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Preface

Scalar fields are real-valued functions defined point-wise within a d -dimensional
domain. They appear in many applications, including physics, chemistry, medicine,
geography, etc., and represent real or simulated phenomena characterized by a
spatial extension. The most common example are height fields which describe
terrains and have been studied extensively in Geographic Information Systems
(GISs) and scientific visualization. Scalar fields can also be defined on shapes
(which describe the surface of an object in 3D) to represent some point-wise defined
property on them (such as curvature).

As d -dimensional domains are discretized (e.g., as d -dimensional images
composed of voxels) and so are shapes (e.g., a surface tessellated as a mesh of
triangles), scalar fields defined on them have a discrete representation: usually, field
values are associated with the voxels of an image or with the vertices of a mesh.
This provides a detailed representation of the scalar field.

Thanks to hardware and software development, available data representing
both the field and its domain are increasing in size and complexity. On the
other hand, a detailed representation is verbose and not suitable to analysis tasks
such as recognition and classification. Therefore, the issue arises to switch from
representation to description of a scalar field. While a representation provides all
details necessary to know the field point-wise, a description is more abstract and has
the purpose of showing the main characteristics of the field, such as, for instance,
its maxima/minima/saddles and their relative positions.

This book focuses on morphological descriptions of scalar fields, mainly in
2D (height fields or terrains) and 3D (volume data). Specifically, we consider
morphological descriptions based on identifying maxima, minima and saddles,
finding their influence zones, and encoding their mutual spatial relations. All
this is formalized through Morse theory, Morse and Morse-Smale complexes. We
provide the mathematical background, which has been formally defined for smooth
functions and then transposed into a discrete setting in different ways. We introduce
the main algorithmic approaches and their characteristics, and present algorithms for
discrete scalar fields in two and three dimensions, and (where possible) in general
dimensions.
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vi Preface

Although morphological descriptions based on Morse and Morse-Smale com-
plexes represent scalar fields in a much more compact way than the initial geometric
representation, simplification of these complexes is often necessary. Simplification
allows disregarding less meaningful morphological features, or spurious features,
due to noise in the data, as well as adapting the level of abstraction of the description
to the current application task. Therefore, we present simplification operators which
act on the morphological description of a scalar field.

The issue of simplification comes along with that of multi-resolution, which
requires being able to build a compact model encompassing different levels of
detail (corresponding to different degrees of simplification), in such a way that
the appropriate level of detail can be extracted on the fly according to user-defined
criteria.

This book is organized as follows. Chapter 1 contains the necessary mathematical
background on Morse theory in the smooth and in the discrete case. Chapter 2
presents a classification of existing algorithms for morphological computation based
on different and often orthogonal criteria, where the main criterion is the algorithmic
approach they use. Such a criterion identifies boundary-based and region-growing
methods (which essentially deal with 2D and 3D scalar fields), watershed-based and
methods based on a discrete Morse theory due to Forman (which are dimension-
independent). The next three chapters present a survey of algorithms belonging
to the first two classes (Chap. 3), of watershed-based algorithms (Chap. 4) and of
Forman-based algorithms (Chap. 5). Chapter 6 considers the issues related to sim-
plification and multi-resolution. Finally, Chap. 7 presents experimental comparisons
and draws concluding remarks.

Novi Sad, Serbia Lidija Čomić
Genova, Italy Leila De Floriani
Genova, Italy Paola Magillo
College Park, MD, USA Federico Iuricich
July 2014
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Chapter 1
Background

In this chapter, we introduce the mathematical structures used to represent scalar
fields and their morphology in the smooth and in the discrete cases.

In Sect. 1.1, we provide some mathematical background. We introduce the
concept of manifold, which will be used to characterize the domain of scalar fields,
and the concept of cell complex with its special cases (regular grid, and simplicial
complex). In Sect. 1.2, we introduce models for scalar fields in a real-world setting,
where the function is known only at a set of sampled points, such as regular models
and simplicial models.

In Sect. 1.3, we present the basic notions of Morse theory [17,19], which provides
a description of the morphology of functions and their domains in the smooth case.
In Sect. 1.4, we present the watershed transform in the smooth case, which is an
independently developed framework, alternative to Morse theory.

Two approaches exist for extending the results of Morse theory to the discrete
case, as required when dealing with scalar field models based on regular grids or
simplicial complexes [6]. Banchoff’s piecewise-linear Morse theory [1,2], presented
in Sect. 1.5, transposes the results obtained on smooth functions to the case of a
function having values at the vertices of a complex with polygonal cells, while
elsewhere the function is approximated through linear interpolation. This theory
has been defined in 2D, and then extended to the 3D case. Forman’s discrete Morse
theory [11], presented in Sect. 1.6, extends Morse theory to the discrete case where
a function value is defined on all cells of a cell complex. This theory is entirely
combinatorial, and completely dimension-independent.

1.1 Some Preliminary Definitions

Here, we introduce the notions of manifold [16, 26], cell complex [15], simplicial
complex [26], and regular grid [6].

© The Author(s) 2014
L. Čomić et al., Morphological Modeling of Terrains and Volume Data,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4939-2149-2__1

1



2 1 Background

1.1.1 Manifolds

The closed d -dimensional ball is the set fp D .x1; : : : ; xd / 2 R
d j jjpjj � 1g, and

the open d -dimensional ball is the set fp D .x1; : : : ; xd / 2 R
d j jjpjj < 1g, where

jj � jj denotes the norm of the point viewed as a vector (i.e., its Euclidean distance
from the origin). A (closed or open) half d -dimensional ball is the intersection of
the (closed or open) d -dimensional ball with the half-space fp D .x1; : : : ; xd / 2
R

d j x1 � 0g.
Intuitively, a d -dimensional manifold is a subset of R

n which is locally d -
dimensional at each point. This concept is formalized in the following definition.

Definition 1. A subset M of R
n is a d -manifold if each point p 2 M has a

neighborhood which is homeomorphic to the open d -dimensional ball.
A subset M of Rn is a d -manifold with boundary if each point p 2 M has a

neighborhood which is homeomorphic either to the open d -dimensional ball, or to
the open half d -dimensional ball.

Intuitively, two sets are homeomorphic if they are topologically equivalent: each
can be transformed into another by just deforming, without tearing or cutting [12].

a b c d

Fig. 1.1 Some sets which satisfy, or do not satisfy, the definition of a 2-manifold. Note that a two-
dimensional ball is a disk. Set (a) in 2D is a 2-manifold with boundary, set (b) is not a manifold.
Set (c) in 3D is a 2-manifold without boundary, set (d) is not a manifold

The set Rn and the open n-dimensional ball are n-manifolds (without boundary),
while the closed n-dimensional ball is an n-manifold with boundary. If we restrict
our attention to bounded and closed subsets of Rn, we have that only d -manifolds,
with d < n, can be without boundary in R

n. For example, the surface bounding
a solid in R

3 is a 2-manifold without boundary. In R
n, an n-manifold (which is a

closed bounded set) must have a boundary. An example is a disc (filled circle) in
R

2 or a ball (filled sphere) in R
3. Figure 1.1 shows some examples of manifold and

non-manifold sets, for d D 2.
The Euler characteristic of a d -dimensional manifold M is defined as

�.M / D ˇ0 � ˇ1 C ˇ2 � ˇ3 C � � � C .�1/d ˇd D
dX

iD0

.�1/i ˇi (1.1)

where ˇi is the i -th Betti number of M .
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Intuitively, ˇ0 counts the number of connected components of an object; ˇ1

counts the numbers of through holes of an object. Betti number ˇ2 D 0 for 2-
manifolds in R

2, while, for 2-manifolds and 3-manifolds in R
3, ˇ2 counts the

numbers of cavities (voids) inside an object. In R
3, all other Betti numbers are null.

1.1.2 Cell Complexes

In this book, we will consider scalar fields as scalar functions defined over manifold
subsets of R

n (mainly for n D 2 and n D 3). For computational purposes, the
manifold domain of a scalar field will be represented by a decomposition into a
collection of elements with simple shapes. Such basic elements are formalized as
cells, and their collection is formalized through the notion of cell complex.

Definition 2. A d -dimensional cell in R
n, or a d -cell, is a subset � of Rn which is

homeomorphic to the closed d -dimensional ball; d is called the dimension of � .

The (relative) interior i.�/ of a d -cell � is the image of the open ball under the
same homeomorphism. Its (relative) boundary is b.�/ D � n i.�/.

