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We propose a set of atomic modeling operators for simplifying and refining cell complexes in arbitrary
dimensions. Such operators either preserve the homology of the cell complex, or they modify it in a con-
trolled way. We show that such operators form a minimally complete basis for updating cell complexes,
and we compare them with various operators previously proposed in the literature. Based on the new
operators, we define a hierarchical model for cell complexes, that we call a Hierarchical Cell Complex
(HCC), and we discuss its properties. An HCC implicitly encodes a virtually continuous set of complexes
obtained from the original complex through the application of our operators. Then, we describe the
implementation of a version of the HCC based on the subset of the proposed modeling operators which
preserve homology. We apply the homology-preserving HCC to enhance the efficiency in extracting
homology generators at different resolutions. To this aim, we propose an algorithm which computes
homology generators on the coarsest representation of the original complex, and uses the hierarchical
model to propagate them to complexes at any intermediate resolution, and we prove its correctness.
Finally, we present experimental results showing the efficiency and effectiveness of the proposed
approach.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Cell complexes are used as a discretization and modeling tool in
a wide range of application domains, such as solid modeling, com-
puter graphics, computer aided design, finite element analysis, ani-
mation, scientific visualization, and geographic data processing.
Cell complexes are used to discretize geometric shapes, such as
static and dynamic 3D objects, or surfaces and hyper-surfaces
describing the behavior of scalar or vector fields. A variety of topo-
logical operators have been designed for building and updating
data structures representing two and three dimensional cell com-
plexes, such as handle operators [1,2], Euler operators [3–10], or
removal/insertion operators in nD [11–13]. Handle operators are
based on the handlebody theory [14], stating that any n-manifold
can be obtained from an n-ball by attaching handles to it. The main
characteristic of Euler operators is that they maintain the Euler–
Poincaré formula expressing a topological validity condition for a
cell complex.

We describe here a set of modeling operators which form a
minimally complete basis for simplifying and refining cell
complexes in arbitrary dimensions in a topologically consistent
manner. These operators have been originally proposed in [15].
We distinguish between operators that maintain homology of the
complex, and operators that modify it in a controlled manner.
Homology-preserving operators add (or remove) a pair of cells of
consecutive dimension, but they do not change the Betti numbers
of the complex. Homology-modifying operators add (or remove) an
i-cell, and increase (or decrease) the ith Betti number. We compare
our modeling operators with other operators on cell complexes
proposed in the literature, and we show how these latter can be
expressed in terms of the former.

Based on the proposed operators, we define a hierarchical mod-
el that we call a Hierarchical Cell Complex (HCC). An HCC is gener-
ated by applying our simplification operators, and it is defined
based on their inverse refinement operators and on a dependency
relation among these latter that guides the extraction of topologi-
cally correct complexes at uniform or variable resolutions. Unlike
the pyramidal model defined on quasi-manifolds represented as
2-maps [16] and n-G-maps [17], an HCC can represent arbitrary
cell complexes, is based on both homology-preserving and homol-
ogy-modifying operators, and allows extracting a large number of
complexes, also adaptive, according to any user-selected approxi-
mation criterion.

In our work, we have also defined and implemented a version of
the HCC based only on homology-preserving operators [18]. Here,
we investigate the use of this model for homology computation.
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We show that the HCC based on the homology-preserving opera-
tors enables us to obtain the homology (with coefficients in Z2)
of all the complexes encoded in the model by computing the
homology of the complex at the coarsest resolution using standard
techniques [19]. Moreover, we are able to construct homology gen-
erators of a complex at any intermediate resolution by computing
generators on the coarsest complex and using the hierarchical
model to propagate the computed generators to all the complexes
at intermediate resolutions. Unlike approaches based on pyramids
on n-maps and n-G-maps [12,20], the implementation of the HCC
based on homology-preserving operators can be applied to general
complexes, not only to quasi-manifolds and it supports the extrac-
tion of homology generators at variable resolutions.

The remainder of this paper is organized as follows. In Section 2,
we review some background notions on cell complexes. In Sec-
tion 3, we describe the new set of topological operators for simpli-
fying and refining cell complexes in arbitrary dimensions. In
Section 4, we show how various other update operators on cell
complexes proposed in the literature, such as removal/insertion
operators, Euler operators and handle operators, can be expressed
in terms of our operators. In Section 5, we investigate the proper-
ties of an HCC, and we show how to extract from an HCC a large
number of complexes at intermediate resolutions. In Section 6,
we discuss how we retrieve homology and homology generators
of complexes at intermediate resolutions, starting from the homol-
ogy and the homology generators of the complex at the coarsest
resolution. In Section 7, we present some experimental evaluation
of the model. In Section 8, we draw some concluding remarks, and
discuss possible research directions.
2. Background notions

In this section, we review some notions on cell complexes (see
[19,21] for more details). A (topological) k-cell in the Euclidean
space En is a homeomorphic image of a k-dimensional open ball.
Intuitively, a cell complex in En is a finite set X of cells in En of
dimension at most d; 0 6 d 6 n, such that

� the cells in X are pairwise disjoint;
� for each cell x 2 X, the boundary of x is a disjoint union of cells

in X.

If the maximum dimension of the cells in X is equal to d, then X
is called a d-complex. The set of cells on the boundary of a cell x is
called the (combinatorial) boundary of x. The (combinatorial)
co-boundary (or star) of x consists of all the cells of X that have x
on their combinatorial boundary. An h-cell x0 on the boundary of
a k-cell x; 0 6 h 6 k, is called an h-face of x, and x is called a coface
of x0. Each cell x is a face of itself. If x0 – x, then x0 is called a proper
face of x. The set of ðk� 1Þ-cells on the boundary of a k-cell x forms
its immediate boundary (1 6 k 6 d), and the set of ðkþ 1Þ-cells in its
co-boundary forms its immediate co-boundary (0 6 k 6 d� 1). A
cell, that is not a proper face of any other cell in X, is a top cell.
The domain, or carrier, of a cell d-complex X embedded in En, with
0 6 d 6 n, is the subset of En defined by the union, as sets of points,
of all the cells in X.

A simplicial complex R is a finite set of (closed) simplexes (con-
vex hulls of affinely independent points), such that each face of a
simplex in R is in R and each nonempty intersection of any two
simplexes x and y in R is a face of both x and y. A simplicial
d-complex X (where d is the maximum dimension of the simplexes
in R) is a pseudo-manifold if (i) X is homogenous (each simplex is a
face of some d-simplex), (ii) each ðd� 1Þ-simplex in X is a ðd� 1Þ-
face of at most two d-simplexes and (iii) X is strongly connected
(for any two distinct d-simplexes x and y in X there is a sequence
x ¼ x1; x2; . . . ; xl ¼ y, such that xi and xiþ1 share a ðd� 1Þ-simplex,
1 6 i < l� 1).

The Euler–Poincaré formula [19] for a cell d-complex X with
ni i-cells states that

Pd
i¼0ð�1Þini ¼

Pd
i¼0ð�1Þibi. Here, bi is the ith

Betti number of X, and it measures the number of independent
non-bounding i-cycles in X, i.e., the number of independent i-holes.
The alternating sum n0 � n1 þ � � � þ ð�1Þdnd is denoted as vðXÞ, and
is called the Euler–Poincaré characteristic of X.
3. Topological atomic operators on cell complexes

In this section, we present the operators on cell complexes in
arbitrary dimensions that we have first introduced in [15]. We
show here that these operators form a minimally complete basis
for the set of all possible operators that modify cell complexes in
a topologically consistent manner.
3.1. Topological operators

There have been many proposals in the literature for manipu-
lating two- and three-dimensional cell complexes. We propose
here a minimal set of Euler operators on cell complexes in arbitrary
dimensions, which subsume, as we will show, all the other Euler
operators proposed in the literature. These operators can be classi-
fied as:

� homology-preserving operators: MiCðiþ 1ÞC (Make i-Cell and
(i+1)-Cell), which create an i-cell and an ðiþ 1Þ-cell,
� homology-modifying operators: MiCiCycle (Make i-Cell and

i-Cycle), which create an i-cell and an i-cycle.

