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Abstract. With improvements in sensor technology and simulation
methods, datasets are growing in size, calling for the investigation of
efficient and scalable tools for their analysis. Topological methods, able
to extract essential features from data, are a prime candidate for the de-
velopment of such tools. Here, we examine an approach based on discrete
Morse theory and compare it to the well-known watershed approach as
a means of obtaining Morse decompositions of tessellated manifolds en-
dowed with scalar fields, such as triangulated terrains or tetrahedralized
volume data. We examine the theoretical aspects as well as present em-
pirical results based on synthetic and real-world data describing terrains
and 3D scalar fields. We will show that the approach based on discrete
Morse theory generates segmentations comparable to the watershed ap-
proach while being theoretically sound, more efficient with regard to time
and space complexity, easily parallelizable, and allowing for the compu-
tation of all descending and ascending i-manifolds and the topological
structure of the two Morse complexes.

Keywords: Discrete Morse theory, Morse decompositions, watershed,
segmentation.

1 Introduction

Sensor technology and simulation methods continue to improve, resulting in
datasets of growing resolution and richness, and therefore size. This growth in
data calls for the investigation of efficient and scalable tools for their analysis.
Topological methods, known in spatial data analysis and scientific visualization
for their ability to extract essential features from data, are a prime candidate
for the development of such tools.

Topological methods are rooted in Morse theory [12], which is the basis for
defining decompositions of a manifold endowed with a scalar field into regions
of influence of the critical points of the field, called Morse complexes. However,
Morse theory applies to smooth functions, while in practical applications we
deal with scalar fields that are regularly or irregularly sampled at discrete lo-
cations within the domain. Thus, recent research has focused on combinatorial
topological methods that are beneficial in the presence of noisy data.
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Forman’s discrete Morse theory [5] extends Morse theory to cell complexes. In
addition to its theoretical contributions, the discrete formulation has practical
applications in avoiding derivative computations, thus permitting the formula-
tion of robust discrete algorithms [7,9,14] that overcome the intrinsic limita-
tions of previous algorithms for approximating Morse complexes. On the other
hand, algorithms based on discrete Morse theory have been developed for reg-
ular grids [9,14] or for triangle and tetrahedral meshes of limited size [9]. The
motivation is that they require the encoding of all the cells of the mesh as well as
of their boundary and co-boundary relations. This will be prohibitive for large
simplicial meshes. In our work, we have developed methods for computing dis-
crete Morse complexes on unstructured triangle and tetrahedral meshes, taking
the algorithm of Robins et al. [14] (the only algorithm that extracts the minimal
number of critical cells in 2D and 3D) and extending it to simplicial meshes with
irregular connectivity. In [21], we have developed a compact representation of
the Forman gradient field, which we do not report here for brevity.

Here, we compare the validity of the results obtained through the Forman
approach with those obtained via watershed, which is one of the best-known
algorithms used in image segmentation. Our watershed implementation uses a
simulated immersion approach, since our previous investigation on triangulated
terrain segmentation based on watershed has shown this is the best alternative
[1]. After discussing the differences between these two approaches, we will also
examine the two methods empirically, comparing their results on synthetic as
well as real-world datasets and measuring the similarity of the results using stan-
dard segmentation comparison metrics. We will show that the approach based
on discrete Morse theory generates segmentations comparable to the watershed
approach while being theoretically sound, more efficient with regard to time and
space complexity, easily parallelizable, and allowing for the computation of all
descending and ascending i-manifolds and the topological structure of the two
Morse complexes.

2 Background

2.1 Morse Theory and Morse Complexes

Morse theory captures the relationship between the topology of a manifold M
and the critical points of a real-valued function f defined onM [12]. Let f be a C2

real-valued function (scalar field) defined over a manifold M . A point p ∈ M is a
critical point of f if and only if the gradient ∇f vanishes at p. Function f is said
to be a Morse function if all its critical points are non-degenerate (the Hessian
matrix Hesspf at p is non-singular). The number i of negative eigenvalues of
Hesspf is called the index of critical point p. If the index of p is i, 0 ≤ i ≤ d, p
is called an i-saddle. A 0-saddle is a minimum, and a d-saddle is a maximum.