Intuitively, a cell complex in R
n is a finite collection � of cells, of different

dimensions, which are glued together in a consistent way: the interiors of the
cells are disjoint, and the boundary of each cell is a union of interiors of (lower-
dimensional) cells belonging to � .

Definition 3. A d -dimensional cell complex (a cell d -complex) � is a collection
of cells, such that:

• i.�1/ \ i.�2/ D ; for each pair of distinct cells �1 and �2 2 � ;
• the boundary of each cell in � is a disjoint union of interiors of cells of � ;
• the maximum dimension of cells in � is d .

The domain of a cell complex � is the point set in R
n given by the union of all cells

of � .
In a cell complex � , a cell � 0 is a face of another cell � , if � 0 � � ; it is a proper

face if � 0 � � . The proper faces of a cell � have a lower dimension than that of � .
If � 0 is a face of � , then � is a co-face of � 0. Note that the proper faces of a cell are
not defined in relation with the cell itself, but only in relation with a cell complex
containing it.

The (combinatorial) boundary of a cell � in a cell complex � is the set of the
proper faces of � (see Fig. 1.2a). The (combinatorial) co-boundary, or star of � ,
denoted �� , is the set of the co-faces of � , i.e., the set of cells of � which are
incident in � (see Fig. 1.2b). The link of � , denoted Lk.�/ contains those faces of
cells of �� , which are not in �� (see Fig. 1.2c).

A cell � of a d -dimensional cell complex � is maximal if its dimension is d .
A d -dimensional cell complex � is pure if any k-dimensional cell, with k < d , is
a face of a d -dimensional cell. Intuitively, this implies that the domain of the cell
complex is uniformly d -dimensional, without dangling parts of lower dimension.
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Fig. 1.2 (a) The boundary of the 2-cell (gray) is composed of four 1-cells (bold lines) and four
0-cells (full dots). (b) The star of the central vertex is composed of four 1-cells (bold lines) and
four 2-cells (gray surfaces) incident in it. (c) The link of the central vertex is composed of the five
1-cells (bold lines) in the neighborhood of the vertex as well as the five 0-cells (full dots) incident
in them

Cell complexes used in practice to describe the domain of a d -dimensional scalar
field are pure, and have a manifold domain. Thus, in the following we will implicitly
assume cell complexes with manifold domain.

The Euler characteristic of a d -dimensional cell complex � is defined as

�.� / D m0 � m1 C m2 � m3 C � � � C .�1/d md D
dX

iD0

.�1/i mi (1.2)

where mi denotes the number of cells of dimension i in the complex. The Euler
characteristic of a cell complex (with manifold domain) is equal to the Euler
characteristic of its domain.

Definition 4. The k-skeleton of a d -dimensional complex � (with k � d ) is the
subset of � containing the cells of � of dimension less than or equal to k.

The k-skeleton is a k-dimensional cell complex. Specifically, the 1-skeleton is
made up of cells of dimension 0 (vertices) and 1 (edges). Disregarding the geometry
of the cells, the 1-skeleton has the combinatorial structure of a graph G D .V; E/,
where the nodes in V correspond to the vertices of � and the arcs in E correspond
to the edges of � (where each edge is seen as the pair of its endpoint vertices).

1.1.3 Regular Grids and Simplicial Complexes

Although theoretically cells in R
n can be of any shape that is topologically

equivalent to a ball, cells used in practice have some standard, simple shape, i.e., are
hyper-rectangles or simplices, and corresponding cell complexes are regular grids
or simplicial complexes.

Definition 5. An axis-parallel d -dimensional hyper-rectangle � in R
n is the Carte-

sian product of n closed intervals, where exactly d of them are non-degenerate, i.e.,
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� D fp D .x1; : : : ; xn/ 2 R
n j xi 2 Œai ; bi �g, where #fi j ai < bi g D d . We say

that � is generated by intervals Œai ; bi �.

Examples of d -hyper-rectangles are a point (d D 0), a straight-line segment (d D
1), a rectangle (d D 2), a cuboid (d D 3). Usually, intervals have integer endpoints
and unit length, i.e., ai 2 Z, and bi D ai or bi D ai C 1.

Definition 6. A d -dimensional simplex, or d -simplex, � is the convex hull of d C
1 affinely independent points p0; : : : ; pd in R

n. Points p0; : : : ; pd are called the
vertices of � .

Examples of simplices are a point (0-simplex), a straight-line segment (1-simplex), a
triangle (2-simplex), a tetrahedron (3-simplex). Any d -dimensional hyper-rectangle,
and any d -simplex, is also a d -dimensional cell.

A d -dimensional regular grid is a d -dimensional cell complex where all cells
are hyper-rectangles, and the domain is also a d -dimensional hyper-rectangle. A 2D
regular grid is also called a square grid, and a 3D regular grid is called a cubic grid.

Differently from generic cells, the proper faces of a hyper-rectangle � or a
simplex � are uniquely defined by the shape of � or � , independently of the complex
containing it. Given a hyper-rectangle �, generated by intervals Œai ; bi �, i D 1; : : : n,
any hyper-rectangle �0 generated by intervals Œa0

i ; b0
i �, with either a0

i D ai and
b0

i D bi , or a0
i D b0

i D ai , or a0
i D b0

i D bi , is a face of �. Hyper-rectangle �0
is a proper face of � if �0 ¤ �. This leads to an equivalent definition of regular
grids.

Definition 7. A regular grid in R
n is a finite collection G of hyper-rectangles of

different dimensions, such that:

• for any hyper-rectangle � 2 G, all hyper-rectangles that are proper faces of � are
in G;

• for any pair of hyper-rectangles �1; �2 2 G, either �1 \ �2 D ;, or �1 \ �2 is a
hyper-rectangle of G;

and the domain of G is a hyper-rectangle in R
n.

Similarly, a d -dimensional simplicial complex is a d -dimensional cell complex
where all cells are simplices. The following is an equivalent definition of a simplicial
complex:

Definition 8. A simplicial complex in R
n is a finite collection ˙ of simplices, of

different dimensions, such that:

• for any simplex � 2 ˙ , all simplices that are proper faces of � are in ˙ ;
• for any pair of simplices �1; �2 2 ˙ , either �1 \ �2 D ;, or �1 \ �2 is a simplex

of ˙ .

The two definitions are equivalent because also the proper faces of a simplex �

are uniquely defined by the shape of � , independently of the complex containing
it. Given a simplex � , any simplex � 0, whose vertices are a (proper) subset of the
vertices of � , is a (proper) face of � .
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The interesting case for us is that in which the domain is a d -manifold. A 2D
simplicial complex with manifold domain is also called a triangle mesh, and a 3D
simplicial complex with manifold domain is also called a tetrahedral mesh.

A regular grid can always be transformed into a simplicial complex by decom-
posing each hyper-rectangle into simplices. In 2D, a regular grid is transformed into
a triangulation by dividing each square cell into two triangles. In 3D, a regular grid
is transformed into a tetrahedralization by dividing each cuboid into either five or
six tetrahedra (see Fig. 1.3).

a b

Fig. 1.3 Decomposition of a cube into (a) five and (b) six tetrahedra

1.1.4 Primal and Dual Complex

Fig. 1.4 The primal/dual relationships in a triangle mesh and in a square grid. (a) The dual of a
triangle is a vertex (dotted); (b) the dual of an edge shared by two triangles is an edge (dotted); (c)
the dual of a vertex is a polygon (shaded). (d) The dual of a square is a vertex (dotted); (e) the dual
of an edge shared by two squares is an edge (dotted); (f) the dual of a vertex is a square (shaded)

Each d -dimensional cell complex � has a corresponding dual cell complex � �,
which is also a d -dimensional cell complex. With respect to its dual, � is called
the primal cell complex. The 0-cells (vertices) of the dual complex � � correspond
to the d -cells of � , and can be geometrically placed at their centroids. The 1-cells
of � � correspond to the .d � 1/ cells of � , and so on. The maximal cells of � �
correspond to the vertices of � . In the following, we will call primal the cells of �

and dual the cells of � �.
When the primal cell complex � is a simplicial complex, the dual cell complex

� � is not simplicial since its cells may have an arbitrary shape (see Fig. 1.4a–c).
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Each primal triangle corresponds to a dual vertex. Each primal edge, shared by two
primal triangles, corresponds to a dual edge having the corresponding dual vertices
in its boundary, and, similarly, a primal vertex corresponds to a dual 2-cell.

When the primal cell complex � is a regular grid, then � and � � are both regular
grids, as illustrated in Fig. 1.4d–f.

