMI14]).

Algorithms may differ in: (i) the dimension d of the
scalar field (they may be specific for d = 2 or d = 3, or
be dimension-independent); (ii) the underlying shape dis-
cretization (simplicial complex, cubical complex); and (iii)
the required properties (e.g., no flat edges). Algorithms may
differ in the information computed (ascending/descending
Morse complex, or Morse-Smale complex), and in the out-
put format (e.g., the cells of such complexes are described as
collections of vertices or d-cells of the original complex).

Based on the algorithmic technique they apply, we have
the following classification:

• Boundary-based approaches, which are based on piece-
wise linear Morse theory, and compute the Morse-Smale
complex by constructing the separatrix lines (in 2D), or
the separatrix lines and surfaces (in 3D).
• Region-growing approaches, which are generally based on

piecewise linear Morse theory, and compute the ascend-
ing (or descending) Morse complex by growing the top
cells, here called regions, from seeds located at the min-
ima (or maxima). Note that the construction of the stable
flow complex can be obtained through a region-growing
approach.
• Watershed approaches, which are based on the discrete

watershed transform, and compute the ascending Morse
complex.

• Forman-based approaches, which are based on Forman’s
discrete Morse theory (see Sections 4, 5, 6).

3.5. Boundary-based algorithms

Boundary-based algorithms have been developed for trian-
gle and tetrahedral meshes and for 2D and 3D regular grids.
Such algorithms compute an approximation of the Morse-
Smale complex through its 1-skeleton in 2D and through its
2-skeleton in 3D.

In the 2D case, a boundary-based algorithm generally per-
forms two major steps:

1. Vertex classification to extract maxima, minima, and sad-
dles.

2. Path computation: starting from each saddle, ascending
separatrix lines are traced until they reach a maximum,
and descending separatrix lines are traced until they reach
a minimum.

In the smooth case, two ascending and two descending
paths are incident in each saddle. In the discrete case, the
number of ascending/descending paths in a saddle can be
larger. A saddle of multiplicity equal to k has k+ 1 ascend-
ing and k + 1 descending paths (k + 1 = 2 for simple sad-
dles). Thus, the boundary-based algorithms unfold multiple
saddles into simple saddles.

Path tracing should follow the steepest ascent/descent of
the function. In the discrete case, this latter may be approx-
imated in different ways. Takashahi et al. [TIKU95] move
from the current vertex to its highest/lowest adjacent vertex.
Edelsbrunner et al. [EHZ01] consider the edge slopes, and
move from the current vertex v to its higher/lower adjacent
vertex connected to v through the steepest edge. Such al-
gorithms, which compute separatrix lines by following the
edges of the triangle mesh, do not guarantee that traced lines
have the steepest ascent/descent. Bremer et al. [BEHP04]
and Pascucci et al. [Pas04] consider the slope of both edges
and triangles, and allow separatrix lines to cross triangles.
Because tracing separatrix lines across triangles is compu-
tationally intensive, de Berg et al. [dBT11] present a hybrid
approach which tries to balance computation time and pre-
cision.

The approach in [EHZ01] has been extended to 3D
[EHNP03]. Given a tetrahedral mesh, the algorithm com-
putes the 1- and 2-cells which bound the 3-cells in the
Morse-Smale complex. The extracted complex has the cor-
rect combinatorial structure described by a quasi-Morse-
Smale complex. Two sweeps are performed over the input
mesh. The first sweep (by decreasing function value) com-
putes the descending 1- and 2-cells, and the second sweep
(by increasing function value) computes the ascending 1-
and 2-cells.

Boundary-based algorithms on regular grids are based on
the construction of interpolating functions within each top
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cell. Two conflicting issues arise: the need of avoiding, or
limiting, the creation of new critical points, and that of guar-
anteeing a certain degree of continuity on the whole domain.

Bajaj et al. [BPS98] use a globally C1-differentiable
Bernstein-Bezier bi-cubic function for two-dimensional reg-
ular grids, and a tri-cubic function for 3D regular models.
They define an algorithm to reduce the number of newly in-
troduced critical points.

Schneider and Wood [SW04, Sch05] propose two meth-
ods for 2D regular grids. The first one uses a bilinear C0

interpolating function on each top cell, which, thus, cannot
introduce additional minima or maxima, but may introduce
saddles. The second method uses a bi-quadratic approxima-
tion on each top cell. No new critical point is introduced,
but the resulting approximation is globally discontinuous,
formed by local surface patches.

All algorithms trace four separatrix lines from each sad-
dle point, which can follow grid edges, or go through 2-
cells. Both function derivatives and separatrix lines are
computed numerically in [BPS98]. The two algorithms in
[SW04, Sch05] compute derivatives analytically. The algo-
rithm in [Sch05] uses this information to trace the separatrix
lines, while the algorithm in [SW04] uses a step-by-step nu-
merical procedure.

3.6. Region-growing algorithms

Region-growing algorithms operate on triangle or tetrahe-
dral meshes, and compute the top cells of the ascending (de-
scending) Morse complex, called regions, expanding an ini-
tial seed, i.e., the minimum (or maximum) the top cell is
associated with. They are mostly based on piecewise-linear
Morse theory, but the class of region-growing algorithms in-
cludes also techniques to build a flow complex. Regions are
collections of triangles (for 2D scalar fields) or tetrahedra
(for 3D scalar fields) from the underlying mesh Σ: each tri-
angle or tetrahedron t ∈ Σ is labeled with the minimum (or
maximum) associated with the region containing t. The only
exception is the 3D algorithm by Gyulassy et al. [GNPH07].
We focus here on the computation of the descending Morse
complex. The computation of the ascending Morse complex
is completely dual.

In the two-dimensional case, a region-growing algorithm
conceptually contains two major steps:

1. Extraction of seed vertices.
2. Region-growing: from each seed, the corresponding re-

gion is built by iteratively adding triangles which are
edge-adjacent to it.

In the two algorithms by Danovaro et al. [DDM03b,
DDM∗03a], the two steps are interlaced: a seed is extracted
and its region is immediately grown. Each new seed p is the
vertex with maximum function value among the ones with

unclassified incident triangles. The region γ of p is initial-
ized with unclassified triangles incident in p and grown by
adding edge-adjacent triangles. The algorithm in [DDM03b]
decides on adding a triangle t based just on function values,
whereas the one in [DDM∗03a] uses a discrete gradient de-
fined over triangles. As extracted seeds include other ver-
tices besides the maxima of f , a final merging of regions is
required. The algorithm in [DDM03b] works for tetrahedral
meshes as well, and can be extended to higher-dimensional
scalar fields.

The algorithm in [MDD∗09] first extracts all seeds, which
are the maxima of function f . Then, their regions are com-
puted one at a time in any order. Similarly to [DDM03b],
the criterion for adding a triangle t to γ is based just on func-
tion values, but it is less restrictive and permits to build the
entire region of a maximum. This algorithm accepts triangu-
lated surfaces with flat edges, by using ad-hoc solutions for
handling plateaus.

The algorithm in [GNPH07] computes all the i-cells of the
3D Morse-Smale complex (for all dimensions i = 0,1,2,3)
as collections of vertices, i.e., through vertex labeling. First,
minima are found and an ascending 3-cell is grown from
each of them. Then, ascending 2-cells are built starting from
boundary vertices of 3-cells. Finally, ascending 1-cells are
built starting from boundary vertices of 2-cells. Descending
3-, 2-, and 1-cells (in this order) are computed inside the
ascending 3-cells using the same approach in a symmetric
way. This algorithm has been presented for 3D scalar fields,
but it can be extended to higher dimensions.

The computation of the flow complex is described in
[GJ08] as a region-growing process. In [DGG03] an approx-
imation of the flow complex is computed with lower compu-
tational costs. This latter is based on the construction of the
Voronoi diagram VP, and of its dual Delaunay diagram DP,
of the given set of points P. The intersection of VP and DP
identifies the set of critical points corresponding to the cells
of the stable flow complex. For a maximum, corresponding
to a simplex σD in the Delaunay diagram (triangle in 2D
and tetrahedron in 3D), the corresponding region is initial-
ized with σD and grown by adding simplices which are face-
adjacent to the boundary of the region. A simplex σ outside
the region F is added into F if it is adjacent to F and σ

flows into an internal simplex σ1 (i.e. σ < σ1). In [DGG03],
two flow relations are defined specifically for the 2D and 3D
cases. Given two edge-adjacent triangles σ1 and σ2, σ1 < σ2
if σ2 and its dual Voronoi vertex lie on the opposite sides of
the supporting line of the common edge. The same relation
is provided in 3D between two face-adjacent tetrahedra. A
tetrahedron σ1 flows into an adjacent tetrahedron σ2 if σ1
and its dual Voronoi vertex lie on the opposite sides of the
plane of the common face. Since in R3 flows can bifurcate
creating ambiguity, in [DGG03] a strengthened flow relation
is defined to determine where a Delaunay tetrahedron flows.
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3.7. Watershed algorithms

As described in Section 3.2, given a labeled graph H =
(NH ,AH , f ), watershed algorithms produce the ascending
Morse complex as a classification of the nodes of H: each
node p is labeled with the minimum corresponding to the
ascending top cell containing p. Some methods produce so-
called watershed nodes, which lie on the boundary between
two or more top cells. Watershed algorithms work on cubi-
cal complexes of any dimension or on simplicial meshes. In
the first case, they label the top cells of the complex. In the
latter case, the nodes in NH are the vertices of the underlying
mesh Σ, the arcs in AH are the edges of Σ, and the output is
a vertex classification.