An integral line of a function f is a maximal path that is everywhere tangent
to the gradient ∇f of f . Each such line follows the direction in which the func-
tion has the maximum growth, starting at a critical point of f (its origin) and
ending at another critical point (its destination). Integral lines that converge to
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Fig. 1. Set of the integral lines covering the dataset is shown in (a). In (b) descending 2-
manifold (red region) formed by the integral lines converging at the maxima (red dot)
and dually in (c) ascending 2-manifold formed by integral lines (light green region)
originating from the minima (blue dot). The union of all the descending/ascending
manifolds forms the descending (d)/ascending (e) Morse complex.

a critical point p of index i cover an i-cell called the descending cell of p. Dually,
integral lines that originate at p cover a (d − i)-cell called the ascending cell of
p. Descending cells decompose M into a cell complex Γd, called the descending
Morse complex of f on M . Dually, the ascending cells form the ascending Morse
complex Γa of f on M . A maximum corresponds to a d-cell in the descending
complex Γd and to a 0-cell in the ascending complex Γa. Dually, a minimum
corresponds to a 0-cell in Γd and to an d-cell in Γa. See Figure 1.

2.2 Discrete Morse Theory

The main purpose of Discrete Morse Theory (DMT) [5] is to develop a discrete
setting in which almost all the main results from smooth Morse theory are valid.
This goal is achieved by considering a function F defined on all cells of a cell
complex. In the following, we will restrict ourselves to simplicial complexes Σ,
but all definitions and results hold for an arbitrary complex [5].

Function F is a discrete Morse function over Σ if for any i-simplex σ all the
(i− 1)-simplices on the boundary of σ have a lower F value than F (σ), and all
the (i+ 1)-simplices on the co-boundary of σ have a higher F value than F (σ),
with at most one exception. If there is such an exception, it defines a pairing of
cells of Σ called a discrete (Forman) gradient vector field V . Otherwise, i-simplex
σ is a critical simplex of index i.

As noted by Forman [5], it is not easy to construct discrete Morse functions; it
is simpler to define a discrete gradient vector field. Intuitively, a discrete vector
field can be viewed as a collection of arrows, connecting a p-simplex of Σ to an
incident (p+1)-simplex of Σ, such that each simplex is a head or a tail of at most
one arrow. A discrete vector field V is a discrete (Forman) gradient vector field
if there are no closed V -paths in V . A V -path is a sequence σ0, τ0, σ1, τ1, ..., σr+1

of p-simplices σi and (p + 1)-simplices τj , i = 0, ..., r + 1, j = 0, ..., r, such that
(σi, τi) ∈ V , τi > σi+1, and σi �= σi+1. Critical simplices for V are those simplices
that are neither the head nor the tail of any arrow. Minima are always at vertices
while maxima are always at d-simplices. In 2D, saddles are on edges, while in
3D 1-saddles occur at edges and 2-saddles are at triangles.
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3 Related Work

There are essentially two approaches in the literature to extend the results of
Morse theory and represent the Morse complex and the Morse-Smale complex
(which is the intersection of the ascending and descending Morse complexes)
in the discrete case. The Forman theory approach [5], as described above, con-
siders a discrete Morse function defined on all the simplices that is compatible
with the scalar values given at the vertices. The other approach [4] provides an
approximation of the Morse-Smale complex by considering a piece-wise linear
interpolation of the given scalar field, called a quasi-Morse-Smale complex. The
relationship between the piecewise linear and the Forman approaches is discussed
in [10] only for the case of 2D scalar fields.

Several algorithms have been developed for computing quasi-Morse complexes
in the computational geometry and geographic data processing literature. A
complete survey can be found in [1]. Algorithms based on discrete Morse the-
ory have been developed for regular grids [7,14] or for triangle and tetrahedral
meshes of limited size [9]. Parallel algorithms for computing 2D and 3D Morse-
Smale complexes for large 2D and 3D structured meshes are presented in [16,17].
In [6], a memory-efficient implementation of the algorithm in [14] is presented
and applied to 3D scalar fields defined over regular grids for efficient persistent
homology computation.

An alternative approach to computing ascending and descending Morse com-
plexes is by way of the watershed decomposition. Roerdink et al. present a survey
of watershed approaches [15] and classify them into two broad categories: one
approach is based on simulated immersion [18,19], and the other uses the idea
of topographic distance and basically reduces to computing shortest paths [11]. A
comparison between watershed approaches and the previously-mentioned piece-
wise linear approaches can be found in [1].