We call primal graph the graph representing the combinatorial structure of the
1-skeleton of the primal complex (see Sect. 1.1.2). Similarly, we call dual graph the
graph representing the combinatorial structure of the 1-skeleton of the dual complex.
Thus, given a cell complex � , the nodes of the primal graph correspond to the
vertices of � and the arcs of the primal graph correspond to the edges of � (i.e.,
they represent the vertex-vertex adjacency relation in � ). The nodes of the dual
graph correspond to the d -cells of � , and its arcs correspond to pairs of d -cells
which are mutually adjacent along a .d � 1/-dimensional face in � .

1.2 Models for Scalar Fields

Here, we introduce scalar fields and their discrete models, based on cell complexes
(for details, see [6]).

A d -dimensional scalar field is any phenomenon in the real or virtual world
which is characterized by spatial extension within a d -dimensional domain D �
R

n and by a function value existing in each point of the domain. Examples are
temperature within a volume, pressure over a plane, or curvature over a surface
embedded in 3D space. A typical case of a 2D scalar field is a terrain, where the
domain is plane and the function, also called a height function, represents elevation,
or depth, with respect to the sea level.

Formally, a d -dimensional scalar field is defined by a pair .D; f /, where D

is a d -dimensional domain in R
n, and f is a real-valued function f W D ! R.

Commonly, the domain D is connected, and is a d -manifold. Often, D is a d -
dimensional hyper-rectangle.

The scalar field represents a physical phenomenon which is measured at a finite
set of points in D. Thus, function f is unknown, with the exception of the sampled
points. The real shape of D is also unknown, and it is usually approximated by the
convex hull, or by the axis-parallel bounding box, of the given point set.

Representing a scalar field in a computational setting implies a discrete approx-
imation of the domain D as well as a discrete approximation of the range of f .
These discretizations are built based on the sampled points, in such a way that,
given their known values, we are able to provide an estimate of f over the entire
(approximation of the) domain D.

The domain is generally partitioned through a d -dimensional simplicial complex,
or through a d -dimensional regular grid. Function f is approximated locally within
each cell, through some simple analytic function. Thus, a model for a scalar field
is called simplicial if the domain decomposition is a simplicial complex, while it
is called regular if the domain is discretized through a regular grid. The cells of
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a regular grid are known as pixels in 2D and voxels in 3D, when the scalar field
describes a two-dimensional or three-dimensional grey-scale image [13].

Regular models are used when the function values are measured at regularly
spaced points. This happens, for instance, with aerial or satellite measurements of
terrains or digital 3D scanning of volumes. In a regular model, the regular grid is
constructed in such a way that measured points (with known field values) are located
at the centroids of the d -cells, or at the vertices (0-cells) of the grid. The field values
at any other location are interpolated. If the known field values are associated with
the d -cells, then a (discontinuous) step function is used as field approximation. In
this case, we have a so-called stepped model. An element (pixel or voxel) within a
grid may be considered as connected to the 2d neighboring elements lying in the
directions of the Cartesian axes (known as 4-connectivity model for 2D grids), or to
the 3d �1 elements lying in the axis-parallel and diagonal directions (8-connectivity
model for 2D grids) [25]. Figure 1.5 illustrates the two types of grid connectivity.

Fig. 1.5 A pixel (in black)
and its 4-connected or
8-connected pixels (shaded)

If the known field values are associated with the grid vertices, usually an at least
C 0-function is used on the d -cells of the grid. For instance, in 2D we can use a
bilinear interpolant over each square cell, or we can divide the cell into two triangles
and use linear interpolation over each of them. Many interpolating or approximating
functions have been proposed (see, for example, [3, 14]).

Simplicial models [7] are able to deal with irregularly sampled data, such as those
obtained from scanning the bounding surface of objects in 3D. Simplicial models
are usually constructed with known field values located at their vertices. Within each
higher-dimensional simplex, the function is estimated based on a piecewise-linear
interpolation of its vertices. Figure 1.6 shows various types of 2D field models.

Regular grids can be encoded in compact data structures, like a matrix of
field values. On the other hand, simplicial models require data structures which
maintain connectivity information, the relation between d -simplices and vertices,
plus adjacency relations among d -simplices [5]. Simplicial models, however, better
adapt to variation of the shape, since they can adaptively be built from irregularly
distributed data points.
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Fig. 1.6 From left to right: triangle mesh, regular grid with step function, regular grid with bilinear
interpolants, and two differently triangulated grids

1.3 Morse Theory and Morse Complexes

Here, we introduce Morse theory in the smooth case, its relation with morphology,
Morse and Morse-Smale complexes, and related properties.

Morse theory captures the relationships between the topology of a manifold, and
(the critical points of) a function defined on it. We review here the basic notions of
Morse theory in the case of d -manifolds. For more details, see [17, 19].

Let f be a C 2-differentiable real-valued function defined over a manifold domain
M � R

d . A point p 2 M is a critical point of f if the gradient of f vanishes at p,
i.e., if rf .p/ D 0. Intuitively, this means that the tangent hyper-plane to the graph
of f in R

dC1 is horizontal. Points which are not critical are called regular. Function
f is said to be a Morse function if all its critical points are non-degenerate, i.e., if
the Hessian matrix Hesspf of the second derivatives of f at p is non-singular (its
determinant is ¤ 0). This implies that the critical points of a Morse function f are
isolated.

p pp p

regular maximum minimum saddle

Fig. 1.7 Classification of points in the 2D case. Shaded regions indicate points on a small disc
around p, with lower function values compared with point p
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p p p p p

regular maximum minimum 1-saddle 2-saddle

Fig. 1.8 Classification of points in the 3D case. Shaded regions indicate points on a small sphere
around p, with lower function values compared with point p

The number of negative eigenvalues of Hesspf is called the index of a
critical point p. The corresponding eigenvectors show the directions in which f

is decreasing. A critical point p is a minimum or a maximum if it has index 0 or d ,
respectively. Otherwise, index of p is i , 0 < i < d , and p is an i -saddle. In 2D,
there is just one type of saddle, with index equal to 1. In 3D, there are two different
types of saddles, corresponding to index equal to 1 and 2, respectively. In Figs. 1.7
and 1.8 we illustrate a neighborhood of critical points in a two and three dimensions,
respectively.

The number of different types of critical points has a relation with the Euler
characteristic �.M / of M :

Theorem 1.1. Let f W M ! R be a Morse function over a d -manifold M . Then

�.M / D
dX

iD0

.�1/ici ;

where ci denotes the number of critical points of f with index i .

An integral line of a function f is a maximal path which is everywhere tangent
to rf . Integral lines follow the gradient directions in which the function has the
maximum slope. It can be shown that integral lines are pairwise disjoint, that is, if
they share a point, then they are the same line.

Assume to consider integral lines as oriented upwards. Then, no integral line
starts from a maximum p, while an arbitrary number of integral lines converge into
p. The opposite happens if p is a minimum. If p is a regular point, then there is just
one integral line passing through p.

If p is a saddle point, the situation depends on the index of p. In 2D, two
integral lines start from p and go to two (non necessarily distinct) maxima, and
two integral lines arrive at p from two (non necessarily distinct) minima. In
3D, a 1-saddle s has two integral lines arriving at s from two (not necessarily
distinct) minima, and an arbitrary number of integral lines going from s to
2-saddles and maxima. A 2-saddle s has two integral lines going to two (not
necessarily distinct) maxima, and an arbitrary number of integral lines arriving at
s from 1-saddles and minima.

Integral lines that end at a critical point p of index i , form an i -cell, called
a descending (or stable) manifold of p (see Fig. 1.9b). For instance, if M is a
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2-manifold, then the descending manifold of a minimum, a saddle, and a maximum,
is a 0-cell (vertex), a 1-cell (edge), and a 2-cell (region), respectively.

In a totally symmetric way, integral lines that start from a critical point p of index
i form a .d � i/-cell, called ascending (or unstable) manifold of p (see Fig. 1.9c).
Thus, in 2D, the ascending manifold of a minimum, a saddle, and a maximum, is a
2-cell (region), a 1-cell (edge), and a 0-cell (vertex), respectively.

The ascending (descending) manifolds are open sets, and are pairwise disjoint.
They decompose M into open cells which form a complex, since the boundary
of every cell is a union of lower-dimensional cells. Such complexes are called
ascending and descending Morse complexes. They are illustrated in Fig. 1.11a and b.