There are in total d homology-preserving and dþ 1 homology-
modifying operators on cell d-complexes.

Homology-preserving (refinement) operators MiCðiþ 1ÞC change
the number of cells in the complex X by increasing the number
ni of i-cells and the number niþ1 of ðiþ 1Þ-cells by a unit. We have
proven, by using discrete Morse theory [22], that the homology-
preserving operators do not change the Euler characteristic, or
the Betti numbers of the cell complex with respect to any Abelian
group. The proof is reported in Appendix A. There are two types of
homology-preserving operators, each of which has two distinct
instances.

The operator MiCðiþ 1ÞC of the first type has the following two
instances:

� the first instance, that we denote as MiCðiþ 1ÞCexðq; p; p0Þ
(expand), subdivides the existing i-cell p0 into two by splitting
its co-boundary, and creates the ðiþ 1Þ-cell q bounded by the
two i-cells p and p0;
� the second instance, that we denote as MiCðiþ 1ÞCinðq; p; p0Þ

(insert), subdivides the existing ðiþ 1Þ-cell p0 into two by split-
ting its boundary, and creates the i-cell q separating the two
ðiþ 1Þ-cells p and p0.

In both cases, the new i-cell appears exactly once on the bound-
ary of the new ðiþ 1Þ-cell.

For a 2-complex X embedded in E3, the homology-preserving
operators are usually called MEV (Make Edge and Vertex) and MEF
(Make Edge and Face), which correspond to M0C1C and M1C2C,
respectively. For a 3-complex X embedded in E3, there is an addi-
tional homology-preserving operator, MFVl (Make Face and Volume
(3-Cell)) which creates a new 2-cell and a new 3-cell. It is the same
as M2C3C.

The operator MiCðiþ 1ÞC of the second type either creates an
i-cell and an ðiþ 1Þ-cell bounded only by the i-cell, or dually, it



Fig. 2. Effect of the sequence consisting of (from left to right) K2C3Creðq;p; p0Þ and
K1C2Creðq1; p1; p

0
1Þ on a portion of a three-dimensional cell complex. Green dots

(q1) correspond to 1-cells, purple dots (q;p1 and p01) to 2-cells and red dots (p and p0)
to 3-cells. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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creates an ðiþ 1Þ-cell and an i-cell bounding only the ðiþ 1Þ-cell.
The new i-cell appears exactly once on the boundary of the new
ðiþ 1Þ-cell. We will denote the first instance of the operator as
MiCðiþ 1ÞCexðq; pÞ, and the second one as MiCðiþ 1ÞCinðq; pÞ.

The inverse KiCðiþ 1ÞC (Kill i-Cell and (i+1)-Cell) (simplification)
operators delete an i-cell and an ðiþ 1Þ-cell from the complex X.
Again, we have operators of two different types. The operator
KiCðiþ 1ÞCðq; p; p0Þ of the first type is feasible under the following
conditions:

� the ðiþ 1Þ-cell q to be deleted is bounded by exactly two i-cells
(the i-cell p to be deleted and the i-cell p0 which will remain),
and the i-cell p appears exactly once on the boundary of the
ðiþ 1Þ-cell q;
� the i-cell q to be deleted bounds exactly two ðiþ 1Þ-cells (the
ðiþ 1Þ-cell p to be deleted and the ðiþ 1Þ-cell p0 which will
remain) and the i-cell q appears exactly once on the boundary
of the ðiþ 1Þ-cell p.

In the first case, denoted as KiCðiþ 1ÞCcoðq; p; p0Þ (contract), the
effect of the operator is as follows:

� the i-cell p is replaced with the i-cell p0 on the boundary of each
ðiþ 1Þ-cell r in the co-boundary of the i-cell p.
� if the i-cell p appears k times on the boundary of the ðiþ 1Þ-cell

r, then k copies of the ðiþ 1Þ-cell q are merged into each ðiþ 1Þ-
cell r.

The second instance, denoted as KiCðiþ 1ÞCreðq; p; p0Þ (remove),
is completely dual.

The operator KiCðiþ 1ÞCðq; pÞ of the second type is feasible
under the following conditions:

� the ðiþ 1Þ-cell q (to be deleted) is bounded only by the i-cell p,
which will be deleted as well (KiCðiþ 1ÞCcoðq; pÞ);
� the i-cell q (to be deleted) bounds only the ðiþ 1Þ-cell p which

will be deleted as well (KiCðiþ 1ÞCreðq; pÞ).

In both cases, the deleted i-cell appears exactly once on the
boundary of the deleted ðiþ 1Þ-cell. The effect of the operator is
to delete both cells from the complex.

Fig. 1 illustrates a sequence consisting of operators K1C2Cre

ðq; p; p0Þ;K1C2Cre ðq1; p1; p
0
1Þ and K0C1Cco ðq2; p2; p

0
2Þ in 2D.

K1C2Creðq; p; p0Þ removes 1-cell q and 2-cell p similarly to
K1C2Creðq1; p1; p

0
1Þ, which removes 1-cell q1 and 2-cell p1, while

K0C1Ccoðq2; p2; p
0
2Þ collapses 1-cell q2 and 0-cell p2 into 0-cell p02.

Fig. 2 illustrates a sequence consisting of operators K2C3Cre

ðq; p; p0Þ and K1C2Cre ðq1; p1; p
0
1Þ in 3D. K2C3Cre ðq; p; p0Þ removes

2-cell q and 3-cell p, while K1C2Cre ðq1; p1; p
0
1Þ removes 1-cell q1

and 2-cell p1.
Fig. 1. Effect of the sequence consisting of (from left to right) K1C2Cre

ðq;p; p0 Þ; K1C2Creðq1;p1;p
0
1Þ and K0C1Ccoðq2;p2; p

0
2Þ on a portion of a two-dimen-

sional cell complex. Blue dots (e.g., p2 and p02) correspond to 0-cells, green dots (e.g.,
q, q1 and q2) to 1-cells and red dots (e.g., p; p0;p1 and p01) to 2-cells. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Homology-modifying operators change the number of cells in a
complex X plus its Betti numbers and Euler characteristic.
Homology-modifying operator MiCiCycle increases the number ni

of i-cells and the number bi of independent non-bounding i-cycles
by a unit. It is feasible on a complex X if all the cells on the bound-
ary of the cell to be created are in X. The inverse KiCiCycle (Kill i-Cell
and i-Cycle) operator deletes an i-cell and destroys an i-cycle, thus
decreasing the numbers ni and bi by a unit. It is feasible on a cell
complex X if the co-boundary of the cell to be deleted is empty.