Watershed algorithms are usually based on topographic
distance [Mey94], on simulated immersion [VS91, Soi04],
or on rain falling simulation [MW99, SS00]

Watershed algorithms based on topographic distance di-
rectly apply the definition of catchment basin in terms of to-
pographic distance and shortest paths (see Section 3.2). The
image integration algorithm by Meyer [MB90, Mey94] is a
variation of the Dijkstra-Moore algorithm [Dij59] for com-
puting the shortest path from a source node to every other
node in a graph. In this case, the topographic distance is
used. The hill climbing algorithm [Mey94] is a simplified
version of image integration, which applies to regular grids,
since the distance between two adjacent top cells p and q in
domain space is constant.

The intuitive idea behind the simulated immersion ap-
proach [VS91, Soi04] is that of letting water raise from lo-
cal minima, and label as watershed those nodes of graph H
where water coming from different minima merge. The al-
gorithm expands catchment basins by processing the nodes
of H by increasing function value. In the stage in which a
certain function value h is processed, all catchment basins
of minima with value h′ < h have been started and, up to
now, contain just nodes with function values lower than h.
Processing function value h will add new nodes to existing
basins, and will start new basins from minima having a func-
tion value equal to h.

Watershed approaches presented so far have in common
the idea of growing catchment basins upwards from the min-
ima of f . The rain falling paradigm [MW99, SS00] uses the
opposite idea of letting water fall down from each vertex un-
til it reaches at a minimum. The advantage of the rain-falling
approach is that it does not require a preliminary sorting of
the vertices, nor a priority queue.

The main steps of rain falling are:

1. Find the minima and label each minimum as belonging
to the basin of itself.

2. For each node v, which is still unlabeled, start descending
from v to its lowest neighbor u, continue until an already
labeled vertex u is found, and give the label of u to all
traversed nodes.

The algorithm by Mangan and Whitaker [MW99] is for
triangle meshes, and the one by Stoev and Strasser [SS00]
for regular grids. An implementation of the rain-falling sim-
ulation for triangle meshes has been used in [MDI13], where
triangles are then classified based on the labels of their ver-
tices. A similar approach can also be applied for tetrahedral
meshes [Iur14].

3.8. Analysis and comparison

Some algorithms applied to meshes consider both the field
difference between two vertices, and their distance in do-
main space [EHZ01, BEHP04, Mey94]. Other algorithms
simply consider field difference. The two boundary-based al-
gorithms in [TIKU95, EHZ01], and the two region-growing
ones in [DDM03b,DDM∗03a] just differ in this aspect. Note
that the two approaches are equivalent on a regular grid.

Region-growing and watershed methods compute the top
cells of the Morse complex through a classification of the top
cells of the input simplicial or cubical complex, and, thus,
their accuracy cannot go beyond the granularity of the input
scalar field model. Boundary based algorithms exist which
do the same, or trace separatrix lines also inside top cells,
thus splitting an input triangle or pixel across several out-
put top cells [BEHP03, Pas04]. These latter algorithms are
less efficient, but avoid a number of violations of the proper-
ties of a QMS complex, such as a path from a saddle reach-
ing another saddle before arriving at its final maximum or
minimum, two overlapping paths in opposite directions, and
regions bounded by extracted lines having a disconnected
interior.

Boundary-based algorithms guarantee that saddles lie on
the 1-cells of the output complex. As two paths going in
the same direction join before reaching their final maxi-
mum or minimum, 2-cells bounded by such lines may be
non-manifold because of so-called dangling edges. Region-
growing methods suffer of the opposite problem. They build
2-cells that are 2-manifold by construction, but saddle ver-
tices may not lie on their boundary.

Region-growing and watershed approaches do not extract
the Morse-Smale complex, which can be obtained by inter-
secting the top cells of the Morse complexes. On the con-
trary, boundary-based approaches can easily produce the as-
cending or descending Morse complex by simply tracing just
separatrix lines in one direction.

All algorithms based on locally steepest descent, includ-
ing algorithms for computing the Forman gradient (see Sec-
tion 5), do not converge to the ground truth smooth function
when the underlying discrete domain is refined. Intuitively,
the gradient of the input data is affected by a sampling er-
ror (due to the data points) and by a quantization error (due
to the limited directions of the edges incident in each point).
Although the sampling error can be decreased using a denser
sampling, this is not the case for the quantization error. For
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watershed based algorithms, this problem has been studied
in [SCP08] where an improved technique is proposed based
on a probability propagation scheme. New techniques has
also been developed for algorithms computing a Forman gra-
dient [GBP12, RGH∗12].

4. Discrete Morse theory

Forman theory [For98b] is a discrete counterpart of Morse
theory, with the main purpose of transposing the results of
Morse theory from a smooth to a combinatorial setting. This
goal is achieved by considering a function (also called a For-
man function) defined over all the cells of a cell complex Γ.
A discrete function F , defined on all the cells of Γ, is called
a Forman function if, for any k-cell σ, all the (k− 1)-faces
of σ have a lower F value than σ, and all the (k+ 1)-faces
have a higher F value than σ, with at most one exception. A
cell is critical if there is no exception. If σ is a critical cell,
then the index of σ is the same as its dimension. In particular,
minima arise at vertices and maxima arise at d-dimensional
cells [For98b]. We observe that, unlike the smooth case, if
F is a Forman function on Γ, then −F is not necessarily a
Forman function on the same complex.

Figure 4 (a) shows a Forman function F defined on a sim-
plicial complex. Each simplex is labeled by the value of
function F . Vertex 1 is critical (minimum), since F has a
higher value on all edges incident to it. Triangle 9 is critical
(maximum), since F has a lower value on all edges incident
to it. Edge 8 is critical (saddle), since F has a higher value
on the incident triangle 9, and lower values on its extreme
vertices.

The unique exception to the above rule, which holds for
a non-critical cell, permits to pair such cell with either one
of its faces, or one of its cofaces. Thus, a Forman function F
induces a collection of pairs (σ,τ), where σ is a k-cell and τ

is a (k+1)-cell, coface of σ. Such pair can be depicted as an
arrow going from σ (tail) to τ (head). Each cell is a head or
a tail of at most one arrow, and critical cells are those cells
that are neither the head nor the tail of any arrow. A discrete
vector field V on a cell complex Γ is a collection of pairs
(σ,τ), each cell of Γ is in at most one pair of V .

A V-path is a sequence σ1,τ1,σ2,τ2, ..., σr,τr of k-cells σi
and (k+1)-cells τi, i = 1, ..,r with r≥ 1, such that (σi,τi) ∈
V , σi+1 is a face of τi, and σi 6= σi+1. A V-path with r > 1
is closed if σ1 is a face of τr different from σr−1. A discrete
vector field V is called a discrete (Forman) gradient vector
field (or Forman gradient) if and only if there are no closed
V-paths in V . A critical cell of V of index k is a k-cell γ

which does not appear in any pair of V .

There is a correspondence between Forman functions and
Forman gradient vector fields [For98a]. Namely, for each
Forman function F , a Forman gradient vector field VF can be
constructed. Figure 4 (b) shows the Forman gradient vector
field VF corresponding to the Forman function F in Figure

(a) (b)

Figure 4: (a) A Forman function on a simplicial complex
and (b) the corresponding Forman gradient vector field.

4 (a). Conversely, for each Forman gradient vector field V
there exists a (non-unique) Forman function F such that the
gradient field of F is V [For98b].

In the combinatorial setup of Forman theory, maximal V-
paths correspond to the separatrix lines of a Morse function
f in the smooth case, directed downwards. We call a sep-
aratrix Vk-path, connecting critical (k+ 1)-cell τ to critical
k-cell σ, any V-path σ1,τ1,σ2,τ2, ...,σr,τr such that σ1 is a
face of τ and σ is a face of τr. In Figure 4, the separatrix
V1-paths are (8,7,6,5,3,1) and (8,6,5,1).

Discrete Morse theory has been used as a tool in shape
data analysis and understanding, mainly shape segmenta-
tion, and homology and persistence homology computation.
In the first application, discrete Morse theory becomes the
basis for an efficient and a derivative-free computation of a
segmentation of a discretized shape endowed with a scalar
field through Morse or Morse-Smale complexes, and, thus,
it is a efficient alternative to previous approaches based on
piecewise linear Morse theory, or on the discrete watershed
transform.

Considering homology computation, in [For98b] it has
been proven that a cell complex Γ and any discrete Morse
complexM∗ defined by a Forman gradient on Γ, provide the
same homological information, i.e., Hk(Γ)∼= Hk(M∗). The
above equivalence allows for the computation of the homol-
ogy groups and of the homology generators of a cell complex
Γ through the Smith Normal Form reduction of the bound-
ary maps of the discrete Morse complex. In many practical
situations, the discrete Morse complexM∗ is much smaller
than the original complex Γ, and so, this approach signifi-
cantly reduces the time to compute the homology groups of
a cell complex. Also in persistent homology computation, it
is possible to obtain the persistence of the input cell com-
plex by studying the persistence of a considerably smaller
discrete Morse complex.

4.1. Algorithms rooted in discrete Morse theory

Algorithms based on discrete Morse theory do not compute
Morse, or Morse-Smale complexes explicitly, but compute a
Forman gradient V from which all the cells of the Morse and
Morse-Smale complexes can be extracted if needed. Such al-
gorithms are purely combinatorial, dimension-independent
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and independent of the type of underlying cell complex.
Note that algorithms based on piecewise linear Morse theory
are dimension-specific, and specific for simplicial meshes
or regular grids. Furthermore, algorithms based on discrete
Morse theory can provide all the cells of both the Morse and
the Morse-Smale complexes, whereas watershed algorithms
compute only the Morse cells.