4 Computing Morse Complexes

4.1 Watershed-Based Approach

A Morse complex can also be defined using the watershed transform [15], which
provides a decomposition of the domain of a smooth function f into regions
of influence associated with its critical points. These regions are called catch-
ment basins (CB). The CB(p) of a critical point p is the set of points that are
topographically closer to p than to any other critical point of the same type.

The watershed by simulated immersion approach was introduced for segment-
ing a 2D image into regions of influence of minima [18]. The idea is intuitively
simple. Let us consider the surface representing the graph of function f , drill
holes in place of local minima, and insert this surface in a pool of water, building
dams to prevent water coming from different minima to merge. The watershed
of f is described by these dams, and the CBs of minima are delineated by them.
The algorithm has been extended from images to undirected graphs in which
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the field values are associated with nodes. Note that the watershed by simu-
lated immersion algorithm requires sorting the nodes of the graph according to
their associated field value, thus making the time complexity of the algorithm
O(n log n), where n is the number of vertices of Σ. From the point of view of
space complexity the algorithm needs an ordered list (or priority queue) with
fixed dimension n since all vertices must be enqueued at the start.

We have implemented the watershed by simulated immersion for simplicial
meshes of arbitrary dimension with a field value at the vertices. Vertex adja-
cencies are extracted without the need to explicitly represent the 1-skeleton of
the mesh, but rather through a compact representation given by the Indexed
data structure with Adjacencies (IA), which encodes only the vertices and the
top simplices (triangles in 2D, tetrahedra in 3D), and the adjacencies of the
d-simplices along their common (d− 1)-simplices (edges in 2D, triangles in 3D).

The watershed algorithm computes the ascending d-manifolds, which are the
CBs of the minima. Also, it computes the ascending d-manifolds for function −f ,
which are the descending d-manifolds of the maxima of function f . The latter
are collections of vertices. It should be noted that the watershed approach will
only compute the d-manifolds of the ascending and descending Morse complex
as opposed to the i-manifolds and their topological relations.

4.2 An Approach Based on Discrete Morse Theory

In [14], a dimension-independent algorithm is proposed for constructing a For-
man gradient vector field on a cubical complex K with scalar field values given
at the vertices, and applications to the 2D and 3D images are presented. The
algorithm processes the star of each vertex v in K (i.e., the set of cells incident
in v) independently. The optimality results (on the minimal number of critical
cells) proven in [14] holds for general cell complexes, and, thus, in particular for
simplicial meshes.

Forman Gradient Computation: We have implemented a version of the al-
gorithm for simplicial meshes using the IA data structure described above. The
discrete Morse computation algorithm takes as input a simplicial mesh and the
field values given at the vertices of the mesh and outputs a list C of the critical
simplices as well as the discrete gradient field. This is generated via homotopic
expansions of the lower star of each vertex of the input mesh. The lower star of
a vertex v consists of the simplices σ incident in v such that maxp∈σ f(p) = f(v).
Since pairing occurs only between simplices in the same lower star, each lower
star can be treated independently in time O(n). The resulting discrete vector
field is stored by associating a bit vector with each d-simplex. In our implemen-
tation, this requires 8 or 16 bits per triangle or tetrahedron [21], respectively.

Extracting Morse Complexes: Using the computed Forman gradient, we
have developed a collection of algorithms for extracting all ascending and de-
scending i-manifolds and for computing all critical cells and the connection
between pairs of them given by the critical (separatrix) lines. The collections
of all critical cells plus the combinatorial descriptions of all their adjacencies



344 L. De Floriani et al.

(a) (b) (c)

Fig. 2. Results obtained on the Neghip dataset. A visualization of the field (a), labeling
for the vertices obtained computing the ascending 3-manifolds with the Forman ap-
proach (b) and with watershed by simulated immersion (c) where black spheres indicate
watershed vertices.

completely defines the topology of the two Morse complexes. Generally speak-
ing, a descending or ascending i-manifold is extracted starting from the i-simplex
corresponding to the critical point associated with the i-manifold, following the
pairings of the gradient field and collecting all the i-simplices in the i-manifold
through a path.

For the sake of comparison with the watershed approach, we focus here on
the computation of the ascending and descending d-manifolds. We can observe
that a descending d-manifold corresponds to a maximum and thus to a collection
of labeled simplices, while an ascending d-manifold corresponds to a minimum
and thus to a collection of labeled vertices. We can notice that a maximum of
f corresponds exactly to a minimum of −f , and thus, that the ascending d-
manifold extracted on −f corresponds to the descending d-manifold on f , and
is a collection of vertices of the mesh. This allows for a direct comparison with
the output of the watershed algorithm, which induces a segmentation over the
set of vertices in both the ascending and descending cases.