For a 2-complex X embedded in E3, the homology-modifying
operators (illustrated in Fig. 3) are also called MV0Cycle (Make
Vertex and 0-Cycle), ME1Cycle (Make Edge and 1-Cycle) and
MF2Cycle (Make Face and 2-Cycle). Operator MV0Cycle creates a
new vertex and a new connected component, it increases by a unit
the number of vertices (0-cells) and the zeroth Betti number b0. It
is used as an initialization operator to create a new complex X.
Operator ME1Cycle creates a new edge and a new 1-cycle, thus
increasing both the number of edges (1-cells) and the first Betti
number b1 by a unit. Operator MF2Cycle creates a new 2-cell (face)
and a new 2-cycle, thus increasing the number of 2-cells and the
second Betti number b2 by a unit. When considering a 3-complex
X embedded in E3, the homology-modifying operators will be the
same as for 2-complexes, since in this case the third Betti number
b3 is null.
3.2. Minimality and completeness

The operators described in Section 3.1 form a minimally
complete set of basis operators for creating and updating cell
d-complexes. To prove this fact, we interpret such operators as
ordered ð2dþ 2Þ-tuples ðx0; x1; . . . ; xd; c0; c1; . . . ; cdÞ in an integer
grid, belonging to the hyperplane P :

Pd
i¼0ð�1Þixi ¼

Pd
i¼0ð�1Þici

defined by the Euler–Poincaré formula. The first dþ 1 coordinates
denote the number of i-cells created or deleted by the operator,
depending on the sign of the coordinate, while the last dþ 1 coordi-
nates denote the change in the Betti numbers of the complex
induced by the operator. Operator MiCðiþ 1ÞC; 0 6 i 6 d� 1, has
coordinates xi ¼ xiþ1 ¼ 1; xj ¼ 0; j 2 f0;1; . . . ; dg n fi; iþ 1g; cj ¼ 0;
j 2 f0;1; . . . ; dg. Operator MiCiCycle; 0 6 i 6 d, has coordinates
xi ¼ ci ¼ 1; xj ¼ cj ¼ 0; j 2 f0;1; . . . ; dg n fig. We will show that:

(i) the 2dþ 1 ð2dþ 2Þ-tuples corresponding to our operators
are linearly independent, and

(ii) any ð2dþ 2Þ-tuple in the hyperplane P can be expressed as a
linear combination of 2dþ 1 ð2dþ 2Þ-tuples corresponding
to our operators,

which will imply the claim.
A linear combination

Pd�1
i¼0 aiMiCðiþ 1ÞC þ

Pd
i¼0biMiCiCycle

vanishes if and only if ða0;a0;0; . . . ;0Þ þ ð0;a1;a1; . . . ;0Þ þ � � � þ



Fig. 3. Homology-modifying operators on a 2-complex in E3: MV0Cycle (Make Vertex and 0-Cycle) (a); ME1Cycle (Make Edge and 1-Cycle) (b); MF2Cycle (Make Face and 2-Cycle)
(c).
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ð0; . . . 0;ad�1;ad�1; 0; . . . ;0Þ þ ðb0; 0; . . . ;0; b0;0; . . . ;0Þ þð0; b1; 0; . . . ;

0; b1;0; . . . ;0Þ þ � � � þ ð0; . . . ;0; bd; 0; . . . ;0; bdÞ ¼ 0, which is equiva-
lent to ða0 þ b0;a0 þ a1 þ b1;a1 þ a2 þ b2; . . . ;ad�2 þ ad�1 þ bd�1;

ad�1 þ bd; b0; b1; . . . ; bdÞ ¼ 0. It follows that ai ¼ 0; 0 6 i
6 d� 1; bi ¼ 0; 0 6 i 6 d, implying that the tuples corresponding
to our operators are linearly independent.

A tuple ða0;a1; . . . ;ad;b0;b1; . . . ;bdÞ in the hyperplane P (i. e., such

that
Pd

i¼0ð�1Þiai¼
Pd

i¼0ð�1Þibi) can be expressed through the
2dþ1 independent ð2dþ2Þ-tuples corresponding to our operators

as
Pd�1

i¼0 aiMiCðiþ1ÞCþ
Pd

i¼0biMiCiCycle if ða0þb0;a0þa1þb1;

a1þa2þb2; . . . ;ad�2þad�1þbd�1;ad�1þbd;b0;b1; . . . ;bdÞ ¼ ða0;a1; . . . ;

ad;b0;b1; . . . ;bdÞ. It follows that bi¼ bi; 06 i6d, and
a0 ¼ a0�b0; a1 ¼ a1�b1�a0 ¼ða1�a0Þ�ðb1�b0Þ, a2 ¼ a2�b2�a1

¼ða2�a1þa0Þ�ðb2�b1þb0Þ; . . . ;ad�1 ¼ðad�1�ad�2þ���þð�1Þda0Þ
�ðbd�1�bd�2þ���þð�1Þdb0Þ ¼ ad�bd. In short, ai¼

Pi
j¼0ð�1Þi�jaj

�
Pi

j¼0ð�1Þi�jbj;06 i6 d�1 (ad�1 ¼ ad�bd) and bi¼ bi; 06 i6d. Thus,
each operator satisfying Euler–Poincaré formula on a cell complex X
can be expressed as a linear combination of our operators.

In the space (hyperplane) of dimension 2dþ 1, a generating set
consisting of 2dþ 1 independent tuples forms a basis for the
hyperplane.
4. Comparison with other update operators on cell complexes

We compare the operators proposed here with other update
operators on cell complexes proposed in the literature, in particu-
lar with removal and contraction operators, Euler operators and
handle operators. For a more detailed discussion, see [15].
4.1. Removal and contraction operators

Removal and contraction operators have been introduced in
digital geometry as simplification operators on n-G-maps [11].
An i-cell q; 0 6 i 6 n� 1, can be removed in two cases: if it bounds
exactly two different ðiþ 1Þ-cells p and p0 and it appears exactly
once on the boundary of both p and p0; or if it bounds exactly
one ðiþ 1Þ-cell p and it appears exactly twice on the boundary of
p. The contraction operator is dual.

The first instance of the removal operator is a special case of
KiCðiþ 1ÞCreðq; p; p0Þ, as it requires that the i-cell q appears exactly
once not only on the boundary of the ðiþ 1Þ-cell p but also on the
boundary of the ðiþ 1Þ-cell p0. The effect of the first instance of the
removal operator is the same as the effect of KiCðiþ 1ÞCre. The
second instance of the removal operator may, but is not guaran-
teed to, preserve the topological characteristics of the complex (it
may produce cells that are not topological cells, or it may discon-
nect the complex). Thus, it cannot be classified either as a
homology-preserving, or as a homology-modifying operator.

In [12], homology generators of a cell complex are computed
using two homology-preserving simplification operators: the
removal of an i-cell incident in exactly two ðiþ 1Þ-cells (which is
the same as KiCðiþ 1ÞCreðq; p; p0Þ and as the first instance of the
removal operator in [11]) and the removal of a dangling cell (which
is the same as KiCðiþ 1ÞCreðq; pÞ). The inverse (refinement) inser-
tion and expansion operators have been introduced in [13]. They
are the same as MiCðiþ 1ÞCinðq; p; p0Þ and MiCðiþ 1ÞCexðq; p; p0Þ,
respectively.

4.2. Euler operators

Virtually all the proposed sets of basis Euler operators on cell
2- and 3-complexes contain MEV (Make Edge and Vertex) and
MEF (Make Edge and Face) operators, which are the same as
M0C1C (Make 0-cell and 1-cell) and M1C2C (Make 1-cell and
2-cell), respectively (see Section 3.1).