When working with a Forman gradient, all the Morse and
Morse-Smale cells are obtained by traversing the V -paths of
the gradient in a dimension-independent way. Some algo-
rithms [RWS11,SMN12,SN12,WIFD13] have been defined
for computing a Forman gradient on real world datasets and
then are easily parallelizable or have been specifically de-
veloped for distributed computation. We can classify algo-
rithms for Forman gradient computation into two categories:
constrained algorithms [CCL03,KKM05,GBHP11,RWS11,
GBP12,GRWH12,SMN12,SN12]; and unconstrained algo-
rithms [LLT03,MB09,MW10,DKMW11,HMMN14,BL14,
FID14].

Constrained algorithms start from a discrete scalar func-
tion f defined over the vertices of a cell complex Γ, and aim
at constructing a Forman gradient that best fits function f .
They focus on extracting a minimum number of critical sim-
plices in order to avoid spurious cells in the Morse com-
plexes [RWS11, GBP12], or they perform a-posteriori sim-
plifications to reduce them [KKM05, GBHP11]. The typical
applications for constrained algorithms are data analysis and
visualization, since a Forman gradient provides a computa-
tionally efficient way for extracting the Morse and Morse-
Smale cells representing the regions of influence of the crit-
ical points.

Unconstrained algorithms, on the other hand, compute
a Forman gradient on a cell complex when no information
about the Forman function is provided. Here, a Forman gra-
dient is extracted with the aim of computing homology and
persistent homology of the original complex. The focus of
these algorithms is computing a pairing for all the cells of
the input cell complex while leaving as few unpaired cells
as possible. In [LLT04], Lewiner et al. presented the first al-
gorithm of this type, and showed applications to topology
visualization and mesh compression. We provide a survey
of constrained and unconstrained algorithms in Sections 5.2
and 5.3, respectively.

A challenging problem, when working with a Forman
gradient V , is traversing the V -paths in order to extract in-
formation about the Morse or Morse-Smale complexes. In
the case of constrained algorithms, traversing the V -paths
corresponds to building a segmentation of the underlying
shape into Morse or Morse-Smale complexes. In an uncon-
strained algorithm, V -paths are used for computing homol-
ogy or homology generators of the underlying cell com-
plex. In 2D, all V -paths can be visited in linear time by
traversing all cell pairs at most once. However, for extract-
ing only separatrix V -paths, the gradient paths between sad-

dles and maxima can be visited in reverse order, thus re-
ducing the numbers of pairs to be visited. In higher dimen-
sions the situation is more involved. We will describe in de-
tails the algorithms proposed for the efficient extraction of
Morse and Morse-Smale complexes from a Forman gradi-
ent [GBP12, GRWH12, SN12, WIFD13] in Section 6.

Both constrained and unconstrained algorithms are in-
volved, with a different flavor, in persistent homology com-
putation. In constrained approaches, the values of function
f at the vertices of cell complex Γ naturally induce a filtra-
tion of Γ. In [RWS11], for example, the generic element Γm
of the filtration induced by the input function f on Γ is the
cell complex containing all the cells of Γ that have no vertex
with a function value greater than m. This choice guarantees
that each cell of the discrete Morse complex corresponds to
a change in topology between successive cell complexes of
the filtration. In unconstrained approaches, the filtration is
set as input, and the construction of the Forman gradient has
to comply with the given filtration [MN13, DW14].

5. Computing the discrete Morse gradient

In this section, we present first an encoding for the discrete
Morse gradient field for a simplicial complex and then we
describe algorithms for computing it.

5.1. Forman gradient encoding on simplicial complexes

Since a Forman gradient field is a collection of pairs of cells
on a cell complex Γ, we need a representation for Γ in which
all cells are explicitly encoded as well as their mutual in-
cidence relations, as in the Incidence Graph (IG) [Ede87].
This latter is the most common and general data structure
for cell complexes, being an implementation of the Hasse
diagram of the complex, where the nodes correspond to the
cells of the complex and the arcs to the immediate boundary
and co-boundary relations.The Forman gradient can be eas-
ily implemented on the IG as a Boolean function associated
with its arcs. For a cubical complex, all such relations are
encoded implicitly by indexing the cells of the grid. More-
over, since a Forman gradient V defines a pairing between
incident cells, V can be defined as a bit vector based on the
same indexing [GRWH12].

For simplicial complexes, a data structure encoding all
simplices and their incidence relations is too verbose. Other
data structures exist for simplicial complexes, which encode
only vertices and top simplices [DH05, CDW11], thus be-
ing much more compact, and scalable with the dimension.
An encoding for the Forman gradient on such data struc-
tures associates the gradient pairs to the top simplices, and
is called a compact gradient. The use of such data struc-
tures with the compact gradient makes the computation of
the Forman gradient and of the Morse and Morse-Smale
complexes feasible on simplicial complexes on large size
[WIFD13, FID14, FIDW14].
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Let us consider a d-dimensional simplicial complex Σ and
a d-simplex σ in Σ. The compact encoding associates with
σ a subset of the pairs involving its faces, namely, all pairs
in the discrete vector involving σ or two of its boundary
simplices. In 2D, a triangle has 12 possible pairs for a to-
tal of 212 = 4,096 cases. However, for a Forman gradient,
there are only 97 valid cases for a triangle. Thus, all possi-
ble configurations can be encoded by using only one byte
per triangle. Similarly, in 3D, there are 32 pairs for a total of
232 = 4,294,967,296 possible configurations, and the valid
ones are only 51,030, thus they can be represented with 2
bytes per tetrahedron. We refer to [WIFD13] for details.

5.2. Constrained algorithms

Several algorithms have recently been developed in the liter-
ature to compute the Forman gradient when a scalar value is
given at the vertices of a cell complex. Such algorithms are
general, but their implementation is usually restricted to the
2D and 3D cases, and mainly to cubical complexes.

The algorithm proposed in [CCL03] builds a Forman gra-
dient from a triangle mesh Σ endowed with a scalar func-
tion, which in this case is the discrete Connolly’s function
f [Con86]. Function values are extended to edges and trian-
gles by considering the mean value of their incident vertices.
They consider the primal graph GP of Σ, which is the graph
having as nodes the vertices of Σ and as arcs its edges, and
the dual graph GD of Σ defined as the graph having as nodes
the triangles of Σ and the arcs in one-to-one correspondence
with edge-adjacent triangles. A spanning forest TD is created
by building a spanning tree on GD for each local maximum
of f on Σ, processing the edges by increasing function value.
In a dual fashion, a spanning forest T is built on GP by cre-
ating a spanning tree for each local minimum. The Forman
gradient V is computed from T and TD. The minima (ver-
tices) are the roots of T , the maxima (triangles) are the roots
of TD, and the saddles are the edges belonging neither to T
nor to TD. The V -paths of V formed by vertices and edges
correspond to paths from a root of T to one of its leaves,
while V -paths formed by edges and triangles correspond to
the paths from a root of TD to one of its leaves. The algo-
rithm can be extended to d-dimensional complexes but only
by restricting to the computation of the pairings between
0-simplices and 1-simplices (forming V -paths connecting
minima to 1-saddles) and between (d− 1)-simplices and d-
simplices (forming V -paths connecting maxima to (d− 1)-
saddles).

The algorithm proposed in [KKM05] takes as input a
scalar function f defined over the vertices of a three-
dimensional simplicial complex Σ. The algorithm builds the
gradient vector field in the lower link Lk−(v) of each ver-
tex v in Σ, where the lower link Lk−(γ) of a simplex γ is the
subset of the link of γ (see Sect. 2.1) containing only sim-
plices with a lower function value than γ. Then, it extends
this function to the cone (v;Lk−(v)), which is the simplex

generated by the union of the vertices of v and Lk−(v). The
Forman gradient computed in this way may have an arbitrary
large number of critical simplices compared with the number
of the critical points of the original scalar function f . Thus,
the algorithm performs a simplification step for reducing the
number of critical cells [For98b].

The algorithm proposed by Gyulassy et al. in [GBHP08]
is one of the first algorithms defined in a dimension-
independent way. It computes a Forman gradient starting
from a d-dimensional regular grid Γ with scalar function f
defined at the vertices of Γ. Function f is extended to a For-
man function F , defined on all cells of Γ, such that F(τ) is
slightly larger than F(σ) for each cell τ and each face σ of
τ. For such function F , all cells of Γ are critical. A gradi-
ent vector field is computed by assigning gradient arrows in
a greedy manner during sweeps over the cells of Γ accord-
ing to increasing values of dimension and of F . Each current
non-paired and non-critical cell in the sweep is paired with
its coface having only one non-marked face (as critical or
as already paired). If there are several of such cofaces, the
lowest one is taken. If there is no such coface, the cell is crit-
ical. Pairs built in this way define a gradient vector field. The
order in which the cells in Γ are processed is not determin-
istic, since different k-cells in Γ may have the same value
of function F . As a consequence, some unnecessary critical
cells may be produced. In [SMN12] and [SN12], a similar
approach based on a weighted discrete function has been de-
fined for computing a Forman gradient on 2D and 3D regular
grids. The pairs found by the algorithm are unique and inde-
pendent of the order in which the cells are considered, thus
providing a basis for a parallelization. In [GBP12], a similar
algorithm is proposed which focuses on improving the poor
geometric approximation of the gradient caused by the local
assignment of the gradient arrows. This is especially useful
in scalar field analysis, but not for homology computation.