Fig. 1.9 (a) Integral lines and critical points of a scalar field f defined on a 2D domain. Black
circles, stars, and white circles denote maxima, saddles, and minima, respectively. (b) Descending
manifold formed by integral lines converging to maximum p. (c) Ascending manifold formed
by integral lines originating at minimum q. (d) Morse-Smale complex with the 2-cell formed by
integral lines originating at q and converging to p

A Morse function f is called a Morse-Smale function if and only if each non-
empty intersection of an ascending and a descending cell is transversal. This means
that the intersection (if it exists) of the descending i -dimensional cell of a critical
point p of index i , and the ascending .d � j /-dimensional cell of a critical point
q of index j , j � i , is an .i � j /-dimensional cell. Cells that are obtained as the
intersection of descending and ascending manifolds of a Morse-Smale function f

decompose M into a Morse-Smale complex, illustrated in Fig. 1.9d.
An integral line, which connects two critical points of consecutive index of a

Morse-Smale function f , is called a separatrix. If we use separatrix lines to cut the
domain M of a 2D function f , we can obtain a decomposition of M corresponding
to the Morse-Smale complex defined above. For a Morse-Smale function, there is
no integral line that connects two critical points of the same index.

In 2D, each 2-cell of a Morse-Smale complex is related to a maximum p and
a minimum q, and it is obtained as (a connected component of) the intersection of
the descending 2-cell of p and the ascending 2-cell of q. In [9], it has been shown
that each such 2-cell is quadrangular, with vertices of index 0,1,2,1 (q; s1; p; s2), in
this order along the boundary. Saddles s1 and s2 are not necessarily distinct, thus
it is possible that s1 D s2. In [20], it has been shown that, for a Morse-Smale
function f , there are three different types of 2-cells in the Morse-Smale complex of
f , illustrated in Fig. 1.10a–c.
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The 1-skeleton of the Morse-Smale complex consists of the critical points and
the separatrix lines connecting them. In 2D, it is called a critical net.

The Critical Point Configuration Graph (CPCG) [20] is a generalization and
abstraction of the critical net for a Morse function f defined on the closure of a
simply-connected open set in the plane. It is a graph, in which the nodes correspond
to the critical points of f and two nodes are connected by an arc if there exists
an integral line that emanates from one corresponding critical point and reaches
the other. It is not assumed that f is a Morse-Smale function, so some integral
lines may connect two saddles. Minimal cycles of edges of the CPCG partition the
domain of f into regions, called slope districts. There are four different types of
slope districts, as illustrated in Fig. 1.10. The first three are quadrangles (possibly
glued along the edges) with nodes of index 1,0,1,2 respectively (saddle, minimum,
saddle, maximum). These quadrangles correspond to the possible types of 2-cells in
the Morse-Smale complex. The first type occurs most frequently in the real data, the
second and third type correspond to an isolated mountain (maximun) and an isolated
crater (minimum), respectively. The last type of a slope district occurs only if f is
not a Morse-Smale function. It is unstable, in the sense that a small perturbation
of the scalar field f would replace the integral lines connecting two saddles with
integral lines connecting those saddles to extrema.

maximum

minimum

saddle

a b c d

Fig. 1.10 ((a)–(c)) The three possible configurations of 2-cells in a 2D Morse-Smale complex.
((a)–(d)) The slope districts of the CPCG [20]

The Morse Incidence Graph (MIG) proposed in [4] is a dual representation for
the ascending and the descending Morse complexes �a and �d of a Morse-Smale
function. The topology of both complexes is represented by encoding the immediate
boundary and co-boundary relations of the cells in the two complexes. The Morse
incidence graph provides also a combinatorial representation of the 1-skeleton of a
Morse-Smale complex.

A Morse Incidence Graph (MIG) is a labeled graph G D .N; A; '/ in which:

• the set of nodes N is partitioned into n C 1 subsets N0, N1; : : : ; Nn, such that
there is a one-to-one correspondence between the nodes in Ni (i-nodes) and the
i -cells of �d , (and thus the .n � i/-cells of �a);

• there is an arc joining an i -node p with an .i C 1/-node q if and only if the
corresponding cells p and q differ in dimension by one, and p is on the boundary
of q in �d , (and thus q is on the boundary of p in �a) (see Fig. 1.11);
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• each arc a connecting an i -node p to an .i C 1/-node q is labeled by the number
'.a/ of times i -cell p (corresponding to i -node p) in �d is incident to .i C1/-cell
q (corresponding to .i C 1/-node q) in �d .

Fig. 1.11 (a) Ascending
Morse complex, (b)
descending Morse complex
and (c) the corresponding
Morse Incidence Graph
(MIG)

Thus, the MIG captures the combinatorial structure of the critical net, disre-
garding the geometry of the separatrix lines, as it is a graph in which the nodes
correspond to the critical points in the critical net and the arcs correspond to pairs
of critical points connected by separatrix lines. In 2D, the (unlabeled) MIG is also
known in the literature as the surface network [23, 27].

1.4 Watershed Transform in the Smooth Case

We review here the watershed transform, that is an independently developed and
alternative framework to Morse theory. The watershed transform has been first
defined for grey-scale images and several definitions exist in the discrete case
[18, 28]. The watershed transform has also been defined for C 2-differentiable
functions over a connected domain D for which the critical points are isolated.
This includes Morse functions. Basic notions in the watershed transform are the
notions of catchment basin and watershed lines. They can both be defined in terms
of topographic distance [18, 24].

Definition 9. If f is a function whose gradient rf is non-null everywhere except
possibly at some isolated points, then the topographic distance TD.p; q/ between
two points p; q belonging to the domain D of f is

TD.p; q/ D inf
P

Z

P

jjrf .P.s//jjds

where P is a path (smooth curve) inside D, such that P.0/ D p, P.1/ D q, and
jj � jj denotes the magnitude (norm) of a vector.

The topographic distance is defined in this way in order to ensure that the path
which minimizes the topographic distance between two points p and q in D is the
path of steepest slope, if it exists. In other words, if p and q are two points in D

and if there is an integral line which reaches both p and q, then the topographic
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distance between these two points is equal to the difference in elevation between
them (i.e., TD.p; q/ D jf .p/ � f .q/j). Otherwise, if such an integral line does not
exist, the topographic distance between p and q is strictly greater than the difference
in elevation between p and q (i.e., TD.p; q/ > jf .p/ � f .q/j).

Let us consider the set of minima of f . The catchment basin CB.mi / of a
minimum mi is defined as the set of points which are closer (in the sense of
topographic distance) to mi than to any other minimum.

Definition 10. Let mi be a minimum of f . The catchment basin of mi is

CB.mi / D
fp 2 D W f .mi / C TD.p; mi/ < f .mj / C TD.p; mj /; mj minimum; mj ¤ mig:

An alternative definition of catchment basin has been given by Najman et al. in [21].
Watershed (or watershed lines) W S.f / of f is defined as the set of points in D

which do not belong to any catchment basin, i.e., as the complement in D of the set
of catchment basins of the minima of f .

When f is a C 2-differentiable Morse function, then the closure of the catchment
basins of the minima of f are the closure of the 2-cells of the ascending Morse
complex of f , and the set of watershed lines forms a subset of separatrix lines
that connect saddles to maxima. Each catchment basin is bounded by a sequence
of saddles, ridge lines and maxima. Symmetrically, if we consider the closure of
catchment basins of the opposite function �f , then we get the closure of the 2-cells
of the descending Morse complex of f .

1.5 Piecewise-Linear Morse Theory

The first attempt to define an equivalent to Morse theory in the discrete case is
provided by the piecewise-linear Morse theory, due to Banchoff [1, 2]. Banchoff
considers polyhedral surfaces, i.e., 2D cell complexes where 1-cells are straight-
line segments, 2-cells are polygonal regions, the scalar field is known at the
vertices (0-cells) and it is approximated by linear interpolation over other cells.
Two-dimensional scalar fields represented through triangle meshes satisfy these
requirements. In such a discrete setting, Banchoff defined the theory about critical
points, while the notion of a quasi-Morse-Smale complex, introduced by Edelsbrun-
ner [8, 9] captures the characteristics of the Morse-Smale complex in 2D and 3D.

1.5.1 Critical Points in a Piecewise-Linear Model

Let a function f be defined on the vertices of a 2D simplicial complex ˙ .
Banchoff [2, 22] introduces critical points under the assumption that the values of
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function f are all distinct. Such a condition has been relaxed in [27] by requiring
that function f is general, i.e., there are no two adjacent vertices v and w in ˙

having the same function value. This means that the graph of f over ˙ has no flat
edges. Under this assumption, critical points may occur only at the vertices of ˙ .