Several homology-modifying operators have been proposed for
2-complexes that define the boundary of a solid in E3, called bound-
ary models. In these models, there is only one implicitly
represented volumetric cell, which is not necessarily homeomor-
phic to a 3D ball. The glue operator in [3] merges two 2-cells and
deletes both of them. It corresponds to the connected sum operator
on manifold surfaces. If the two glued 2-cells belong to two differ-
ent connected components of the complex, one of the components
is deleted (and b0 is decreased by a unit). If the two glued faces
belong to the same connected components, a handle or through-
hole is created (and b1 is increased by two units). In [4–6], the
homology-modifying operator is called MRKF (Make Ring, Kill Face).
It is similar to the glue operator in [3], but it imposes less restrictive
conditions on the 2-cells to be glued, and it deletes only one of the
2-cells. The 2-cells are not supposed to be topological (homeomor-
phic to a 2D ball).

Homology-modifying operators defined for general (non-
manifold) 2-complexes in E3 [7] are called MECh (Make Edge and
Complex Hole), MFKCh (Make Face, Kill Complex Hole) and MFCc
(Make Face and Complex Cavity). They are the same as operators
M1C1Cycle; M2CK1Cycle (Make 2-Cell Kill 1-Cycle, which can be
expressed as K1C1Cycle; M1C2C) and M2C2Cycle, respectively.
For 3-complexes in E3 [8,9], an additional homology-modifying
operator is defined, called MVlKCc (Make Volume, Kill Complex
Cavity). It is the same as M3CK2Cycle (Make 3-Cell, Kill 2-Cycle)
operator, and can be expressed as K2C2Cycle; M2C3C.

In [10], the operators defined in [8] have been extended to
complexes called stratifications, in which the cells, called strata,
are defined by analytic equalities and inequalities. The cells are
not necessarily homeomorphic to a ball, and they may have incom-
plete boundaries. Among the operators on stratifications proposed
in [10], operators on topological cells (that are homeomorphic to a
ball) with complete boundaries can be classified as homology-
preserving (called cell subdividers) and homology-modifying (called
global hole shapers). Both types of operators are instances of the
operators defined in Section 3.1. A cell subdivider subdivides an
i-cell by inserting into it an ði� 1Þ-cell. This operator is the same
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as the Mði� 1ÞCiC operator. A global hole shaper either attaches or
detaches a cell, thus creating a hole. There are two instances of this
operator: the attached topological i-cell creates an i-hole or the
detached topological i-cell creates an ði� 1Þ-hole. The first instance
of this operator corresponds to MiCiCycle. The second instance
corresponds to KiCMði� 1ÞCycle (Kill i-Cell, Make (i-1)-Cycle), and
can be expressed as Mði� 1ÞCði� 1ÞCycle;Kði� 1ÞCiC. The inverse
homology-modifying operators attach or detach a cell, thus delet-
ing a hole. They correspond to KiCiCycle and MiCKði� 1ÞCycle
(inverse to KiCMði� 1ÞCycle), respectively.
4.3. Handle operators

(Homology-modifying) handle operators on a manifold cell 2-
complex X triangulating a surface S have been introduced in [1].
They are based on the handlebody theory for surfaces [14], stating
that any surface S can be obtained from a 2-ball by iteratively
attaching handles (0-, 1- and 2-handles).

Attachment of a 0-handle creates a new surface with one face,
three edges and three vertices. It can be expressed as one
M0C0Cycle operator, two M0C1C operators and one M1C2C opera-
tor, which together create a triangle. The operator that corresponds
to the attachment of a 1-handle identifies two boundary edges of X
(incident in exactly one face) with no vertices in common. The
operator that corresponds to the attachment of a 2-handle identi-
fies two boundary edges of X with two vertices in common. They
can be expressed through our operators in a similar manner.

Handle operators have been extended to 3D in [2]. The operator
that creates a new 3-ball (initialization operator) corresponds to
the attachment of a 0-handle. Other operators identify two bound-
ary faces (incident in exactly one 3-cell) of a cell 3-complex X tri-
angulating a solid S. The attachment of a 1-handle (2-handle, or
3-handle) can be applied if the two identified boundary faces have
no edges (some edges, or all edges) in common. The handle opera-
tors in 3D generalize the glue operator in [3]. They can be
expressed in terms of the operators defined in Section 3.1 in a
similar manner.
5. Hierarchical cell complexes

In this section, we introduce a hierarchy of cell complexes, that
we call a Hierarchical Cell Complex (HCC), and we discuss its major
properties. We define an HCC in terms of the refinement operators
introduced in Section 3.

A Hierarchical Cell Complex (HCC) is generated from a d-complex
X at full resolution by iteratively applying simplification operators
KiCðiþ 1ÞC and KiCiCycle. By applying first the homology-
preserving operators, we obtain a complex X 0 having the same
homology as the original complex X but with fewer cells and such
that no homology-preserving operator is feasible on X0. By applying
next the homology-modifying operators to iteratively remove the
cells of X 0, the homology is affected at each step and the process
is repeated until a complex is obtained that has at least one i-cell,
0 6 i 6 d. At each step, when we apply a homology-modifying
operator, we remove a top cell from the complex. After each
application of a homology-modifying operator, we perform
feasible homology-preserving ones.

We call the application of a simplification operator a simplifica-
tion modification. The complex obtained as the result of the
simplification sequence is the coarsest representation of the
original cell complex X. We denote such coarsest complex as XB.
It represents the first component of an HCC.

The second component of an HCC is the setM of the refinement
modifications which are inverse with respect to the simplification
modifications that have produced XB from X. Each refinement
introduces new cells (two cells if it is homology-preserving, one
if it is homology-modifying).

The third component of an HCC is the dependency relation
between the modifications in the setM of all refinement modifica-
tions. We consider, for simplicity, the creation of the coarse
complex XB as a dummy refinement modification that we denote
as l0 (i.e., l0 generates XB). We define the dependency relation
between the refinement modifications in M as follows:

� a homology-preserving refinement l ¼ MiCðiþ 1ÞC, which
creates cells p and q and is defined by the cells that will appear
on the immediate boundary or co-boundary of either p or q,
directly depends on a refinement l�, if l� creates a cell that will
be on the immediate boundary or co-boundary of p or q,
� a homology-modifying refinement l ¼ MiCiCycle, which creates

i-cell p and is defined by the ði� 1Þ-cells that will be on the
immediate boundary of p, directly depends on a refinement l�,
if l� creates a cell that will be on the immediate boundary of p.

An HCC is thus a triple ðXB;M;RÞ, where R denotes the direct
dependency relation defined above. The dependency relation
between refinement modifications is the transitive closure of the
direct dependency relation. It is a partial order relation, since a cell
is never introduced twice by the modifications in M. An HCC can
be naturally encoded as a Directed Acyclic Graph (DAG), in which
the nodes encode the modifications in M, the root encodes the
creation of the base complex XB (modification l0), and the arcs
describe the direct dependency relation R.

From an HCC, a large number of complexes at intermediate
resolution can be obtained by applying sequences of refinement
modifications in M to the base complex XB. A sequence
U ¼ ðl0;l1; . . . ;lkÞ is said to be feasible if each refinement li in U
is feasible on the complex obtained from the base complex XB by
applying all the refinements preceding li in U. For a feasible
sequence U ¼ ðl0;l1;l2; . . . ;lmÞ of refinement modifications in
M, the complex obtained from the base complex XB by applying
U is called the front complex associated with U, and we denote it
as XU . A front complex is a complex at an intermediate resolution.

The refinement modification l, which creates the cells p and q
(if l is homology-preserving), or the cell p (if l is homology-
modifying) is feasible on a front complex XU (at some intermediate
resolution) if and only if all the cells on the immediate boundary
and co-boundary of the cells p and q (if l is homology-preserving)
or all the cells on the immediate boundary of the cell p (if l is
homology-modifying) are in the complex XU , i.e., if the sequence
U that creates XU from XB contains all refinement modifications
on which l depends.