In [RWS11], a dimension-independent algorithm is pro-
posed for a regular grid with scalar function values given at
its vertices. In [WIFD13, FIDW14], this algorithm has been
extended to simplicial complexes in 2D and in 3D by devel-
oping very compact representations for the underlying com-
plex, leading to the first efficient algorithm for Forman gra-
dient computation on simplicial complexes. The algorithm
processes the lower star of each vertex v in Σ independently,
where the lower star of a cell γ is the subset of the star of
γ (see Sect. 2.1) containing only cells with a lower function
value than γ. Each cell σ is considered in ascending order of
function values and of dimension in such a way that each cell
σ is considered after its faces. All the k-simplices incident in
the lower star are paired via homotopy expansion. Two cells,
k-cell σ and (k+ 1)-cell τ, are paired via homotopy expan-
sion when σ has no unpaired boundary cells and τ has only
one unpaired boundary cell (i.e. σ). In [RWS11] it has been
proved that in the 3D case, similarly to the smooth Morse
setting, the critical cells identified are in one-to-one corre-
spondence with the topological changes in the sub-level sets
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of the function defined over the regular grid. This aspect,
in addition to the easy implementation and parallelization,
candidates the algorithm to be one of the best, topologically
correct algorithms for computing a Forman gradient.

5.3. Unconstrained algorithms

Several algorithms have been proposed for computing a For-
man gradient on a cell complex without any constraint, such
as the one given by a scalar value at the vertices.

5.3.1. The algorithm by Lewiner et al. [LLT03]

The algorithm in [LLT03] has been the first algorithm of this
kind presented in the literature, with the purpose of provid-
ing a combinatorial characterization of a shape. The algo-
rithm has been defined for manifold 2-complexes first and
then extended for general cell 2-complexes. The algorithm
works independently on each connected component of a cell
2-complex Γ, performing three steps. In the first step, a span-
ning tree T is built on the dual graph of Γ. Recall that the
dual graph of Γ is the graph in which the nodes correspond
to the top d-cells of Γ and the arcs connect (d−1)-adjacent
top cells. In the second step, a discrete Morse function is de-
fined on the nodes and edges of T . Every node of T gets as
function value equal to its distance from the root plus (v+1)
(with v number of 0-cells in Γ), and every edge of T gets the
minimum value of its two end nodes. In the last step, the pri-
mal graph defined by the 1-skeleton of the complex is con-
sidered. A spanning tree U is built on such a graph. Every
node on U gets as value its distance from the root and, every
edge, the maximum value of its incident nodes. Recall that
0-cells of Γ correspond to nodes of U , 1-cells correspond to
arcs in both U and T , and 2-cells correspond to nodes in T .
Finally, discrete Morse function values are assigned to cells
of Γ from the corresponding values in the two graphs.

5.3.2. Algorithms based on reduction and coreduction

Several algorithms have been proposed based on two simpli-
fication operators, called reduction and coreduction, deleting
a pair of cells from a cell complex Γ while preserving the ho-
mology groups of Γ. Even if these two operators have been
defined as simplification operators, they can be seen as pair-
ing operators for building a Forman gradient V on Γ, i.e.,
once Γ has been fully simplified through reduction and core-
duction operators obtaining the simplified cell complex Γ

′,
arrows of V correspond to the cell pairs eliminated and the
cells in Γ

′ correspond to the critical cells of V . Here, we will
describe two of these algorithms presenting a dual strategy
for computing the Forman gradient [HMM∗10, BL14].

Algorithm by Benedetti et al. This algorithm [BL14] uses
the reduction operator in the construction of a Forman gradi-
ent. A reduction corresponds to a deformation retraction of
a cell which is a face of only one other cell in the complex.
For this reason, it enables reducing the size of a cell complex

without affecting its homology. Let Γ be a cell complex and
let σ be a k-cell of Γ. We call (immediate) coboundary of σ

with respect to Γ the set cbdΓ σ of the (k+ 1)-dimensional
cofaces of σ. A pair (τ,σ) of cells of Γ, such that σ is incident
only once in τ, is called a reduction pair if cbdΓ τ = {σ}.
The algorithm builds a Forman gradient vector field V on a
cell complex Γ by using reduction pairs and removals of top
cells. The algorithm first initializes V as the null set. Let us
denote as Γ

′ the set of non-excised cells of Γ, initially equal
to Γ. While Γ

′ admits a reduction pair (τ,σ), the algorithm
excises cells τ and σ from Γ

′ and adds the pair (τ,σ) to set
V . When no more reduction is feasible, a top cell is excised
from Γ

′, which becomes a critical cell, and the main loop of
the algorithm is iterated until Γ

′ is empty.

Algorithm by Harker et al. This algorithm [HMM∗10,
HMMN14] uses coreduction as a homology-preserving op-
erator to construct a Forman gradient on a cell complex.
The coreduction operator (see [MB09]) can be viewed as
dual with respect to a reduction and the two operators
combined represent a powerful preprocessing tool to effi-
ciently compute homology of a cell complex, as described
in [MB09, MW10, DKMW11]. Let Γ be a cell complex and
let σ be a k-cell of Γ. We call (immediate) boundary of σ

with respect to Γ the set bdΓ σ of the (k− 1)-dimensional
faces of σ. Let Γ be a cell complex and, given σ, τ two cells
of Γ, a pair (τ,σ) of elements of Γ, such that σ is incident
only once in τ, is called a coreduction pair if bdΓ σ = {τ}.

In [HMMN14] a Forman gradient is built by removing
coreduction pairs and free cells, where a free cell is a cell
with an empty boundary. In this approach, a Forman gra-
dient vector field V on Γ is built as follow. The algorithm
looks for available coreduction pairs in the complex. While
a coreduction pair is feasible, the pair is excised from the cell
complex and it is added to V . When no more reduction pair
is available, a free cell is excised from the complex and con-
sidered as a critical cell. The algorithm iterates this process
until no more cells can be considered.

Comparison The two approaches described above are dual
to each other. The equivalence in the use of reductions
or coreductions has been proven in [FID14] in the con-
text of simplicial complexes. Any Forman gradient obtained
through a sequence of reductions and removals of top cells
can be obtained through a suitable sequence of coreductions
and removals of free cells, and vice versa. In [FID14] an al-
gorithm has been proposed to build a Forman gradient vec-
tor field by executing reduction and coreduction pairs in an
interleaved way. It has been shown that any interleaved ap-
proach still produces a Forman gradient and that such a gra-
dient can be obtained through reduction or coreduction pair-
ings.

Both from an application and a theoretical point of view,
it is interesting to find a method to build a Forman gradient
vector field which minimizes the number of critical cells.
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Figure 5: Timings (in seconds) for homology computation
using the IA∗ and the IG data structures. For dataset Ele-
phant, the IG implementation runs out of memory.

Computation of a Forman gradient is known to be NP-hard.
In [BLPS13], problems related to discrete Morse theory are
analyzed in terms of parametrized complexity determining
their hardness using the mathematically rigid framework of
the W-hierarchy. The results in [FID14] show that the use of
different simplification operators or the combination of sev-
eral operators does not affect the number of resulting crit-
ical cells. As discussed in [FID14], when using a verbose
data structure for encoding a cell complex, storing all the
boundary/coboundary relations like in [MN13], an approach
involving both reductions and coreductions is more efficient
from a computational point of view. When only a subset of
these relations is explicitly stored in the data structure en-
coding the cell complex, the storage cost decreases consid-
erably. In this case, an approach involving only reductions
or coreductions has to be selected, depending on whether
boundary or coboundary relations can be retrieved faster
from the specific data structure used to encode the complex.
In [FID14], the trade-off between a verbose data structure
(the incidence graph IG) and a compact data structure encod-
ing only the vertices and top simplices of a simplicial com-
plex (the IA∗ data structure [CDW11]) has been analyzed.
The IG-based implementation is about 3 times more costly
for 2-complexes. For-complexes, the ratio between the stor-
age costs of the IG and the IA∗ implementations is equal to
4 and the same ratio becomes 17 and 24 for complexes of
dimension 7 and 9, respectively. On the other hand, the tim-
ings of the two data structures are comparable for 2- and 3-
complexes, while an implementation based on the IA∗ data
structure becomes slower when working in higher dimen-
sions (see Figure 5).

6. Morse complexes from the Forman gradient

In this section, we discuss algorithms for retrieving Morse
and Morse-Smale complexes, which are implicitly repre-
sented by the Forman gradient. We will discuss the algo-
rithms for simplicial complexes, even if they are valid also
for cell complexes.

Note that when we use Morse decompositions as a seg-
mentation of a shape endowed with a scalar field, we are
interested in a geometrical representation for the cells of the
Morse or Morse-Smale complexes. In this case, the domain
of the complex is always a manifold. In 3D, the 1-skeleton of
the Morse-Smale complex has been shown to be very useful
for understanding the structure of the dataset [GKK∗12]. For
homology and persistent homology computation, instead,
we need to compute the boundary maps (incidence relations)
between the cells of the descending Morse complex. Com-
puting the Morse Incidence Graph (MIG) (see its definition
in Section 2.3) is crucial for retrieving such information ef-
ficiently.

6.1. Computing Morse decompositions

A descending [ascending] k-cell associated with a critical
simplex σ is extracted by starting from σ and traversing the
simplicial complex Σ along the pairs of the gradient field. We
present here the general strategy and afterwards improve-
ments proposed by several authors.

Descending Morse complex The k-cells of the descending
Morse complex ΓD are naturally defined as a collection of
k-simplices of Σ. The computation of a descending k-cell
always starts from a critical k-simplex σ. All the (k− 1)-
simplices in the immediate boundary of σ are selected and,
among them, only the (k− 1)-simplices paired with a k-
simplex different from σ are considered. Such k-simplices
are inserted into a queue, and the traversal of the simplicial
complex Σ continues in a breadth-first fashion until all the
V -paths starting from σ have been visited. In 2D, we start
from a critical triangle (maximum) σ and, by following gra-
dient pairs, we continue adding edge-adjacent triangles in a
breadth-first fashion until all V -paths from σ have been tra-
versed.