The ascending d-manifold extraction works as follows. For each minimum
vertex p the corresponding ascending d-manifold is computed by starting from
p and initializing a queue Q with it. At a generic step, we extract a vertex v
from Q and assign it the label of p. Then, for each edge e extracted from the
co-boundary of v, we check in the gradient if it is paired with a vertex w different
from v and, if so, w is enqueued. Since a Forman gradient is always acyclic, the
computation terminates and all the vertices are visited exactly once. Figures 2
and 3 present example results.

5 Discussion and Experimental Results

The discrete Morse approach pre-computes the gradient field as a preprocessing
step, while the watershed approach directly performs the extraction of the d-
manifolds. On the other hand, with any watershed algorithm we can extract only
the ascending and the descending d-manifolds as collections of mesh vertices,
but not their mutual adjacencies which define the topological structure of the
two Morse complexes, or the critical points of the field. The discrete Morse
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(a) (b)

Fig. 3. Eggs segmentations obtained with the Forman approach (a) and watershed by
simulated immersion (b) where black dots correspond to watershed vertices. For each
we show the vertex labeling (left) and boundaries and seeds (right). Corridors in the
simulated immersion case correspond to unclassified vertices.

approach allows us to compute all descending and ascending i-manifolds, and
the topological structure of the two Morse complexes. The latter is expressed
by the Morse incidence graph [3] in which the nodes are the critical points
(simplices in the Forman setting) and the arcs are their adjacencies defined by
the discrete counterparts of the separatrix lines. Computing all this information
from the output of a watershed algorithm is very inefficient, or, in many cases,
incorrect or impossible. There are advantages to the Forman approach. The
gradient computation algorithm can be easily parallelized. Further, it is the
basis for extracting a complete set of topological features in addition to the
Morse incidence graph, which provides a complete description of the topology
of the two complexes, and thus it describes the Morse chain complex. This is
a suitable basis for computing a homology and persistent homology of 3D and
higher dimensional shapes discretized as simplicial or cell complexes.

All datasets used in our experiments satisfy the theoretical conditions that
no two adjacent vertices have the same elevation. Therefore, they have no flat
regions. For each dataset, we extract the corresponding ascending and descend-
ing Morse decomposition using the Forman and watershed approaches and we
compare them by using the Rand Index (RI) [13] and the Hamming distance
(HD) [8] metrics, two common similarity metrics used to compare image seg-
mentations and adapted in [2] to mesh data. Given two segmentations, the RI
measures the probability that a pair of top simplices is either in the same seg-
ment in both segmentations, or in different segments in both segmentations. It
has the advantage of intuitive appeal but becomes less informative as the number
of segments grows, going to 1 in the limit as the second term dominates. The
HD first maximizes alignment between two segmentations and then considers
the sum cardinality of the symmetric set difference per segment normalized by
the total number of top simplices. Here we take the complement to 1 of the met-
ric so that 1 indicates maximum agreement. The metrics have been evaluated
considering watershed vertices as neutral, therefore always considering them as
labeled in agreement with their counterpart derived by the Forman extraction.

In Table 1 we show results obtained on 15 different datasets. We can notice
that the two algorithms compute always the same number of ascending and de-
scending d-manifolds. This assures a comparability between the two methods.
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Fig. 4. HD values for 3D datasets computed with the Forman (solid) and Watershed
(dashed) on the ascending (a) and descending (b) decompositions. Bucky (red), Fuel
(green), Neghip (blue), Silicium (yellow), Analytic1 (black), and Analytic2 (cyan).

Table 1. Comparisons between pairs of ascending and descending segmentations found
on five terrain, four 3D shapes, and six volume datasets. Columns describe (left to
right), dataset name (Name), number of vertices (|Σ0|) , number of triangles/tetrahedra
(T), watershed vertices (W. vertices) in the ascending (Asc.) or descending (Desc.)
decomposition, number of regions in the watershed (W. regions) and in the Forman
(F. regions) results, Rand Index value (RI) and Hamming Distance value (HD).