The intuitive idea is that a vertex p of ˙ can be classified by looking at the
configuration of the field f in a small neighborhood around p. Here, a small
neighborhood is the fan of triangles incident in p. If the domain of ˙ is planar,
then function f is a height field, and we can visualize this concept by looking at the
horizontal plane through p. The neighborhood of p lies completely below or above
such a plane if p is a minimum or a maximum, respectively (see Fig. 1.12b and d).
It is split into two pieces if p is a regular vertex (see Fig. 1.12a), and it is split into
four or more pieces if p is a simple or multiple saddle, (see Fig. 1.12c). Thanks to
the linear interpolation, the number of intersections with the plane is at most one for
each triangle incident in p, i.e., at most one for each edge of the link of p (we recall
from Sect. 1.1 that the link contains the edges of incident triangles opposite to p).
Within the link, edges intersecting the plane are those having one vertex with higher
function value than f .p/ and the other vertex with lower function value than f .p/.
Such edges are called mixed edges. The number of mixed edges allows to classify
vertex p:

• If p has no mixed edges, then it is a minimum (if all its adjacent vertices have
higher function value than p), or a maximum (if all its adjacent vertices have
lower function value).

• If p has two mixed edges, then it is regular.
• Otherwise, p is a saddle. In this last case, the number of mixed edges is even and

equal to 2 C 2k (k � 1). Point p is said to be a saddle with multiplicity k (or
k-fold saddle).

Figure 1.12 shows a regular vertex (a), a minimum (b), a 1-fold saddle (c) and a
maximum (d), respectively. A k-fold saddle is called a simple saddle if k D 1 and
multiple saddle otherwise. A twofold saddle is also called a monkey saddle.

a b c d

Fig. 1.12 Situation of the link of a vertex with respect to the horizontal plane: (a) a regular vertex,
(b) a minimum, (c) a saddle, (d) a maximum

The number of intersections with the horizontal plane, that is the number of
mixed edges in the link of p, is used to associate a discrete index with p, as follows
[1, 2]:

i.p/ D 1 � 1

2
.#fmixed edges for pg/: (1.3)
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Discrete critical points are defined as points with index different from 0. In
particular, the index is equal to 1 for maxima and minima, while it can assume
an arbitrary negative integer value for saddles. For example, a simple saddle will
have index equal to �1, a monkey-saddle will have index equal to �2, and a k-fold
saddle will have index equal to �k. The discrete index is different from the classical
index (presented in Sect. 1.3), since a Morse function in the smooth case can have
only simple saddles, but Banchoff proved the following theorem [1, 2], that holds
for general elevation functions defined on polyhedral surfaces.

Theorem 1.2. Let f be a 2D piecewise-linear function on ˙ , such that f .v/ ¤
f .w/ for each pair of mutually adjacent vertices v and w (i.e., f is general). Then:

X

v vertex 2 ˙

i.v/ D �.˙/:

The only non-zero contributions to the summation are given by critical vertices,
as regular vertices have i.v/ D 0. Theorem 1.2 also includes the case of isolated
degenerate critical points, i.e., multiple saddles, that are not considered by Morse
theory. In the discrete case, if f is an elevation function on ˙ without multiple
saddles, then Theorem 1.2 is equivalent to Theorem 1.1 in two dimensions, and
states that the number of extrema minus the number of saddles is equal to �.˙/.
If f has multiple saddles, then each k-fold saddle can be unfolded into k simple
saddles (see Sect. 3.1), and the two theorems are again equivalent in the 2D case.

Banchoff also proved the validity of the previous results for general functions
defined over d -dimensional complexes, where the indicator function generalizes
the index defined in Eq. (1.3) [1].

1.5.2 Quasi-Morse-Smale Complexes

In the discrete case, it is not possible to define integral lines because the function
is not differentiable and the gradient is not defined. Algorithms to compute
(an approximation of) the Morse and Morse-Smale complexes try to simulate
differentiability on a discrete model by defining a discrete gradient in some way.
The desired properties for a structure, which approximates a Morse-Smale complex
in the discrete case, are formalized through the notion of a quasi-Morse-Smale
complex. It describes the combinatorial structure of the Morse Smale complex in
the smooth case, but its arcs and quadrangles (1- and 2-cells) may not be those of
maximal ascent and descent. The notion of a quasi-Morse-Smale complex in 2D and
3D has been introduced by Edelsbrunner et al. in [8, 9].

In 2D, a quasi-Morse-Smale complex is a two-dimensional cell complex � ,
in which the set of vertices (0-cells) can be partitioned into three sets Vmin,
Vsad and Vmax (corresponding to minima, saddles and maxima, respectively, of a
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Morse-Smale function f ) and the set of edges (1-cells) can be partitioned into two
sets A and B , such that:

1. edges in A have one endpoint in Vmin and one in Vsad ; edges in B have one
endpoint in Vsad and one in Vmax ;

2. each vertex p 2 Vsad belongs to four edges, which alternate between A and B in
a cyclic order around p;

3. all 2-cells of � are quadrangles, with vertices from Vmin, Vsad , Vmax, Vsad , in
this order, along their boundary.

Fig. 1.13 (a) Combinatorial
structure of a 2D Quasi-
Morse-Smale complex and
(b) the corresponding
decomposition with colored
quadrangles

In Fig. 1.13 an example of the combinatorial structure of a quasi-Morse-Smale
complex is shown. Vertices of the three sets Vmin, Vsad , and Vmax are depicted as
white dots, stars, and black dots, respectively. Bold lines represent edges in set A

while dotted lines represent edges in set B .
The approach to capture the combinatorial structure of a Morse-Smale complex

in 3D has been proposed in [8]. In 3D, a quasi-Morse-Smale complex is a three-
dimensional cell complex � , in which the set of vertices can be partitioned into
four sets Vmin, V1, V2 and Vmax (corresponding to minima, 1-saddles, 2-saddles and
maxima of a Morse-Smale function f ), the set of edges (1-cells) can be partitioned
into three sets R, S , and T and the set of 2-cells can be partitioned into two sets P

and Q, such that:

1. the edges from R, S , and T connect vertices from Vmin and V1, V1 and V2, and
V2 and Vmax , respectively;

2. 2-cells from P and Q are quadrangles with the nodes from Vmin, V1, V2, V1, and
V1, V2, Vmax, V2, in that order, respectively, around the boundary;

3. each 1-cell in S is in the boundary of four quadrangles, which in a cyclic order
alternate between P and Q.

1.6 Forman Theory

Forman theory [11] is a discrete counterpart of Morse theory, and its main purpose
is to transpose the results of Morse theory from a smooth to a combinatorial setting.
Forman theory can be introduced in terms of a discrete Morse function (also called



18 1 Background

a Forman function) defined on all cells of a cell complex � , or, equivalently, it
can be given in terms of a (negative) discrete gradient vector field (called Forman
gradient vector field) V defined on � [11]. We present here both approaches for
cell complexes in which each p-cell � in the boundary of a .p C 1/-cell � 0 appears
exactly once in the boundary of � 0. Regular grids and simplicial complexes satisfy
such a property.

In the first approach, a discrete function F , defined on all the cells (and not only
on the vertices) of a cell complex � is considered. Such a function F is called a
Forman function if for any p-cell � , all the .p � 1/-cells in the boundary of � have
a lower F value than � , and all the .p C 1/-cells in the co-boundary of � have a
higher F value than � , with at most one exception. A cell is critical if there is no
exception to this rule. Formally:

Definition 11. Let � be a cell complex. A function F W � ! R is a Forman
function if, for every p-cell � , both the following conditions are satisfied:

• the number of .p C 1/-cells � in the co-boundary of � , such that F.�/ � F.�/,
is at most 1,

• the number of .p � 1/-cells 	 in the boundary of � , such that F.	/ � F.�/, is at
most 1.

The above two numbers are not both equal to 1.

We observe that, unlike the smooth case, if F is a Forman function on � , then �F

is not necessarily a Forman function on � . Intuitively, critical cells of F are cells
where both numbers of Definition 11 are zero.

Definition 12. Let F be a Forman function on a d -dimensional cell complex � .
A p-cell � 2 � is a critical cell of index p if both the following conditions are
satisfied:

• for all .p C 1/-cells � in the co-boundary of � , F.�/ > F.�/,
• for all .p � 1/-cells 	 in the boundary of � , F.	/ < F.�/.