Ascending Morse complex The k-cells of the ascending
Morse complex ΓA are defined as a collection of (d − k)-
simplices of Σ. The computation of an ascending k-cell starts
from a critical (d− k)-simplex σ of Σ. All the (d− k+ 1)-
simplices in its immediate coboundary are selected and,
among them, only the (d− k + 1)-simplices paired with a
(d− k)-simplex different from σ are considered. From such
(d− k)-simplices the breadth-first traversal of the complex
continues until all the V -paths ending in σ have been visited
in reverse order. In 2D, the computation starts from a critical
vertex (minimum) and navigates the edges in a dual manner
with respect to what is done for the descending case. We can
observe that the duality described in the algorithm by Cazals
et al. [CCL03] when computing a Forman function is also re-
vived when following the Forman gradient. This underlines
the relation between a Forman function and the correspond-
ing Forman gradient (see Section 4).

The computation of the ascending/descending Morse

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



L. De Floriani, U. Fugacci, F. Iuricich, P. Magillo / Morse complexes for shape segmentation and homological analysis

(a) (b)

Figure 6: (a) Descending 3-cells computed on the Bonsai
dataset and (b) descending 1-cells computed on the fertility
mesh.

complex is performed through constant-time operations at
each cell on the V -paths visited. In 2D, the extraction of a
descending/ascending k-cell takes time linear in the number
of simplices forming the k-cell, since each simplex is visited
at most once. In higher dimensions, the situation is more in-
volved. For instance, in 3D, gradient paths may branch and
merge, potentially resulting in many-to-many adjacency re-
lationships between critical 1-cells and critical 2-cells. For
example, the discrete Morse function of a tetrahedral mesh
Σ with N vertices, contains O(N) critical 1-cells, each of
which is connected to O(N) critical 2-cells. This produces
a discrete Morse complex containing O(N2) gradient paths
between critical 1 and 2-simplices. Since the number of
critical 1 and 2-simplices is bounded by N, the number of
traversals for any cell during the breadth first search is also
bounded by N, and thus the complexity of the whole extrac-
tion process is O(N3).

In Figure 6, two examples of Morse cells are shown. In
Figure 6(a), the descending 3-cells are computed and, based
on the number of tetrahedra inside each cell, larger regions
are excluded from the visualization, thus highlighting the
inner structure of a volumetric dataset. In Figure 6(b), the
1-cells of the descending Morse complexes are computed
for retrieving the homology generators of degree one, where
each descending 1-cell corresponds to a 1-cycle which is in-
dependent of the others.

Morse-Smale complex The Morse-Smale (MS) complex
is obtained by intersecting the ascending and descending
Morse complexes. The MS k-cells are obtained by intersect-
ing (implicitly) the k-simplices of complex Σ and the k-cells
of the dual complex ΣD. ΣD is a d-dimensional cell complex,
in which the 0-cells correspond to the d-simplices of Σ, the
1-cells correspond to the (d−1)-simplices of Σ, and, in gen-
eral, the k-cells correspond to the (d−k)-simplices of Σ. The
maximal cells of ΓD correspond to the vertices of Σ.

A top cell of the Morse-Smale complex corresponds to a
pair of critical points (a maximum and a minimum) and is
encoded, as described in [WIFD13], as a collection of top
cells in the dually subdivided mesh ΣS. The dually subdi-

(a) (b) (c) (d)

Figure 7: (a) In the dually subdivided mesh, a tetrahedron
(represented by the red dot) is split into four hexahedra. (b)
Each hexahedron is uniquely identified by the red dot (tetra-
hedron) and a blue dot (vertex). (c) The six quads created by
adjacent hexahedra in the interior of a tetrahedron. (b) The
twelve quads, created by adjacent hexahedra, on the bound-
ary of two face-adjacent tetrahedra.

vided mesh is obtained by intersecting the simplices of the
primal mesh Σ (i.e., vertices, edges, triangles, etc.) with the
cells of the dual complex ΣD (i.e., 0-cells, 1-cells, 2-cells,
etc.).

Let us consider the 3D case. A top cell of the Morse-
Smale complex corresponds to a pair of critical points (a
maximum and a minimum) and is encoded as a collection of
hexahedra in the dually subdivided mesh ΣS obtained by in-
tersecting the descending 3-cell (corresponding to the max-
imum) and the ascending 3-cell (corresponding to the min-
imum), which are collections of tetrahedra and vertices, re-
spectively (see Figure 7(b)). Moreover, in the 3D case the
3-cells of the Morse-Smale complex are bounded by a set
of 2-cells corresponding to pairs of saddles (1-saddle and 2-
saddle) and composed of a collection of quads. Each quad
is created by face-adjacent hexahedra which could be inside
the same tetrahedron (Figure 7(c)) or on the boundary of two
face-adjacent tetrahedra (Figure 7(d)). Each quad belongs to
a Morse-Smale 2-cell if the two hexahedra belong to differ-
ent Morse-Smale 3-cells.

The 1-skeleton of the Morse-Smale complex is composed
of different sets of 1-cells. In the 2D case, the 1-cells corre-
sponding to a maximum-saddle or a minimum-saddle are the
1-manifolds of the ascending and descending Morse com-
plex, respectively. In the 3D case, the same sets of 1-cells
is combined with a set of 1-cells, called saddle-connectors,
which connect 1-saddles with 2-saddles. A saddle connec-
tor between a 1-saddle p and a 2-saddle q is computed by
extracting the descending and ascending 2-manifolds asso-
ciated with p and q. The descending 2-manifold extraction
is performed first, and all the traversed triangles are marked
as visited. Then, starting from the critical primal edge e cor-
responding to p and its adjacent edges, the same process as
for extracting ascending 2-manifolds is performed, but only
the triangles previously marked as visited are considered. In
Figure 12(b) the 1-skeleton of the Morse-Smale complex,
computed on the Buckyball dataset, is shown.
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6.2. Computing the Morse Incidence Graph (MIG)

The incidence relations encompassed in the Morse incidence
graph are computed as follows: the V -paths of the compact
gradient V defined on Σ are traversed, all the Morse cells in
one of the two Morse complexes are computed, one node for
each critical simplex is saved and two nodes in the graph are
connected with an arc if there is a separatrix V -path in V con-
necting the two corresponding critical simplices. Since only
separatrix V -paths are needed, we can use ad-hoc strategies
for reducing the number of simplices visited in practice.

Let us consider the 2D case. The set of separatrix V -paths
between saddles and minima are visited starting from each
critical edge and following the gradient paths until a mini-
mum is reached. Such paths never branch and, thus, a limited
number of edges are visited in practice during their traver-
sal. Dually, the set of separatrix V -paths between saddles
and maxima are visited starting from each edge following
the gradient path in reverse order until a critical triangle is
reached. Also in this case, such paths never branch.

In 3D, a new step is introduced to compute the saddle
connectors, i.e., the arcs of the MIG between 1-saddles and
2-saddles. Saddle connectors are extracted, as discussed in
Section 6.1, for extracting the 1-skeleton. All the descending
2-manifolds are extracted first, and all the traversed triangles
are marked as visited. Then, starting from each critical edge
e corresponding to a 1-saddle p, the same process as for ex-
tracting ascending 2-manifolds is performed, but only the
triangles previously marked as visited are considered. In this
way, only the separatrix V2-paths are traversed and, for each
of them, an arc connecting the two saddle nodes is created.

When computing homology, the MIG is fundamental for
representing the boundary maps. Formally, a discrete Morse
complex is a chain complex M∗ := (Mk, ∂̃k)k∈Z, where
Mk is the Z2-vector space generated by the critical cells of
dimension k of the cell complex Γ, and ∂̃k :Mk →Mk−1
is the boundary map which encodes the multiplicity of inci-
dence k-cells and the (k− 1)-cells ofM∗ such that ∂̃

2 = 0.
The Forman gradient computation provides the critical cells
of the discrete Morse complex, and thus groups Mk. The
computation of the boundary maps is strictly related to the
extraction of the MIG. If we consider boundary maps with
Z2 coefficients, the multiplicity of the incidences of two crit-
ical cells of consecutive dimension is just the number of arcs
that connect the corresponding nodes in the MIG, consid-
ered modulo 2. For a more accurate information about inci-
dence relations between critical cells, we have to consider
the boundary maps with integer coefficients.

6.3. Improvements in three and higher dimensions

As described in Section 6.1, during the computation of
Morse and Morse-Smale cells between 1- and 2-saddles in
3D, a single simplex may be visited multiple times, and this

results in a O(N3) worst-case time complexity. In the lit-
erature, some solutions have been proposed to handle this
problem [GRWH12, SN12, WIFD13].

In [WIFD13, GRWH12], the space complexity of the al-
gorithm is slightly increased. During a gradient path traver-
sal between a k-simplex and a (k− 1)-simplex, a Boolean
function is defined, for each k-simplex, indicating whether
the simplex has already been visited. In this way, all the sim-
plices are never visited twice and the worst-case time com-
plexity drops to O(N2). The same approach is adopted for
computing the boundary maps in Z2 of the Morse complex in
time O(cN2), where c denotes the number of critical points.
This method works well when the computation of the saddle
connectors is sequential. In a parallel implementation, each
thread would require a buffer for representing the Boolean
function, whose size is equal to the number of k-simplices.
Thus, this latter approach does not scale with the growth of
the size and dimension of the data sets.

In [SN12], a method is proposed which is specifical to
be used in parallel on a cell complex Γ, and an implemen-
tation restricted to cubical complexes in 3D is described. A
priority queue PQ is defined based on the discrete Morse
function associated with the cells of Γ. A cell σ is always in-
serted into PQ as a pair (σ,np), where np indicates the num-
ber of V -paths passing by cell σ. We consider the gradient
V -paths starting at a critical cell σ. Then, the (k− 1)-cells
τ on the boundary of σ are inserted into PQ as pairs (τ,1).
The cells are then processed from PQ in decreasing order
of function value. When a cell is dequeued, the new cells τ

are visited following the V -paths, and new pairs (τ,1) are
enqueued in PQ. Due to the branching and merging of the
V -paths, a cell τ may be inserted in PQ more than once. In
such cases, however, since these cells have the same function
value, they will occupy consecutive positions in PQ, and we
can remove them from the queue all at once, updating np.