Name |Σ0| T
W. vertices W. regions F. regions RI HD
Asc. Desc. Asc. Desc. Asc. Desc. Asc. Desc. Asc. Desc.

Eggs 5751 11200 569 567 23 21 23 21 1.00 0.99 1.00 0.99
St.Helen 133308 265210 14433 9274 572 419 572 419 0.99 0.97 0.82 0.94
Monviso 263169 524288 30166 35349 1019 1362 1019 1362 0.99 0.99 0.97 0.98
Genova 433174 863059 16607 13969 147375 127532 147375 127532 0.99 0.99 0.93 0.97
MajorLake 810000 1616402 24494 30532 257498 239292 257498 239292 0.99 0.99 0.91 0.96

Retinal 3643 7282 699 647 44 38 44 38 0.99 0.99 0.99 0.99
Camel 9770 19536 1712 1593 93 92 93 92 0.99 0.99 0.98 0.99
Bumby Torus 16815 33630 1774 1593 54 56 54 56 0.99 0.99 0.97 0.98
Octopus 16944 33872 2754 3058 155 186 155 186 0.99 0.99 0.98 0.98

Analytic1 68921 384000 4921 0 8 1 8 1 0.98 1.00 0.96 1.00
Analytic2 68921 384000 4921 4921 8 8 8 8 0.97 0.97 0.96 0.96
Bucky 32768 178746 9472 14061 178 223 178 223 0.99 0.99 0.87 0.88
Fuel 262144 1500282 1947 13075 33 58 33 58 0.99 0.80 0.99 0.86
Neghip 262144 1500282 18423 34095 88 74 88 74 0.79 0.95 0.80 0.77
Silicium 113288 633798 19503 23862 99 124 99 124 0.94 0.99 0.89 0.90

Looking at the HD and RI metrics, we found consistently high similarity values,
very near to 1, except for the Neghip and Fuel datasets. Such datasets are char-
acterized by a large volume of the scalar field occupied by empty space which
can generate small discrepancies between the two methods.

We have also tested the robustness of the two algorithms in 3D, by vary-
ing the resolution and adding artificial noise. For each dataset, we extract ten
simplifications (decreasing resolution) from a hierarchy of diamond meshes [20],
comparing the two methods’ output. We observe that the metric values remain
similar using the first five/six simplifications and then increase significantly with
the final (over-simplified) datasets. The second test was performed independently
on both the Forman and watershed methods. For each, we compute the ascend-
ing and descending decompositions and then incrementally add Gaussian noise
as a percentage of each function’s range (max−min value). At each, step we
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evaluate the metrics between the decompositions from the noiseless and noisy
datasets. Results obtained on the HD metric are shown in Figure 4. The RI
is more influenced by over-segmentation and became less relevant with noise
added. We observe a progressive decay of the metric values different for each
dataset. However, values for the Forman method are always equal or better than
the simulated immersion values suggesting a better robustness to noise, except
for the Fuel and Neghip datasets. Interestingly, as mentioned before, these two
datasets are characterized by large volumes of zero values denoting empty space.

6 Concluding Remarks

We have compared the new combinatorial approach to segmentation rooted in
discrete Morse theory with a common approach based on watershed. We have
shown that the discrete Morse theory approach generates segmentations com-
parable to watershed while being theoretically sound, more efficient in time
and space complexity, easily parallelizable, and allowing for the computation
of all descending and ascending i-manifolds and the topological structure of the
two Morse complexes. This last element is the first step for the development of
efficient homology and persistent homology algorithms on large-size simplicial
meshes. We will tackle this problem in our future work.

We have applied here the two segmentation algorithms to 2D and 3D scalar
fields defined over a 2D and 3D domain, respectively, and to 3D shapes described
by their triangulated boundary with a curvature value associated with their
vertices. The same algorithm can be applied with no change to segment 3D
manifolds endowed with a scalar value, like tessellated isosurfaces of time-varying
scalar fields by using 3D curvature.

All the algorithms described here as well as our implementations are entirely
dimension-independent. The encoding of the discrete gradient field can be gen-
eralized to arbitrary dimensions. We will explore this possibility in future work
to be able to segment 4D shapes describing time-varying 3D scalar fields. Also,
since all these algorithms require the field value at each vertex to be different
from that of its neighbors, we plan to develop algorithms for the removal of flat
areas in the datasets in 2D and in 3D and investigate the impact that this would
have on the similarity between the extracted decompositions.
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