If � is a critical cell, then the index of � is the same as its dimension. In particular,
minima arise at vertices, and if the domain of � is a d -dimensional manifold
without boundary, then maxima arise at d -dimensional cells [11].
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a b

Fig. 1.14 (a) A Forman function F defined on a triangle mesh ˙ . Each simplex � is labeled
by the value of F at � . Function F has one minimum vertex (labeled 2), one maximum triangle
(labeled 20), one saddle edge (labeled 13). (b) The corresponding discrete gradient vector field
VF . An arrow � ! � is drawn when .�; �/ 2 VF . Arrows are of the form vertex-to-edge or
edge-to-triangle
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Figure 1.14a shows an example of a Forman function F defined on a 2D
simplicial complex. Each simplex is labeled by its function value. Vertex labeled
2 is critical (minimum), since function F has higher value on all edges incident to
it. Triangle 20 is critical (maximum), since function F has lower value on all edges
incident to it. Edge 13 is critical (saddle), since F has higher value on the incident
triangle 14, and lower values on its extreme vertices.

Before presenting the second approach to Forman theory, we must introduce the
notion of a discrete vector field. Intuitively, a discrete vector field is a collection of
arrows, connecting a p-cell of � to an incident .p C 1/-cell, such that each cell is a
head or a tail of at most one arrow. Critical cells are those cells that are neither the
head nor the tail of any arrow.

Definition 13. A discrete vector field V on a cell complex � is a collection of pairs
.�; �/, that we can denote as arrows � ! � , such that:

1. � is a p-cell, and � is a .p C 1/-cell of � ,
2. � is a face of � , and
3. each cell of � is in at most one pair of V .

Definition 14. A V-path is a sequence �1; �1; �2; �2; : : : ; �r ; �r of p-cells �i and
.p C 1/-cells �j , i; j D 1; ::; r , r � 1, such that .�i ; �i / 2 V , �iC1 is a face of �i ,
and �i ¤ �iC1.

A V-path with r > 1 is closed if �1 is a face of �r different from �r�1.

The arrows in Fig. 1.14b, i.e., v6 ! e5; v8 ! e7; v10 ! e9; e15 ! t14, are ele-
ments of a discrete vector field. Here, examples of V-paths are v10; e9; v8; e7; v6; e5

and e15; t14.

Definition 15. A discrete vector field V is called a discrete (Forman) gradient
vector field if and only if there are no closed V-paths in V .

Definition 16. A critical cell of V of index p is a p-cell � which does not appear
in any pair of V .

Note that the index of a critical cell is always equal to the dimension of the cell.
There is a correspondence between Forman functions and Forman gradient vector

fields [10]. Namely, for each Forman function F , a Forman gradient vector field VF

can be constructed. Conversely, for each Forman gradient vector field V there exists
a (non-unique) Forman function F such that the gradient field of F is V . Let us
explain this correspondence in more detail.

A Forman gradient vector field VF is obtained from a Forman function F by
noticing that non-critical cells come in pairs, and by drawing an arrow from a p-cell
� to a .pC1/-cell � (adding a pair .�; �/ to VF ) if � is a face of � and F.�/ � F.�/.
If F is a Forman function, then each cell of � is a head or a tail of at most one arrow,
and critical cells are those cells that are neither the head nor the tail of any arrow.
Thus, for any Forman function F , a corresponding discrete vector field VF can be
constructed, such that along each VF -path �1; �1; �2; �2; : : : ; �r ; �r , function F is
decreasing, i.e., F.�1/ � F.�1/ > F.�2/ � F.�2/ > : : : > F.�r/ � F.�r /. This
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implies that for such discrete vector field VF , there can be no closed VF -paths in � ,
i.e., that VF is a Forman gradient vector field. As in the smooth case, a (negative)
Forman gradient vector field VF of F at a p-cell � indicates the direction of a unique
.p C 1/-dimensional co-face � of � , in which F is decreasing.

In the example in Fig. 1.14b, a Forman gradient vector field VF of the For-
man function F in Fig. 1.14a is illustrated. The pairs of the gradient VF are
.6; 5/; .8; 7/; .10; 9/; .15; 14/. The critical elements are vertex 2, edge 13, and
triangle 20, since there is no arrow starting or ending at them.

Conversely, if a Forman gradient vector field V on � is given, then there is a
Forman function F such that the gradient field VF of F coincides with V [11].
Function F can be defined on each p-cell � of a cell complex through the iterative
application of the following rules:

1. if � is critical, then F.�/ D p,
2. if a pair .�; �/ 2 V exists, i.e., � ! � , then F.�/ D p C d.�/

2D
, where d.�/ is the

length of the longest V-path starting at � , and D is the maximum length of all
V-paths.

3. if a pair .	; �/ 2 V exists, i.e., 	 ! � , then F.�/ D F.	/,

In Fig. 1.15a, a Forman gradient vector field V is illustrated, and the length d.�/

for each cell � is indicated. In Fig. 1.15b, a Forman function F corresponding to V

is given. Here, D D 2.

Fig. 1.15 (a) A Forman
gradient vector field V .
Numbers indicate the length
d.�/ of the longest path
starting at � , for each
p-simplex � , p D 0; 1. (b)
Forman function F , such that
the gradient field VF of F is
equal to V

In the combinatorial setup of Forman theory, maximal V-paths correspond to the
separatrix lines of a Morse function f in the smooth case, directed downwards. We
call separatrix V-path connecting critical .i C 1/-cell � with critical i -cell � any V-
path �1; �1; �2; �2; : : : ; �r ; �r such that �1 is a face of � and � is a face of �r . V-paths
mentioned before on Fig. 1.14 are separatrix V-paths.
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In [11], the combinatorial counterpart of Theorem 1.1 has been demonstrated.

Theorem 1.3. Given a Forman function F defined on a cell complex � , then

�.� / D
dX

iD0

.�1/i ci

where ci denotes the number of critical cells of dimension i , also called the Morse
numbers of F .

The definitions introduced in Forman theory are a discrete analogue of the
definitions for smooth functions reviewed in Sect. 1.3. Critical points of smooth
Morse functions correspond to critical cells of Forman functions, involved in a
number of incoming and out-coming V-paths based on their index.

1.7 Summary

The main notion introduced in this chapter is the cell complex. Cell complexes
include regular grids and simplicial complexes used to model scalar fields in
the discrete case, as well as Morse and Morse-Smale complexes used to represent
the morphology of scalar fields and their domain in the smooth case. Moreover, we
have introduced the watershed transform, which is an alternative approach to Morse
theory in the smooth case.

We have also discussed different discrete approaches, which transpose the
concepts of Morse theory from a smooth to a discrete setting, i.e., the piecewise-
linear Morse theory by Banchoff and the discrete Morse theory by Forman.

These different perspectives, from the watershed transform, to the piecewise-
linear Morse theory, and to the discrete Morse theory, lead to different algorithms
for morphology computation, as discussed in the next chapters. Table 1.1 provides
an overview of the concepts presented in the various sections of this chapter.

Table 1.1 Summary of the concepts revised in Chap. 1

1.1 Some preliminary definitions Manifold, cell complex, k-skeleton, regular grid,
simplicial complex, primal and dual complexes

1.2 Models for scalar fields Scalar field, regular model and simplicial model

1.3 Morse theory and Morse complexes Morse function, critical point, integral line, ascend-
ing and descending Morse complexes, Morse-Smale
complex, Morse Incidence Graph (MIG)

1.4 Watershed transform in the smooth
case

Topographic distance, catchment basin

1.5 Piecewise-linear Morse theory Critical points for piecewise-linear functions, quasi-
Morse-Smale complexes

1.6 Forman theory Forman function, Forman gradient vector field
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Chapter 2
Morphology Computation Algorithms:
Generalities

In this chapter, we consider features common to all algorithms for morphology
computation. Such algorithms can be classified based on different criteria, that are
in general mutually orthogonal (see Sect. 2.1):

1. dimension of the input scalar field:
some methods are dimension-specific (in practice, either for 2D or for 3D scalar
fields), while other methods are dimension-independent.

2. input format:
methods may operate on simplicial models or on regular models; some methods
also require specific properties for the input scalar field.

3. output information:
some methods compute (a discrete approximation of) the ascending or descend-
ing Morse complex; other methods compute (a discrete approximation of) the
Morse-Smale complex.

4. format of the output information:
some methods provide a complete combinatorial description of the output
complex; many methods simply provide a classification of the 0-cells (vertices),
or of the d -cells (triangles or pixels for d D 2, tetrahedra or voxels for d D 3).

5. algorithmic approach:
different approaches come from different reference theories: Banchoff’s piece-
wise linear Morse theory, watershed transform in the discrete case, Forman’s
discrete Morse theory.