Newly inserted cells have a lower function value than τ.
So, τ never re-enters PQ. A cell is inserted into PQ when
processing one of its neighboring cells. So, the number of
copies of the cell in PQ is bounded from above by the num-
ber of its neighbors. Each cell is inserted in PQ only a con-
stant number of times. So, the complexity of the algorithm is
O(nk,k−1 lognk,k−1), where nk,k−1 is the number of k-cell-
(k− 1)-cell pairs. The latter approach works in any dimen-
sion and is fundamental for extracting saddle connectors be-
tween a k-saddle and a (k+1)-saddle, with k 6= {0,d−1}.

7. Simplification of Morse and Morse-Smale complexes

Due to the huge size of available data sets and to the presence
of noise, morphological descriptions of scalar fields may
contain many uninteresting features. Thus, a fundamental is-
sue is the simplification of such descriptions. Cancellation
operator, defined in Morse theory for simplifying a Morse
function (see Section 2.3), has been defined in the discrete
case as well.
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(a) (b)

Figure 8: Effect of a 1-cancellation(p,q) on the descending (a) and ascending (b) Morse complex and on the corresponding
MIG (c).

We can classify the simplification operators proposed
in the literature based on whether they act on Morse or
Morse-Smale complexes, represented explicitly through the
Morse Incidence Graph (MIG) [ELZ02, BEHP04, GNP∗06,
ČomićD11] (reviewed in Section 7.1), or represented im-
plicitly through a Forman gradient V [GSW12, GRSW13,
FIDW14] (reviewed in Section 7.2).

In Section 7.3, we review and compare simplification al-
gorithms defined for Morse and Morse-Smale complexes,
which are based on the iterative application of simplification
operators.

7.1. Simplifying the Morse Incidence Graph

A k-cancellation transforms the ascending and descending
Morse complexes into complexes with fewer cells. In the de-
scending Morse complex ΓD , let p be a (k+1)-cell and q a
k-cell of ΓD, with k = 0, · · · ,d− 1. A k-cancellation is per-
formed on ΓD provided that q is incident in p only once. The
k-cancellation(p,q) removes cells p and q and changes the
connectivity of the remaining cells of ΓD. The effect of a k-
cancellation on the ascending Morse complex ΓA is entirely
dual. Figure 8 shows an example of 1-cancellation(p,q). On
ΓD (see Figure 8(a)): the 2-cell p and the 1-cell q are re-
moved, the 1-cells on the boundary of p (green squares) are
moved to the boundary of the cell corresponding to the max-
imum and adjacent to p, and the 0-cells (blue triangles) in
b(q) are removed from the boundary of q. The effect on ΓA
(see Figure 8(b)) is dual: 0-cell p is collapsed into a 0-cell
adjacent to p and 1-cell q is deleted as well. All the 1-cells
in the coboundary of p are extended to p′ and q is removed
from the boundary of all 2-cells in its coboundary (blue tri-
angles).

We consider the Morse Incidence Graph (MIG) G describ-
ing both ΓD and ΓA. A k-cancellation deletes two nodes
from N, and locally modifies the connection between the
nodes in their neighborhood. A k-node p and a (k+1)-node
q can be cancelled if p is connected to q through a single
arc in G. After cancellation, each k-node t, which was con-
nected to (k+1)-node q, becomes connected to each (k+1)-
node r which was connected to k-node p.

In 2D, a cancellation removes an extremum and a saddle.
Let us consider the 1-cancellation of a maximum (2-node)
p and a saddle (1-node) q, shown in Figure 8. After cancel-
lation, q and p are deleted. In the descending Morse com-
plex, shown in Figure 8(b), 1-cell q is deleted and 2-cell p
is merged with the other 2-cell t1 incident in q. In the MIG
(see Figure 8(c)), nodes p and q are deleted as well as all
their incident arcs. Nodes r1, r2 and r3 are connected to t1 as
the corresponding 1-cells become part of the boundary of t1.
The 0-cancellation of a minimum and a saddle is dual.

In 3D, a 2-cancellation (maximum and 2-saddle) and a 0-
cancellation (minimum and 1-saddle) are exactly the same
as in the 2D case. A 1-cancellation, instead, may increase
the number of cells in the Morse-Smale complex as a conse-
quence of the increase in the incidence relations in the Morse
complexes. Let p be a 1-node and q be a 2-node in the MIG.
Let R = {ri, j = 1, .., imax} be the set of 2-nodes connected
to p and different from q, and let T = {t j,k = j, .., jmax} be
the set of 1-nodes connected to q and different from p. 1-
cancellation(p,q) on the MIG G = (N,A,ϕ) removes both
p and q from N and removes |R|+ |T |+1 arcs from A, while
the number of arcs added to A is |R| · |T |. Thus, the number of
arcs in G (and the number of cells in the MS complex) may
increase. In the MIG shown in Figure 9, nodes p and q are
removed and the nodes r1, r2 and r3, previously connected to
p, become connected to nodes t1, t2 and t3, previously con-
nected to q. In the corresponding descending Morse complex
1-cell p and 2-cell q are removed and the 2-cells r1, r2 and r3
are stretched to fill the space of q, with t1, t2 and t3 becoming
part of their boundary.

In [ČDI12], a dimension-independent simplification op-
erator, called k-remove, has been defined for simplify-
ing Morse and Morse-Smale complexes. On the MIG, k-
remove(q, p, p′) deletes a k-node q and a (k+ 1)-node p if
and only if q is connected to p through a single arc, and to at
most one (k+ 1)-node p′ different from p. We denote as R
the set of k-nodes ri connected with p, Z the set of (k− 1)-
nodes z j connected with q and S the set of (k+ 1)-nodes sh
connected with p. Operator k-remove(q, p, p′) deletes all the
arcs incident in either p or q. Each node ri connected to p
with an arc of the form (p,ri), is redirected to p′ with an arc
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Figure 9: 1-cancellation of a 1-saddle p and a 2-saddle q, in
3D, on a MIG. Colored cells are the top cells in the descend-
ing Morse complex. Critical points are marked in green (1-
saddles) and purple (2-saddles). Dotted lines are the arcs of
the MIG.

(p′,ri). Thus, operator remove deletes |R|+ |S|+ |Z|+1 arcs
and insert at most |R| arcs.

Figure 10: 1-remove(q, p, p′) of a 2-saddle p and a 1-saddle
q in 3D. Colored regions are the 3-cells of the descending
Morse complex. Critical points are marked in blue (min-
ima), green (1-saddles), purple (2-saddles) and red (max-
ima). Dotted lines are arcs of the Incidence Graph.

When k = {0,d − 1}, k-remove(q, p, p′) is equiva-
lent to a k-cancellation(q, p). When 1 < k < d − 1, k-
remove(q, p, p′) can be considered as a cancellation with
stronger feasibility conditions. On the 3D MIG, for exam-
ple, 1-remove(q, p, p′) is feasible if 1-node q is shared by
exactly two distinct 2-nodes p and p′, and if q shares one arc
with p. The operator removes 1-node q and merges 2-node
p into p′. All the 1-nodes connected to p (different from q)
are redirected to p′. Figure 10 shows an example of a 1-
remove(q, p, p′) in 3D. In the descending Morse complex,
the 2-cells corresponding to p and p′ are merged by deleting
q. In the MIG, nodes p and q are removed along with all the
arcs connecting them with the nodes in Z and S. Nodes r1,
r2 and r3 are then connected with p′.

7.2. Simplifying the Forman gradient

In [For98b], the cancellation operator is described in terms
of updates on the Forman gradient V . In the following, we

Figure 11: 1-cancellation(q, p, p′) on the Forman gradient
V of a triangle mesh. The original V has two critical trian-
gles p and p′ (in red) and one critical edge e (in green). V -
paths outside the triangulation illustrated, are depicted with
bold lines if critical and with dotted lines otherwise. Red ar-
rows indicate the V -path involved in the simplification.

report the definition of such operator on a simplicial com-
plex Σ endowed with a Forman gradient V , and for simplic-
ity, we show examples for a triangle mesh (see [Gün12] for
more details). It can be easily seen that the remove opera-
tor, discussed in Section 7.1, can be described in a similar
fashion. Recall that a separatrix Vk-path is a V -path starting
at a critical k-cell p and ending at a critical (k− 1)-cell q.
Operator k-cancellation(q, p) deletes a critical k-simplex q
and a critical (k + 1)-simplex p if and only if p and q are
connected through exactly one separatrix V -path. The effect
of a k-cancellation(q, p) on V is to reverse the gradient ar-
rows on the separatrix V -path between p and q pairing, as
a consequence, both p and q. Figure 11 shows the effect of
cancellation(q, p) on a triangle mesh: q is a critical edge and
p and p′ are two critical triangles. Starting from q, the sep-
aratrix V2-path, connecting q to p, is reversed. As a conse-
quence, p and q are not critical anymore. The two separatrix
V2-paths, connecting p to r1 and r2, are extended with the
reversed V -path, and now connect r1 and r2 to p′. The two
separatrix V1-paths starting from q and reaching z1 and z2 (in
the left side), become non-separatrix V -paths (depicted with
dotted lines in the right side).