A large number of adaptive morphological representations can
thus be extracted from an HCC defined by the triple ðXB;M;RÞ
by considering the closed sets of refinement modifications in M
plus l0 under the dependency relation R. Recall that the depen-
dency relation R is a partial order relation, and thus it defines a
closure operator on the set M of refinement modifications. We
denote a closed set of such refinement modifications as U . Set U
implicitly defines complex XU representing an approximation of
the original complex.

The set U ¼ fl0;l1;l2; . . . ;lmg of refinement modifications in
M is closed with respect to the dependency relation R if for each
i;1 6 i 6 m, each refinement modification on which the refinement
li depends is in U . If the sequence U ¼ ðl0;l1;l2; . . . ;lmÞ of
refinement modifications in M is feasible, then the set
U ¼ fl0;l1;l2; . . . ;lmg is closed with respect to the dependency
relation R.

Two feasible refinement modifications l1 and l2 on a complex
are interchangeable if the sequence ðl1;l2Þ of refinements (consist-
ing of l1 followed by l2) produces the same complex as the
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sequence ðl2;l1Þ (consisting of l2 followed by l1). Any two inde-
pendent refinement modifications l1 and l2 are interchangeable.
Thus, a closed subset U of refinement modifications can be applied
to the base complex XB in any total order U that extends the partial
order, producing a complex XU at an intermediate resolution. An
HCC encodes a collection of all complexes at intermediate level of
detail which can be obtained from the base complex XB by applying
a closed set of modifications on XB.

From an HCC it is thus possible to dynamically extract represen-
tations of the original cell complex X at uniform and variable
resolutions. The basic query for extracting a single-resolution rep-
resentation from a multi-resolution model is known as selective
refinement. A selective refinement query consists of extracting from
an HCC a complex with the minimum number of cells, satisfying
some application-dependent criterion. This criterion can be for-
malized by defining a Boolean function s over all nodes of an
HCC, such that the value of s is true on nodes which satisfy the cri-
terion, and false otherwise. The same value of s is associated with
the cells created by the modification encoded in the node of the
HCC (p and q for homology-preserving modification, p for homol-
ogy-modifying modification). The selective refinement query
consists of extracting from the HCC an intermediate complex of
minimum size among the complexes encoded in the HCC that
satisfies s. Equivalently, it consists of extracting a minimal closed
set U of modifications in M, such that the corresponding complex
satisfies s. Such closed set of modifications uniquely determines a
front complex, which is obtained from the base complex XB, by
applying to it all modifications from U in any order that is consis-
tent with the partial order defined by the dependency relation. Cri-
terion s can be defined based on various conditions posed on the
cells in the extracted complex, like the size of the cell (which
may be expressed as the maximum distance between its vertices
or the diameter of its bounding box) or the portion of the complex
in which full resolution is required (while in the rest of the com-
plex, the resolution may be arbitrarily low).

In Fig. 4 we show the HCC built from the sequence of simplifica-
tions illustrated in Fig. 1. We can notice that each node, with the
exception of the root, represents a refinement dual to a simplifica-
tion applied in Fig. 1. Each closed subset of refinement modifica-
tions produces a different cell complex at intermediate resolution.
Fig. 4. An example of an HCC built from the simplification process illustrated in
Fig. 1. The top level of the HCC is the root node encoding the complex at the coarsest
resolution. At the bottom level are two M1C2Cin operators. The M1C2Cinðq; p;p0Þ
depends on the M0C1Cexðq2; p2;p02Þ and the M1C2Cinðq1; p1; p01Þ depends only on the
root. Blue dots (e.g., p2 and p02) correspond to 0-cells, green dots (e.g., q; q1 and q2) to
1-cells and red dots (e.g., p;p0 and p01) to 2-cells. On the right, three different
complexes are shown, obtained by performing different closed sets of refinements
on the HCC as indicated by the red lines. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
6. Computing homology and homology generators

In this section, we present an approach for computing homol-
ogy and homology generators at various resolutions using an HCC
built based only on the homology-preserving operators, that we
call a homology-preserving HCC.

We are interested in computing the homology groups HkðX; Z2Þ
of a cell complex X with the coefficients in Z2. As described in [21],
this corresponds to computing the Betti numbers of X with coeffi-
cients in Z2. Moreover, for each k ¼ 0; . . . ; d, we are interested in
computing the homology generators of degree k, that we call Hk

generators. The Hk generators are the generators of the Z2-vector
space HkðX; Z2Þ, and they represent the independent non-bounding
k-cycles in X. Each Hk generator of a cell complex X is a linear com-
bination of k-cells in X with coefficients in Z2. In Fig. 5(a), two H1

generators are shown as linear combination of 1-cells. The first
generator is composed of the set of blue (bold) edges and the other
one of the set of red (dotted) edges.

In a homology-preserving HCC, any front complex XU is
obtained from the base complex XB by applying a sequence of
homology-preserving refinement modifications MiCðiþ 1ÞC. In a
homology-preserving HCC thus, the homology of the base complex
is the same as the homology of any other complex implicitly
encoded in the HCC. We use the Smith Normal Form (SNF)
reduction algorithm [19] to compute homology and homology
generators with coefficients in Z2 on the base complex XB. Then,
at each application of the refinement, we modify the homology
generators in the currently extracted front complex XU according
to algorithm ExpandGenerators described below. We have shown
(see the proof in Appendix B) that, when applying MiCðiþ 1ÞC, only
the Hiþ1 generators are affected.

Let us consider refinement modification MiCðiþ 1ÞCexðq; pÞ,
which creates an i-cell p and an ðiþ 1Þ-cell q (the case of a refine-
ment MiCðiþ 1ÞCin is entirely dual). Operator MiCðiþ 1ÞCexðq; pÞ is
applied on a complex Y producing a refined complex Y 0. Algorithm
ExpandGenerators checks if the introduced ðiþ 1Þ-cell q in Y 0 breaks
an ðiþ 1Þ-cycle corresponding to an Hiþ1 generator in Y. This is
done by considering the number of ðiþ 1Þ-cells in the co-boundary
of i-cell p that are involved in Hiþ1 generators. This idea is
illustrated in Fig. 5(b) and (c), where we show two different appli-
cations of operator M0C1Cex to the same 2-complex (torus),
depicted in Fig. 5(a). The application of operator M0C1Cex

ðq1; p1; p
0Þ, illustrated in Fig. 5(b), modifies one of the two H1

generators in the torus. We can notice that the new 0-cell p1 has
exactly one incident 1-cell belonging to the blue (bold) 1-chain.
Thus the 1-cycle has been broken by the refinement and 1-cell q1

is added to the 1-chain to reconstruct the cycle. On the contrary,
the application of operator M0C1Cexðq2; p2; p

0Þ, illustrated in
Fig. 5(c), does not affect the generators. Note that 0-cell p2 has
no incident 1-cell belonging to some H1 generator.
Fig. 5. (a) A cell complex representing a torus. Black dots represent 0-cells. Red
(dotted) and blue (bold) edges correspond to the two H1 generators. (b) Application
of operator M0C1Cexðq1;p1;p

0Þ, which affects one of the homology generators. (c)
Application of operator M0C1Cexðq2; p2; p

0Þ, which does not affect the homology
generators. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)



Table 2
Experimental results obtained by refining four 2D shapes and two volumetric datasets
and by computing homology generators on them through the Smith Normal Form
(SNF) reduction. The columns from left to right indicate: the name of the dataset
(Dataset), time required to compute the homology generators on the base complex
(SNF Time), the time needed to extract the complex at full resolution and to expand all
the generators (Tot Ref Time), the number of refinements and the time needed to
extract the complex and the geometry of the generators at uniform level of detail
(Uniform Ref. and Uniform Time) and the number of refinements and the time needed
to extract the complex and the generators concentrating the resolution only in the
neighborhood of the generators (Generators Ref.) and (Generators Time). The time is
expressed in seconds and the storage cost in megabytes (MB).