The basic component of morphology computation algorithms is the identification
of the critical points of the field. Section 2.2 is devoted to a treatment of the
techniques for computing critical points. Another general issue with morphology
computation algorithms is how to deal with the domain boundary and with regions
with same elevation (plateaus). We discuss how to deal with such issues in Sects. 2.3
and 2.4, respectively.

© The Author(s) 2014
L. Čomić et al., Morphological Modeling of Terrains and Volume Data,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4939-2149-2__2
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For more details on classifications of morphology computation algorithms, and
on computation of critical points, see [5, 8].

2.1 Classification of Morphology Computation Algorithms

In the following, we examine the various criteria which can be used for classifying
morphology computation algorithms.

2.1.1 Input Dimension, Format and Properties

Algorithms may have been designed for 2D scalar fields, 3D scalar fields, or they
may be dimension-independent. At the same time, they may have been designed for
scalar fields represented through regular grids or through simplicial models. Some
methods are even independent of the input format, in the sense that they can be
applied to both formats, with little change.

Algorithms working on regular grids may assume that field values are given at
the d -cells (pixels for d D 2, voxels for d D 3), or at the 0-cells (vertices) of the
grid. In the latter case, interpolating functions are used within higher-dimensional
cells. Algorithms for simplicial models (triangle meshes in 2D, tetrahedral meshes in
3D) always assume that field values are given at the vertices, and linear interpolants
are used within higher-dimensional simplices.

In several algorithms, the computation focuses on cells of a certain dimension
and is based on navigation among them through adjacency relations. If the compu-
tation focuses on 0-cells (vertices), this corresponds to considering the primal graph
of the input model (see Sect. 1.1.4). If the computation is focused on d -cells, this
corresponds to considering the dual graph of the input model.

Algorithms for stepped regular models consider the dual graph. Here, the nodes
are pixels in 2D, and the arcs are defined according to some connectivity model (4-
or 8-connectivity in 2D, see Sect. 1.2 and Fig. 1.5). Algorithms for regular models
with interpolating functions work on the primal graph.

Algorithms for simplicial models work on either the primal or the dual graph,
depending on the approach (for example, boundary-based methods use the primal
graph, and region-growing methods use the dual graph, see Sect. 2.1.3).

Some methods for simplicial complexes require that the input scalar field is
general, i.e., all pairs of adjacent vertices have distinct function values. Intuitively,
this means that flat edges are not allowed.

2.1.2 Output Information and Its Format

Algorithms may produce a (descending or ascending) Morse complex, or a Morse-
Smale complex. In both cases, the output is a cell complex, and thus it consists of
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cells of all dimensions, and of combinatorial relations of adjacency and incidence
between pairs of cells. In practice, such output cell complex can be represented in
the form of:

• Just the d -cells of the output complex, represented through a classification of the
d -cells (triangles or pixels in 2D, tetrahedra or voxels in 3D) of the input scalar
field model, where each d -cell is labeled as belonging to a specific d -cell of the
Morse or Morse-Smale complex.

• Just the d -cells of the output complex, represented through a classification of
the vertices of the input scalar field model, where each vertex is labeled as
belonging to a specific d -cell of the Morse or Morse-Smale complex. A more
detailed classification may assign each vertex to an i -dimensional cell of the
output complex, where i D 0; : : : ; d .

• The skeleton (1-skeleton consisting of points and lines in 2D, 1- and 2-
skeletons consisting of points, lines and surfaces in 3D) of the Morse or Morse-
Smale complex, with their combinatorial relations. Such skeleton(s) define the
boundaries of the d -cells of the output complex.

• A complete representation of the Morse or Morse-Smale complex, i.e., its cells
of all three dimensions in 2D or four in 3D, and their combinatorial relations.
This corresponds to the Morse incidence graph (see Sect. 1.3), plus geometric
information about cells.

Most methods that produce Morse complexes are completely symmetric in
the ascending and in the descending case: the ascending Morse complex can be
computed as the descending Morse complex by considering the field �f having the
opposite function values on the same underlying cell complex. Thus, the two Morse
complexes are produced in the same format.

Forman-based algorithms produce the ascending and the descending Morse
complexes represented in different formats. Descending cells associated with
maxima are expressed as collections of d -cells of the primal complex. Ascending
cells associated with minima are expressed in terms of d -cells of the dual complex,
i.e., they are collections of vertices of the primal complex.

An algorithm has been presented in [7], which constructs the Morse incidence
graph (see Sect. 1.3) in 2D and 3D, starting from a classification of triangles and
tetrahedra, respectively.

2.1.3 Algorithmic Approach

Based on the approach they use, the various algorithms can be classified as:

• Boundary-based methods, which build the lower-dimensional skeletons of the
Morse-Smale complex (boundary lines of 2-cells in 2D, and boundary lines and
surfaces of 3-cells in 3D).
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• Region-growing methods, which build the d -cells (called regions) of the descend-
ing (ascending) Morse complex, by progressively growing each of them, starting
from its seed maximum (minimum).

• Watershed methods, originally developed for grey-level images, which compute
the ascending Morse complex based on the idea of simulating the diffusion of
water.

• Forman-based methods, which previously define a Forman gradient from the
data.

Boundary-based algorithms build the lower-dimensional skeletons of the Morse-
Smale complex. The input can be a regular model or a simplicial model of the
scalar field. The 1-skeleton is extracted by computing the critical points and then
tracing the integral lines (or their approximations) starting from saddle points and
converging to minima and maxima. For 3D scalar fields, the 2-skeleton is also
built. Boundary-based algorithms can generate the skeleton(s) of the descending (or
ascending) Morse complex by tracing only integral lines from saddles to minima (or
maxima).

Region-growing algorithms compute an approximation of the descending
(ascending) Morse complex by growing the d -cells, called regions, corresponding
to the maxima (minima), of the scalar field. Such regions are built as collections of
d -cells (triangles in 2D, tetrahedra in 3D) of the scalar field model, by classifying
triangles, or tetrahedra. An approximation of the Morse-Smale complex can be
obtained as the intersection of the descending and ascending Morse complexes. The
input is in general a simplicial model of the scalar field. However, some watershed
methods, working on regular models, actually operate in a region-growing fashion.

Watershed algorithms typically work on regular grids considered as stepped
models. They generate the ascending Morse complex by labeling each d -cell �

(pixel or voxel) with the minimum p, such that � belongs to the ascending d -cell
of p. They can generate the descending Morse complex by considering scalar field
�f . Watershed methods based on simulated immersion may label some d -cells
as belonging to the skeleton of the ascending Morse complex (these are the so-
called watershed cells). They are also able to identify the specific element of the
skeleton, even if they do not do that. Watershed algorithms can work on simplicial
models as well, by considering the primal graph. In this case, they produce a vertex
classification. A vertex classification is produced also by the 3D region-growing
algorithm in [15].

Forman-based algorithms construct (either directly, or by first defining a Forman
function F ) a Forman gradient vector field V and its critical cells starting from
a scalar field f . The Forman-based algorithm in [14] can also be classified as
boundary-based, as it approximates the 1-skeleton of the Morse-Smale complex by
gradient lines connecting the critical cells of F .

Boundary-based and region-growing algorithms are reviewed in Chap. 3. Water-
shed and Forman-based approaches are reviewed in Chaps. 4 and 5, respectively.
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2.2 Detection of Critical Points

Most algorithms perform the identification of critical points in the input scalar
field as a pre-processing step. Some algorithms, specifically boundary-based ones,
find critical points of all types (maxima, minima, saddles). Not all algorithms for
3D morphology computation distinguish between 1- and 2-saddles (e.g., [13]),
and not all algorithms recognize multiple saddles composed of 1- and 2-saddles
(e.g., [6, 28]).

Other approaches find critical points of just one type. For instance, region-
growing algorithms find just minima when computing the ascending Morse com-
plex, and maxima when computing the descending Morse complex. They do not
explicitly extract saddle points.

Some algorithms do not compute critical points in advance, but they recognize
them during the computation. This happens, for instance, in the watershed approach
by simulated immersion.

In methods which do not detect saddle points, saddles can be found as a
post-processing step, by computing the overlay of the descending and ascending
complexes. Let us consider the 2D case. If we have a Morse-Smale function, the
1-cells of the descending complex must intersect transversally the 1-cells of the
ascending complex, and the saddles are the intersection points. With non-Morse-
Smale functions, the intersection of the 1-cells of the descending complex with those
of the ascending complex can include an edge or a chain of edges, and, thus, it is
not feasible to detect saddles exactly in this way.