7.3. Simplification algorithms

Several algorithms have been proposed for simplify-
ing the morphology of 2D [EHZ01, BEHP04] and 3D
[GNP∗05, GNP∗06, GSW12, ČomićDI13, FIDW14] scalar
fields. Within a simplification algorithm, a simplification op-
erator is iteratively applied to a Morse or a Morse-Smale
complex, and this requires a priority-based scheme for or-
dering all possible simplifications. Priority measures the im-
portance of the critical pairs to be deleted, and is defined in
such a way to cause the removal of less important critical
pairs (representing noise, for instance) at first. Algorithms
have been proposed based on different functions used for es-
timating the priority value, namely persistence, separatrix
persistence, or topological saliency.
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Persistence has been widely used in the literature to es-
timate the importance of a pair of critical points [ELZ02].
Critical points pairs are computed sweeping the dataset in
the direction of increasing function value adding vertices
progressively. The topology of the partial dataset changes
only when a critical point is added and each change can be
described in terms of creation of a new component (or cy-
cle) or destruction of a component/cycle. Two critical points
p and q are paired if and only if q destroys what p has cre-
ated. The importance of a critical point pair is then computed
as the absolute difference of function values between the two
critical points. However, the number of critical points pairs
provided by the algorithm in [ELZ02] is not sufficient for ef-
fectively reducing the size of the segmentation. Thus, all the
adjacent critical points (critical points connected by a sepa-
ratrix path) are more likely to be considered as critical points
pairs [BEHP04, GNP∗05, GNP∗06, ČomićDI13].

More recently, other methods have been proposed with the
purpose of measuring the importance of critical points pairs
in relation with the associated geometry of the Morse-Smale
cells. In [WG09, GSW12] the notion of separatrix persis-
tence is introduced for measuring the importance of the sep-
aratrices, i.e. , the extremal lines and surfaces, in an MS com-
plex instead of only the critical points pairs. In [DSNW13]
the notion of topological saliency is introduced for estimat-
ing the importance of a topological feature based on the pres-
ence (or absence) of other features in the neighborhood. In-
tuitively, the topological saliency of a feature normalizes the
persistence of the features present in its neighborhood.

We have two types of algorithms for simplifying a Morse
complex: algorithms based on simplification operators on
the MIG [BEHP04, GNP∗05, GNP∗06, ČomićDI13] and al-
gorithms based on operators on the Forman gradient [WG09,
GSW12].

In [BEHP04], the geometry of the Morse cells is
computed from scratch after each cancellation by re-
triangulating the interior of each Morse 2-cell. Also the orig-
inal function is modified accordingly in order to agree with
the simplified topology. The storage cost for the geometry
thus decreases progressively with the undergoing simplifi-
cations, but the computation time is highly affected by the
reconstruction and smoothing step. In [GNP∗06], the geom-
etry of all the Morse cells is stored in a dedicated data struc-
ture organized as a Directed Acyclic Graph (DAG). When
two cells of a Morse complex, p and p′, are merged during
a simplification step, a new node is inserted in the DAG con-
nected with the DAG nodes storing the geometry of p and p′.
This approach provides an efficient handling for the geome-
try at the expense of a considerable increase in storage costs.
In [ČomićDI13], the top cells and the 0-cells of the ascend-
ing and descending Morse complexes are stored in the nodes
corresponding to maxima and minima. This reduces the stor-
age cost of the geometry but affects the performances of the
algorithm, since the top simplices (forming the ascending

and descending top cells) have to be merged after each sim-
plification involving extrema.

Algorithms developed for a Forman gradient [WG09,
GSW12] are typically slower since they have to update, for
each simplification, all the gradient pairs along the separa-
trix V -path. On the other hand, they take advantage of the
implicit representation that the Forman gradient provides,
for both the Morse and Morse-Smale complexes, resulting
in low storage costs. In these algorithms, simplifications are
always represented as pairs of critical simplices. Simplifica-
tion updates are performed on the Forman gradient and, at
each step, the incidence relations among the remaining crit-
ical simplices are recomputed.

There have been some proposals in the literature to mod-
ify not only the Morse and Morse-Smale complexes using
cancellation, but also the scalar function f , thus construct-
ing a new function g that corresponds to the simplified field.
The work for 2D scalar fields, presented in [BEHP04] and
improved in [WGS10], modifies function f numerically, us-
ing Laplacian smoothing. In [BEHP04], function f is lo-
cally modified after each cancellation in order to agree
with the new topology, by minimizing the error and obtain-
ing a smooth approximation. In [WGS10], the bottleneck
of the smoothing step performed after each cancellation
in [BEHP04] is solved by constructing a topologically valid
function after all cancellation steps. The two resulting C0

functions are comparable but the algorithm in [WGS10] is
faster. Moreover, in [WGS10], a novel scheme is devised
to provide C1-continuity. Another approach, presented in
[EMP06] for the 2D case, modifies the scalar field f combi-
natorially, by changing the order in which the vertices appear
in their sorted list according to function values.

7.3.1. Discussion

All algorithms for 2D scalar fields are equivalent in the sense
that the resulting simplification process is monotonic, i.e.,
after each simplification all the new simplification operators
have higher persistence value. Differences arise when work-
ing in three or higher dimensions.

The first problem arises with the cancellation operator on
a Morse-Smale complex in 3D, because it may increase the
number of arcs in the MIG (and thus the number of cells in
the MS complex), as discussed in Section 7.1.

Several strategies have been proposed in [GBHP11],
which aim at postponing a cancellation that would intro-
duce a number of arcs greater than a predefined threshold,
or nodes having more than a certain number of incident arcs.
For overcoming the same problem in [ČomićDI13] a sim-
plification algorithm based on the remove operator has been
defined, which constantly reduce the number of arcs in G
(see Section 7.1). In [Iur14], two simplification algorithms
have been developed and compared, based on remove and
cancellation, respectively. In Figure 12, an example of the
simplified MS 1-skeleton obtained is shown.
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(a) (b)

Figure 12: The original scalar field (a) the original 1-
skeleton of the MS complex (b) and its simplified version (c)
computed with a persistence threshold of 0.2 with respect to
the maximum persistence.

(a) (b)

Figure 13: 1-cancellation(p,q) on the Incidence Graph (a)
and on the Forman gradient (b). In (a), green dots denote 1-
saddles and purple dots denote 2-saddles. In (b), cells form-
ing the V -paths are depicted with white dots. Arrows be-
tween two dots indicate a gradient pair formed by the corre-
sponding cells while straight lines between two dots indicate
the incidence relation between the corresponding cells.

It has been observed experimentally in [ČomićDI13] that
saddle-saddle operators are likely to be performed early in
the simplification process (such simplifications can be in-
terpreted as noise removal). When the data set is small and
the number of simplifications is high compared to the total
number of nodes, the two algorithms behave quite similarly.
With the growth in the size of the data set, they start to differ:
by using remove instead of cancellation, a 20% more com-
pressed MIG can be obtained in about half the time. The
number of arcs remains approximately the same by using
cancellation, while immediately decreases by using remove.

Issues arise when performing 1-cancellation in the con-
text of a Forman gradient defined on 3D Morse complexes.
As described in [GRSW13], the connectivity among the crit-
ical cells involved in a 1-cancellation between saddles may
change without control.

We use Figure 13 to explain the problem. In Figure 13(a),
1-cancellation(p,q) deletes a 1-saddle q and a 2-saddle q on
a MIG. Thus, as described in Section 2.3, all the arcs con-
nected to p and q are deleted, and the remaining nodes (pre-
viously connected with p and q) become connected by new

arcs. Figure 13(b) shows the same configuration with the
separatrix V -paths between the critical simplices connected
to p and q. When performing 1-cancellation(p,q), the ar-
rows in the separatrix V2-path between p and q are swapped.
As a consequence, following the gradient arrows outgoing
from the remaining 2-saddles (purple dots), the new separa-
trix V -paths will end at the three 1-saddles (green dots below
them) only.

As pointed out in [GRSW13], this is not only a problem
for the number of MS cells introduced by the simplification,
but represents also a basic difference between the graph-
based simplification and the gradient-based one.

8. Applications

Morse and Morse-Smale complexes have been used in a
variety of applications including biology, medicine, terrain
analysis, visualization of static and time-varying volume
data. The computation of Morse and Morse-Smale com-
plexes (see Sections 3 and 6) is at the basis of the feature-
based analysis.The other essential step is the simplification
of Morse complexes, discussed in Section 7, with the aim of
removing noise or uninteresting features.

In [FHJB13], the Morse-Smale complex, computed on the
auto diffusion function [GBAL09], and the corresponding
MIG is used for finding non-rigid correspondences between
feature points on triangle meshes. The topological graph ob-
tained is invariant under isometry. In [DGG03], the simpli-
fied stable flow complex is applied for matching of shapes
based on topological features instead of local geometry.

Simplified Morse-Smale complexes computed on real
data have been used in [GBC∗14]. The MS complex is used
as a topological representation of molecular interactions
(i.e., covalent and noncovalent bonds) for studying chemi-
cal systems through visualization. In [GDN∗07], the same
complex is used for extracting interesting features from a
porous solid. In [NKWH08], a hierarchy of simplifications
performed on the MS complex is computed and stored for
studying biomolecular surfaces. In [SCP08], a watershed-
based algorithm is adopted for extracting a skeletal model
representing the main features of the cosmic evolution of the
web. The skeleton computed is actually the 1-skeleton of the
ascending Morse complex.

A lot of effort has been recently devoted to the analysis of
time-varying scalar fields. In [LBM∗06,BWT∗11], two sim-
ilar approaches are used for analyzing a mixing flow and the
burning cells originated by a laboratory low-swirl nozzle, re-
spectively. The MS complex is computed for each time step
and, by keeping track of the critical points at different time
steps, a graph [LBM∗06] and a merging tree [BWT∗11] is
built for modeling the merge and split of the MS regions.

In [RKWH12], the combinatorial feature flow field is ob-
tained as a combination of Forman gradients extracted from
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each time step of a 2D scalar field. Using the combinato-
rial feature flow, critical points are tracked among the time-
steps obtaining a tool for analyzing flow simulations. A
similar framework is used in [KRHH11] for extracting and
tracking minima into two-dimensional time-dependent vor-
tex datasets.