Dataset SNF Time Tot. Ref. Time Uniform Generators

Ref. Time Ref. Time

Genus3 9.2�10�5 s 0.15 s 4 K 0.03 s 5 K 0.03 s
10 K 0.07 s
16 K 0.12 s

Fertility 8.3�10�5 s 9.31 s 144 K 1.8 s 68 K 1.48 s
362 K 4.6 s
579 K 7.52 s

Hand 9.8�10�5 s 14.9 s 200 K 2.6 s 19 K 1.6 s
500 K 6.8 s
800 K 11.2 s

Buddha 0.02 s 23.7 s 320 K 0.5 s 162 K 3.6 s
800 K 4.3 s
1.2 M 19.2 s

Skull 0.007 s 6.4 s 75 K 1.0 s 191 K 2.6 s
187 K 2.9 s
299 K 5.0 s

Fert-Solid 8.8 s 74.5 s 1.2 M 7.5 s 267 K 10.9 s
3.1 M 29.1 s
4.9 M 69.3 s
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Algorithm 1. ExpandGeneratorsðp; q;GÞ

Require: p is an i-cell
Require: q is an ðiþ 1Þ-cell
Require: G is the set of Hiþ1 generators
1: // C is a map from a generator g to an integer m
2: C = empty map
3: //Extract the ðiþ 1Þ-cells on the co-boundary of p
4: for all cofaces r of p do
5: //Gr is the set of generators containing r
6: Gr = getGeneratorsOn(r;G)
7: // Consider the number of incidences between p and r
8: for all generators g in Gr do
9: C[g]=getIncidence(p; r)+C[g]

10: //Expand the generators on q if necessary
11: for all pairs ðg;mÞ in C do
12: if m is odd then
13: addGenerator(g; q;G)
14: return G

In the description of Algorithm ExpandGenerators(p,q,G), p and q
denote, respectively, the i-cell and the ðiþ 1Þ-cell introduced by
the refinement operator, and G represents the set of Hiþ1 genera-
tors of X. The algorithm makes use of a map C from a generator g
to an integer m, that, for each generator g, stores the number of
ðiþ 1Þ-cells in the co-boundary of i-cell p which also belong to g.

Algorithm ExpandGenerators(p,q,G) uses the following three
functions:

� getGeneratorsOnðr;GÞ, which returns the set of generators Gr

containing cell r in their chain,
� getIncidenceðp; rÞ, which returns the number of times i-cell p

appears on the boundary of ðiþ 1Þ-cell r,
� addToGeneratorðg; q;GÞ, which updates the generators in G by

adding ðiþ 1Þ-cell q to the ðiþ 1Þ-chain corresponding to g.

Algorithm ExpandGenerators(p,q,G) considers only the ðiþ 1Þ-
cells in the co-boundary of p that are part of one or more Hiþ1 gen-
erators. For each such ðiþ 1Þ-cell r;Gr is the set of generators that
contain r (getGeneratorsOnðr;GÞ). For each generator g 2 Gr , map C
is updated by adding the number of times the i-cell p appears on
the boundary of r (getIncidenceðp; rÞ). Once all the ðiþ 1Þ-cells in
the co-boundary of p have been examined, cell q is added to gener-
ator g only if the number m of incidences for g is odd
(addGeneratorðg; q;GÞ).

7. Experimental evaluation

We have implemented the homology-preserving HCC by using a
DAG for encoding the direct dependency relation and the Incidence
Table 1
Four 2D shapes and two volumetric datasets used in our experiments. The columns
from left to right indicate: the name of the dataset (Dataset), the number of the top
cells in the datasets (Cells), the storage cost of the original cell complex (Complex cost),
the storage cost of the HCC (HCC cost), the Betti numbers (Homology).

Dataset Cells Complex cost (MB) HCC cost (MB) Homology

Genus3 40 K 4.8 3.3 (1,6,1)
Fertility 1.4 M 176 122 (1,8,1)
Hand 2.1 M 256 177 (1,2,0)
Buddha 3.2 M 398 273 (1,208,1)

Skull 748 K 118 84 (1,2,1,0)
Fert-Solid 6.2 M 980 720 (1,4,0,0)
Graph (IG) [23] for encoding the base complex XB. We refer to [18]
for details regarding the homology-preserving HCC encoding struc-
ture. We have performed experiments on the 2D and 3D complexes
described in Table 1 by using a desktop computer with a 3.2 Ghz
processor and 16 GB of memory. All complexes are simplicial
complexes, that become cell complexes after undergoing some
simplification.
Fig. 6. The H1 generators computed on the Fertility dataset (a) and on the Hand
dataset (b) by fully refining the cell complex.



Fig. 7. The H1 generators computed on the Fertility dataset and on the Hand dataset.
In (a) and (b) the generators obtained by refining the cell complex only in a
neighborhood of the generators.
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The storage cost of the HCC encoding structure is about 25% less
than the storage cost of the incidence graph representing the com-
plex at full resolution (the original complex). These latter com-
plexes have between 40 K and 3.2 M top cells in 2D case, and
between 700 K and 6 M top cells in the 3D case, as shown in Table 1
(column Cells). The storage cost of the original cell complex is
between 4.8 MB and 398 MB for 2D complexes, and between
118 MB and 980 MB for 3D complexes (column Complex cost).
The storage cost of the corresponding HCC is between 3.3 MB and
273 MB, and between 84 MB and 720 MB (column HCC cost),
respectively.

In the first set of experiments we have evaluated the time
required to compute the homology and its generators of the
original complex (the one at full resolution) by using the HCC. To
this aim, we first compute the homology generators on the base
complex, encoded in the root of the HCC. This computation
requires between 8:3� 10�5 and 8.8 s depending on the dataset
(column SNF Time in Table 2). Then, we perform all the refinements
Fig. 8. The H1 and H2 generators computed on the Skull dataset. In (a) the original dataset
generators extracted at variable resolution and visualized inside the extracted cell comp
in the HCC, by applying when necessary the refinement of the
generators as described in Section 6. This produces the representa-
tion of the complex at full resolution together with the homology
generators. The total cost of this computation is the sum of the
time required to compute the homology of the base complex
(column SNF Time) and the time needed to fully refine the complex
and its generators (column Tot. Ref. Time). This takes from a
minimum of 0.15 to a maximum of 83.3 s. Applying the same
SNF reduction directly on the original complex, requires about
2.6 h on a relatively small complex (the dataset Genus3), while it
results in very high computation times for the other datasets.

In Fig. 6, we show the H1 generators computed on two 2D
shapes Fertility and Hand and, in Fig. 8(b) and (c), we show the
H1 and H2 generators computed on the 3D Skull dataset.

In the second set of experiments we have focused on extracting
different representations of the complex by expanding the com-
puted generators at different resolutions. We have considered first
the extraction of representations at uniform resolution: we have
extracted representations obtained from the base complex by
applying approximatively 20%, 50% and 80% of the total possible
refinements (column Uniform Ref. in Table 2). Refinements are
forced to be evenly distributed inside the complex in order to
obtain a uniformly refined complex. We can notice (see column
Uniform Time) that the time required depends on the number of
refinements performed and is between 0.03 and 7.5 s for extraction
at 20% resolution and between 0.12 and 69.3 s for extraction at 80%
resolution.

Then, we have extracted representations of the complexes vary-
ing the resolution inside the domain. The objective has been to
obtain a cell complex, and the corresponding homology generators,
with a maximum resolution only in a neighborhood of a specific
homology class. This corresponds to computing the Hi generators
on the base complex and, by traversing the HCC, to performing only
those refinements that create an i-cell belonging to some Hi

generator (and the refinements on which they depend). This kind
of selective refinement produces cell complexes with a low num-
ber of cells outside the area around the generators and thus leads
to a further saving (15–30%) with respect to extracting generators
and complexes at maximum resolution. Note that the extraction at
variable resolution is a distinctive feature of the HCC which cannot
be performed on other hierarchical models. Examples of variable
resolution extractions are shown in Fig. 7 and in Fig. 8(d).
, in (b) and (c) the H1 and H2 generators computed at full resolution and in (d) the H1

lex.
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8. Concluding remarks

We have proposed a set of atomic modeling operators for sim-
plifying and refining cell complexes in arbitrary dimensions, which
either preserve the homology of a cell complex, or modify it in a
controlled way. We have compared these operators with existing
ones proposed in the literature. Based on our modeling operators,
we have defined a hierarchical model for cell complexes, the
Hierarchical Cell Complex (HCC), which implicitly encodes a
virtually continuous set of complexes at different resolutions.

We have developed an implementation of the HCC, based on our
homology-preserving operators, as the basis for computing the
homology and its generators for a cell complex at various resolu-
tions in an efficient and effective way. The advantages of our
approach are that a homology-preserving HCC is dimension-
independent, can be applied to general cell complexes and enables
the extraction of homology generators at variable resolutions.

In our current and future work, we first plan to extend the
previous approach to the computation of homology and homology
generators with coefficients in Z. We also plan to adapt the HCC
framework to simplicial complexes. We will consider two simplifi-
cation operators for generating an HCC: simplex collapse [24], which
is an instance of simplification operator KiCðiþ 1ÞCreðq; pÞ, and edge
contraction, a widely used operator in mesh processing which has
been proven to be homology-preserving [25].
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Appendix A

In this appendix, we introduce some basic definitions, and we
prove that our homology-preserving operators preserve the
homology of a cell complex with the coefficients in any Abelian
group (see [21,22] for a more rigorous treatment).

Given a cell complex X, it is possible to define the chain complex
associated with X, denoted as C�ðXÞ :¼ ðCkðXÞ; @kÞk2Z, where 8k
CkðXÞ is the free Abelian group generated by the k-cells of the cell
complex X and @k : CkðXÞ ! Ck�1ðXÞ is a homomorphism called
boundary map which encodes the boundary relations between
the k-cells and the ðk� 1Þ-cells of X such that @2 ¼ 0. We denote
as ZkðXÞ :¼ ker @k the group of the k-cycles of X and as
BkðXÞ :¼ im @kþ1 the group of the k-boundaries of X. Then, we
define the kth homology group of X with coefficients in Z as

HkðXÞ :¼ HkðC�ðXÞÞ ¼
ZkðXÞ
BkðXÞ

Furthermore, given an arbitrary Abelian group A, we can define the
kth homology group with coefficients in A of X as
HkðX; AÞ :¼ HkðC�ðXÞ�ZAÞ, where�Z is the tensor product of Abelian
groups. If we consider A ¼ Z2; C�ðXÞ�ZZ2 :¼ ðCkðXÞ�ZZ2; @k�Z

Z2Þk2Z is the chain complex whose groups CkðXÞ�ZZ2 are just the
Z2-vector spaces generated by the k-cells of X and the homomor-
phisms @k�ZZ2 are the boundary maps @k of X considered modulo 2.

One important tool, which allows simplifying the homology
computation of a cell complex, is discrete Morse theory (see [22]).
This powerful theory is based on the idea of providing the cell
complex X with a function f : X ! R, called a discrete Morse func-
tion such that, for every cell x in X,

� cþðxÞ :¼ #fy in the immediate co-boundary of x j f ðyÞ
6 f ðxÞg 6 1,

� c�ðxÞ :¼ #fz in the immediate boundary of x j f ðzÞ
P f ðxÞg 6 1,

� if x is face of y with incidence greater than one, then
f ðyÞ > f ðxÞ.

A cell x in X is critical if cþðxÞ ¼ c�ðxÞ ¼ 0. The discrete Morse
complex associated with X is a chain complex M�, whose groups
Mk are generated by the critical k-cells of the function f. For each
Abelian group A, we have that HkðX; AÞ ffi HkðM�; AÞ.

Proposition 1. Operators MiCðiþ 1ÞC and KiCðiþ 1ÞC preserve the
homology with coefficients in any Abelian group.
Proof. Since MiCðiþ 1ÞC are the inverse operators of KiCðiþ 1ÞC, it
is sufficient to prove that KiCðiþ 1ÞC are homology-preserving
operators. Let X be a cell complex, KiCðiþ 1ÞC the operator that
deletes an i-cell p and an ðiþ 1Þ-cell q from X and let Y be the
resulting cell complex. Let f : X ! R be the discrete Morse function
defined by

f ðxÞ ¼
dim x if x 2 X n fp; qg
dim pþdim q

2 ¼ iþ 1
2 otherwise

(

The chain complex associated with Y represents the discrete Morse
complex associated with X with respect to the function f. By Theo-
rem 8.2 [22] and the Universal Coefficient Theorem [21], we con-
clude that H�ðX; AÞ ffi H�ðY; AÞ for any Abelian group A. h
Appendix B

In this appendix, we provide the proof of correctness of the
algorithm (see Section 6) for modifying the homology generators
(with coefficients in Z2) when moving from a lower to a higher
resolution.

Proposition 2. Let X be a d-dimensional cell complex, Y the cell
complex obtained from X by applying MiCðiþ 1ÞCðq; p; p0Þ. For a fixed
k 2 f0; � � � ; dg, let B ¼ f½c1	X ; � � � ; ½cl	Xg be a basis for HkðX; Z2Þ, then

(1) if k – iþ 1; f½c1	Y ; � � � ; ½cl	Yg is a basis for HkðY; Z2Þ;
(2) if k ¼ iþ 1; B0 ¼ f½c01	Y ; � � � ; ½c0l	Yg is a basis for Hiþ1ðY; Z2Þ, where,
if ½c	X 2 B; ½c0	Y 2 B0 is defined by

c0 ¼
c if @Y c ¼ 0
c þ q otherwise

�

Proof. Throughout the proof and the statement we denote as @X

and @Y the boundary maps @X�ZZ2 and @Y�ZZ2 respectively and
all calculations are to be considered modulo 2. We give the proof
for the case when the refinement operator is of the type expand
(MiCðiþ 1ÞCexðq; p; p0Þ). The case when the operator is of the type
insert (MiCðiþ 1ÞCinðq; p; p0Þ) is dual.

In order to prove that a set of elements of CkðY; Z2Þ is a basis for
the Z2 vector space HkðY; Z2Þ we have to show that:

(a) each element is in ZkðY ; Z2Þ;
(b) each element is not in BkðY ; Z2Þ;
(c) the elements are linearly independent.
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(1) The only non-trivial cases are for k ¼ iþ 2; i; i� 1.