In [GGL∗14], a combination of the region-growing al-
gorithm described in [GNPH07] and of the Forman gradi-
ent computation described in [RWS11] is defined. The MS
complex is here used for the automated segmentation in
histopathology. The Forman gradient (and the related MS
complex) is computed using, as a constraint, the MS seg-
mentation obtained through a semi-automated approach, i.e.,
the original segmentation is computed with the algorithm
defined in [GNPH07] and then false negatives are removed
from a domain expert.

Recently, homology and persistent homology compu-
tation have been applied to a plethora of fields includ-
ing multivariate data analysis [RML12, RL14], sensor net-
work analysis [dSG07], chemistry [MTCW10], astrophysics
[VdWVE∗11], etc., with a growing attention in the analysis
of data in high dimensions.

As described in Section 2.2, persistent homology requires
a filtration, defined on the input complex, to be computed.
The algorithm described in [MN13] allows, given a filtra-
tion on a cell complex, to obtain a filtration on the discrete
Morse complex computed with the coreduction-based algo-
rithm described in Section 5.3.2 and, consequently, to com-
pute persistent homology on such complex.

In [RWS11] and [GRWH12], persistence homology is ap-
plied to the study of 3D images. As described in Section
5.2, the critical cells obtained with the algorithm defined
in [RWS11] (in the 3D case) are in one-to-one correspon-
dence with the topological changes in the sub-level com-
plexes and, thus, the persistent homology of the input com-
plex corresponds to the persistent homology of the much
smaller discrete Morse complex computed.

8.1. Multiresolution models for data analysis

One of the most prominent applications of Morse theory is
the interactive visualization of scalar fields based on topo-
logical features, for analysis and exploration of data. Here,
the degree of simplification of a morphological structure
should adapt to current needs: less important areas of the
dataset should be simplified while important areas should be
represented at a certain user-defined quality. Because sim-
plification processes are time consuming and not suited for
real-time interaction, multi-resolution models have been de-
signed to provide a hierarchy on which on-line queries can
extract morphological representations at different resolution
levels. A multi-resolution model is built based on a sequence
of simplification operators applied to an initial representa-
tion at full resolution and producing a final coarse represen-

tation. The simplification operators are organized into a hi-
erarchy (usually, a directed acyclic graph), representing the
relations of dependency existing among them.

The first hierarchical representation of scalar fields,
called hierarchical watershed representation [Beu94], can
be found in image analysis to reduce over-segmentation.
Most common hierarchical models for Morse complexes
have been developed for terrains, and can be applied to
2-manifolds embedded in 3D space and endowed with a
scalar field [EHZ01,BEHP04,DDPV06,DDV07,ČDI12]. In
[BEHP04,BPH05], a multi-resolution morphological model
for 2D scalar fields has been described, which is based on
the cancellation operator and on the Morse-Smale complex.
The basic component is a diamond, which consists of a sad-
dle s, its adjacent minima and maxima, and the integral lines
connecting them.

In [ČDI12], a similar model has been defined for scalar
fields in any dimensions, called the Multi-resolution Morse
Incidence Graph (MMIG). The MMIG is based on the
remove operator [ČomićD11] and on the Morse Incidence
Graph (MIG). Results are presented from the extraction of
representations at various persistence levels at both uniform
and variable resolution from several 2D and 3D data sets.

All multi-resolution models reviewed so far are only con-
cerned with the morphology of the scalar, while they do not
modify the underlying geometrical model of the scalar field.
In [BEHP04], the Morse cells are re-triangulated after each
simplification/refinement for describing the given morpho-
logical resolution.

In [DDM∗03a], a triangle mesh Σ with associated Morse-
Smale complex is simplified through iterative vertex re-
moval, while considering Σ as a constrained triangulation
with separatrix lines acting as constraints. Only the geomet-
ric structure of separatrix lines is simplified, while the com-
binatorial structure of the Morse-Smale complex (described
by the Morse incidence graph) remains the same across all
levels of resolution. Similar ideas, based on recursive sim-
plex bisection and edge-collapse, have been applied for the
extraction of iso-surfaces, at different resolution levels, from
volume datasets in [GP00] and [CL03] respectively.

The Multi-resolution Morse Triangulation (MMT)
[DDMV10] is a first attempt to simplify both geometry and
morphology of a scalar field in a combined and consistent
way. However, it is verbose, and the simplification of the
triangle mesh through half-edge collapse may generate new
critical points.

Recently, a new multi-resolution model for triangle
meshes endowed with a scalar field has been proposed
[Iur14], rooted in discrete Morse theory. The model, called
a Hierarchical Forman Triangulation (HFT ), is based on
a discrete Morse gradient computed on a triangle mesh Σ,
a topological simplification operator on the gradient, and
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a so-called gradient-aware edge-contraction operator on Σ,
which avoids deleting or creating critical simplices.

9. Concluding remarks

We have reviewed algorithms for computing Morse and
Morse-Smale decompositions. Algorithms based on piece-
wise linear Morse theory, or on the watershed transform,
have been used for segmenting a shape endowed with a
scalar field, thus obtaining morphological compact represen-
tations of the original dataset. Most of these methods are
rooted in geographic data processing and have been used for
terrain segmentation and analysis. More recently, similar al-
gorithms have been developed for analysis and visualization
of volume data.

With the increasing availability of large multidimensional
data sets, arising from scientific simulations, much more at-
tention has been devoted to methods rooted in discrete Morse
theory. In this survey, we have addressed two distinct ap-
plication areas. The first one is the analysis of scalar fields
in two and three dimensions as an efficient alternative to
more traditional approaches. Forman-based algorithms are
preferable compared to algorithms rooted in piecewise linear
Morse theory since the former are dimension independent by
definition and particularly well suited for dealing with high
dimensional data. Moreover, the range of features which can
be extracted efficiently is not limited to the top cells of the
Morse complexes or the 1-skeleton of the MS complex. The
second application area is homology and persistent homol-
ogy computation. A Forman gradient implicitly describes a
Morse complex which has the same homology of the origi-
nal complex. Then, by using a filtration on the input dataset,
topological information about the dataset are obtained by
computing persistent homology. Table 1 shows a summary
of the algorithms discussed in this paper.

Because of the increasing precision of machinery involved
in medical and scientific analysis, datasets are character-
ized by a constantly growing number of sample points. This
poses a serious issue to Morse and Morse-Smale computa-
tion. Thus, future investigations will require developing par-
allel algorithms and data structures able to take fully advan-
tage of multi-core architectures for improving the computa-
tion time without running low in memory. Compact topo-
logical data structures based on a spatial index, like the PR-
star tree [WDFV11], could be an excellent tool for handling
huge datasets. Such data structures offer a natural subdi-
vision of the input geometry defining the independent sets
used in parallel computation. Moreover, these structures of-
fer compact representations for a dataset as well as for the
relations among its geometrical entities. This is especially
interesting for homology, which needs to be computed ef-
fectively and efficiently on data sets of high dimensions and
large size, where the ratio between the number of simplices
and sample points of the datasets increases exponentially.
Thus, ad-hoc data structures have to be used for limiting the

ALGORITHM INPUT OUTPUT

MORSE DECOMPOSITIONS
Boundary-based

Takashahi et al. [TIKU95] 2D Σ MS 1-cells
Edelsbrunner et al. [EHZ01] 2D Σ MS 1-cells
Bremer et al. [BEHP04] 2D Σ MS 1-cells
Pascucci et al. [Pas04] 2D Σ MS 1-cells
De Berg et al. [dBT11] 2D Σ MS 1-cells
Edelsbrunner et al. [EHNP03] 3D Σ MS 1-/2-cells
Bajaj et al. [BPS98] 2D/3D Γ MS 1-/2-cells
Schneider and Wood [SW04, Sch05] 2D Γ MS 1-cells

Region-growing
Danovaro et al. [DDM∗03a] 2D Σ Morse top cells
Danovaro et al. [DDM03b] 2D/3D Σ Morse top cells
Dey et al. [DGG03] 2D/3D Σ stable flow complex
Magillo et al. [MDD∗09] 2D Σ Morse top cells
Gyulassy et al. [GNPH07] 2D/3D Σ MS all cells

Watershed
Topographic distance [MB90, Mey94] 2D Γ Morse 2-cells
Simulated Immersion [VS91, Soi04] nD Γ Morse top cells
Rain Falling [MW99, SS00] 2D/3D Σ Morse top cells

Forman gradient
Gunther et al. [GRWH12] Forman all MS cells
Shivashankarar et al. [SN12] Forman all MS cells
Weiss et al. [WIFD13] Forman all MS cells

FORMAN GRADIENT
Constrained

Cazals et al. [CCL03] 2D Σ Forman
King et al. [KKM05] 3D Σ Forman
Gyulassy et al. [GBHP08] nD Γ Forman
Robins et al. [RWS11] nD Γ Forman
Gyulassy et al. [GBP12] nD Γ Forman

Unconstrained
Lewiner et al. [LLT03] 2D Γ Forman
Benedetti et al. [BL14] nD Γ Forman
Harker et al. [HMMN14] nD Γ Forman
Fugacci et al. [FID14] nD Σ Forman

Table 1: Summary of the reviewed algorithms. For each of
them the expected input, simplicial complex (Σ) or cell com-
plex (Γ), and the cells of the Morse or Morse-Smale (MS)
complex computed are indicated.

number of stored simplices. Data structures storing only the
vertices and the top simplices have given already good pre-
liminary results [FID14]. Since the PR-star tree is even more
compact, we believe that its generalization could improve
existing approaches to homology and persistent homology
computation.
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