Case k ¼ iþ 2.

(a) Let c 2 Ciþ2ðX; Z2Þ be such that ½c	X is a basis element for
Hiþ2ðX; Z2Þ. We can consider c as an element in Ciþ2ðY ; Z2Þ.
We have that
@Y c ¼ @Xc þmq ¼ mq
where m 2 f0;1g.

Suppose that m ¼ 1, i.e., @Y c ¼ q. Then, since @2

Y ¼ 0,

@Y q ¼ @2
Y c ¼ 0
But, h@Y q;pi ¼ 1, so
@Y q ¼ pþ � � � – 0
Hence, c 2 Ziþ2ðY; Z2Þ.
(b) Suppose 9b 2 Ciþ3ðY ; Z2Þ such that @Y b ¼ c. Since no ðiþ 3Þ-

cell and no ðiþ 2Þ-cell is created in Y, we have that
@Y ;iþ3 ¼ @X;iþ3, and @Xb ¼ @Y b ¼ c. So c 2 Biþ2ðX; Z2Þ.

(c) ½c1	Y ; � � � ; ½cl	Y are linearly dependent in Hiþ2ðY; Z2Þ
() for each j ¼ 1; � � � ; l; 9aj 2 f0;1g such that
½a1c1 þ � � � þ alcl	Y ¼ ½0	Y and at least one aj – 0
() 9b 2 Ciþ3ðY; Z2Þ such that @Y b ¼

Pl
j¼1ajcj

() 9b 2 Ciþ3ðX; Z2Þ such that @Xb ¼
Pl

j¼1ajcj

() for each j ¼ 1; � � � ; l; 9aj 2 f0;1g such that
½a1c1 þ � � � þ alcl	X ¼ ½0	X and at least one aj – 0
() ½c1	X ; � � � ; ½cl	X are linearly dependent in Hiþ2ðX; Z2Þ

Case k ¼ i.

(a) Let c 2 CiðX; Z2Þ such that ½c	X is a basis element for HiðX; Z2Þ.
Since p does not appear in c, we have that
@Y c ¼ @Xc ¼ 0
(b) Suppose 9b 2 Ciþ1ðY ; Z2Þ such that @Y b ¼ c. There are two
cases.
If q does not appear in b, then b 2 Ciþ1ðX; Z2Þ and
@Xb ¼ @Y bþ h@Y q;p0imp0 ¼ c þ h@Y q;p0imp0
where m ¼
P

s2fr ðiþ1Þ�cell in Y j r is in bgh@Y s;pi is the number of

the ðiþ 1Þ-cells in b in which p is incident in Y. Since
@Y b ¼ � � � þmp and we know that @Y b ¼ c, then m has to be
an even number and so @Xb ¼ c.
If q appears in b, then b� q 2 Ciþ1ðX; Z2Þ and

@Xðb� qÞ ¼ c � h@Y q;p0ip0 þ h@Y q;p0imp0 ¼ c þ h@Y q; p0imp0
where m ¼
P

s2fr ðiþ1Þ�cell in Y j r – q;r is in bgh@Y s; pi is the num-

ber of the ðiþ 1Þ-cells in b� q in which p is incident in Y.
Since @Yðb� qÞ ¼ � � � þmp and we know that
@Y ðb� qÞ ¼ @Y b� @Y q ¼ c þ � � � þ p, then m has to be an odd
number and so @Xðb� qÞ ¼ c.
(c) Suppose that ½c1	Y ; � � � ; ½cl	Y are linearly dependent in
HiðY; Z2Þ. This implies that, for each j ¼ 1; � � � ; l; 9aj 2 f0;1g
such that ½a1c1 þ � � � þ alcl	Y ¼ ½0	Y and at least one aj – 0,
i.e., 9b 2 Ciþ1ðY; Z2Þ such that @Y b ¼

Pl
j¼1ajcj.

With arguments analogous to those used in (b), we can
conclude that either @Xb ¼

Pl
j¼1ajcj or @Xðb� qÞ ¼Pl

j¼1ajcj and so, ½c1	X ; � � � ; ½cl	X are linearly dependent in
HiðX; Z2Þ.

Case k ¼ i� 1.

(a) Let c 2 Ci�1ðX; Z2Þ such that ½c	X is a basis element for
Hi�1ðX; Z2Þ. We can consider c as an element in Ci�1ðY ; Z2Þ.
Since no ði� 1Þ-cell and no ði� 2Þ-cell is created in Y, we
have that @Y;i�1 ¼ @X;i�1 and
@Y c ¼ @Xc ¼ 0
(b) Suppose 9b 2 CiðY; Z2Þ such that @Y b ¼ c. For all i-cell s – p of
Y, we have that
@Xs ¼ @Y s ð�Þ
There are two cases.

If p does not appear in b, then, by ð�Þ, we have that

@Xb ¼ @Y b ¼ c
Otherwise, if p appears in b, since @2
Y ¼ 0, we have that
0 ¼ @2
Y q ¼ @Y ðpþ ð@Y q� pÞÞ ¼ @Y pþ @Yð@Y q� pÞ
Hence,
@Y p ¼ @Y ð@Y q� pÞ ¼ @Xð@Y q� pÞ ð��Þ
Then, bþ @Y q 2 CiðX; Z2Þ and
@Xðbþ @Y qÞ ¼ @Xðbþ p� pþ @Y qÞ
¼ @Xðbþ pÞ þ @Xð@Y q� pÞ
¼ @Y bþ @Y pþ @Xð@Y q� pÞ byð�Þ
¼ @Y bþ @Y pþ @Y p byð��Þ
¼ c
(c) Analogous to the previous case.

(2) Let’s prove now the case k ¼ iþ 1. We have to show that if
B ¼ f½c1	X ; � � � ; ½cl	Xg is a basis for Hiþ1ðX; Z2Þ, then B0 ¼ f½c01	Y ; � � � ;
½c0l	Yg is a basis for Hiþ1ðY ; Z2Þ.

(a) Let c 2 B, i.e., c 2 Ciþ1ðX; Z2Þ such that ½c	X is a basis element
for Hiþ1ðX; Z2Þ. We want to prove that @Y c0 ¼ 0.
If @Y c ¼ 0, then c0 ¼ c and @Y c0 ¼ @Y c ¼ 0.
Otherwise @Y c – 0 and c0 ¼ c þ q. In order to conclude, we
want to show that @Y c ¼ @Y q. This is indeed true, because
we have that
@Y c ¼ @Xc �mh@Y q;p0ip0 þmp ¼ mðh@Y q;p0ip0 þ pÞ
where m ¼
P

s2fr ðiþ1Þ�cell in Y j r is in cgh@Y s; pi is the number of

the ðiþ 1Þ-cells in c in which p is incident in Y. Since
@Y c – 0;m is an odd number, and

@Y c ¼ h@Y q;p0ip0 þ p ¼ @Y q
As a consequence,
@Yðc0Þ ¼ @Yðc þ qÞ ¼ @Y c þ @Y q ¼ 0
(b) For each ðiþ 2Þ-cell t in Y, we have that @Xt ¼ @Y t � h@Y t; qiq.
If 9b 2 Ciþ2ðY ; Z2Þ such that @Y b ¼ c0 then
@Xb ¼ @Y bþmq ¼ c0 þmq
where m ¼
P

t2fr ðiþ2Þ�cell in Y j r is in bgh@Y t; qi.
Since m is even if c0 ¼ c and m is odd if c0 ¼ c þ q, we can

conclude that

@Xb ¼ c
(c) Analogous to the previous case. h
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