2.2.1 Detecting Critical Points in a Simplicial Model

In this section, we analyze how critical points can be computed on a 2D or 3D
simplicial model. Since a simplicial model uses linear interpolants, critical points
can only occur at the vertices of the underlying triangle or tetrahedral mesh ˙ .

First of all, we define the upper/lower link, and the upper/lower star of a vertex v
within a simplicial complex ˙ . We recall that the link and star have been defined in
Sect. 1.1.2.

• The upper star of v is the subset of the star of v containing those simplices � such
that all vertices of � different from v have a higher function value than f .v/.

• The upper link of v is the subset of the link of v containing those simplices �

such that all vertices of � have a higher function value than f .v/.
• The lower star and the lower link of v are defined in a completely symmetric

way.

We denote the upper link and the lower link as LkC.v/ and Lk�.v/, respectively.
A first, and widely used, way to identify critical points uses the definition of

critical points on piecewise-linear functions due to Banchoff [4,20] and discussed in
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Sect. 1.5. Details for the 2D and 3D cases can be found in the works by Edelsbrunner
et al. [11] and by Takahashi et al. [28], respectively. The following procedure is used
to classify a vertex p:

1. Take the link Lk.p/ of vertex p, and decompose it into:

• simplices (vertices and edges in 2D; vertices, edges and triangles in 3D)
belonging to the upper link LkC.p/ of p (see Fig. 2.1a for the 2D case).

• simplices belonging to the lower link Lk�.p/ of p (see Fig. 2.1b for the 2D
case).

Note that, in the 2D case, other edges, which belong neither to the upper nor to
the lower link (see Fig. 2.1c) are the mixed edges defined in Sect. 1.5.

Fig. 2.1 Bold lines and full dots indicate edges and vertices composing (a) the lower link of vertex
5, (b) its upper link, and (c) the set of its mixed edges of the vertex with field value equal to 5

2. Find the connected components of the upper link of p and of the lower link of p,
and count them. Let 
C be the number of components of LkC.p/, and 
� be
the number of components of Lk�.p/.

3. Now, classify p:

• if 
C D 0 (i.e., the upper link is empty), then p is a maximum;
• if 
� D 0 (i.e., the lower link is empty), then p is a minimum;
• if 
C D 
� D 1, then p is regular;
• otherwise, p is a saddle.

For a 2D complex, in the last case, i.e., when p is a saddle, we always have 
C D

�, and the multiplicity of the saddle can be computed as k D .
C�1/ D .
��1/.
That is, p is a simple saddle (k D 1) if both the upper and the lower link of p have
two connected components. It is a multiple saddle otherwise.

For a 3D complex, the type of saddle (i.e., 1-saddle or 2-saddle) can be detected.
If 
C D 1 and 
� D 2, then p is a simple 1-saddle; if 
C D 2 and 
� D 1, then
p is a simple 2-saddle. In order to identify multiple saddles, Takahashi et al. [28]
count the multiplicity of multiple saddles as follows. If 
C D k C 1, then p is a
1-saddle with multiplicity k. If 
� D kC1, then p is a 2-saddle with multiplicity k.

In 2D, the time complexity of vertex classification, for a triangulation ˙ with
m vertices, is in O.m/. The link of a vertex is a radially sorted sequence of edges
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and vertices. The connected components of the upper and lower links are found by
scanning the radially sorted list and noting the sign changes. Summing up over all m

vertices examined, the total number of neighbor pairs is equal to twice the number
of edges of ˙ , which is in O.m/. In 3D, for a tetrahedralization ˙ with m vertices,
the time complexity is in O.m2/. The link of p is homeomorphic to a spherical
surface. Finding the connected components of the upper and lower links requires a
graph traversal process, with a linear time complexity in the number of edges of ˙ ,
which can be in O.m2/ in the worst case.

The classical approach to the extraction of critical points, described above, counts
the connected components of the upper and lower links of a vertex. However, other
approaches have also been proposed.

In Bajaj et al. [3] the classification of critical points in 2D is performed based
on vectors normal at the triangles incident in the vertex. Each triangle t has a unit

normal vector
!
nt which is normal to the plane of the triangle and points upwards,

i.e.,
!
nt D .at ; bt ; ct / with ct > 0. Let us consider the convex hull of all points .at ; bt /

corresponding to the triangles in the star of a vertex p. Vertex p is regular or critical
depending on whether the convex hull does not contain or contains the origin .0; 0/.
Thus, according to [3], a point is critical if the normal space of the adjacent triangles
includes vector .0; 0; 1/.

A more detailed method for 3D scalar fields has been proposed by Edelsbrunner
et al. [10]. Their approach is based on (the reduced Betti numbers of) the lower link
of a vertex p.

The link Lk.p/ of p is a discrete analogue of a sphere around p. Point p is
classified based on the reduced Betti numbers Q̌�1, Q̌

0, Q̌
1, and Q̌

2 of its lower link
Lk�.p/. Informally, the Betti numbers ˇ0, ˇ1, and ˇ2 of a simplicial complex
˙ indicate the number of connected components, the number of through holes
(tunnels), and the number of voids of the domain of ˙ . The reduced Betti numbers
Q̌�1, Q̌

0, Q̌
1, and Q̌

2 are the same as Betti numbers, except that Q̌
0 D ˇ0 � 1 for

non-empty complexes, and Q̌�1 D 1 for empty complexes. The same classification
of critical points can be obtained by using Betti numbers, but without the symmetry
in the classification of minima and maxima.

The classification of a point p is performed as follows:

• if all reduced Betti numbers of the lower link of p are zero, then p is regular;
• if Q̌�1 D 1 (Lk�.p/ is empty), and all other reduced Betti numbers are zero,

then p is a minimum;
• if Q̌

2 D 1 (Lk�.p/ is equal to Lk.p/), and all other reduced Betti numbers are
zero, then p is a maximum;

• if Q̌
0 D 1 (Lk�.p/ has two connected components), and all other reduced Betti

numbers are zero, then p is a simple 1-saddle;
• if Q̌

1 D 1 (Lk�.p/ is a cylinder), and all other reduced Betti numbers are zero,
then p is a simple 2-saddle;

• otherwise (i.e., more than one reduced Betti number is different from 0, and/or
some of them is larger than 1), then p is a multiple saddle.
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A multiple saddle p satisfies Q̌�1 D Q̌
2 D 0 and Q̌

0C Q̌
1 � 2. Point p is classified

as a multiple saddle, composed of Q̌
0 1-saddles, and Q̌

1 2-saddles. It has been shown
that p can be unfolded into Q̌

0 simple 1-saddles, and Q̌
1 simple 2-saddles.

2.2.2 Detecting Critical Points in a Regular Grid

For a regular grid, a key issue is the type of interpolation technique used. If the
grid is considered as a stepped model, then we can use a characterization of critical
points based on counting the connected components of the upper and lower link,
as described in Sect. 2.2.1 for simplicial complexes. For example, in the case of
a square grid, the field value at a pixel p is compared to the field values of
its neighbors, defined based either on the 4- or 8-connectivity model. We have
a fixed number of neighbors and, thus, a fixed set of cases. Note that, in case
of a 2D grid with 4-connectivity, all saddles will be simple. These approaches
[2, 13, 21, 22, 29, 32] are rooted in digital geometry and have been extensively used
in image processing [16].

If the regular grid is considered to have field values located at its vertices, then
another approach, that we call an analytic approach, is used. There is no attempt
here at simulating the concept of critical point in the discrete case, but the general
idea is that of fitting an interpolating function on the vertices of the grid (at which
the field values are known) [2, 24, 25, 30, 31, 33]. The various algorithms differ
in the function they use. The selected function usually preserves critical points
located at grid vertices, but it may introduce new critical points located inside
higher-dimensional cells. Moreover, it is not always globally continuous. Since
the interpolating function has a known equation, its critical points can be found
analytically. Sometimes they are computed through numerical methods.

The method proposed in [24, 25] uses a bilinear C 0-differentiable interpolating
function over a 2D grid, which does not introduce additional minima or maxima,
while it may introduce additional saddles inside cells. A grid point p is classified
by considering only the elevation of its 4-adjacent neighbors, while a 2-cell, which
contains a saddle, is detected by considering the elevation of its four vertices.

In [32], a 3D grid is considered, and a tri-linear interpolating function in each
cubic cell is used. In this case also, there may be saddles inside the cubic cells and
on their boundaries. The algorithm does not distinguish between 1-saddles and 2-
saddles.

Other approaches for 2D or 3D grids [25] use bi-quadratic functions, which
provide a globally discontinuous approximation, but guarantee that critical points
are constrained to lie at grid vertices. A grid point p is classified based on the
characteristics of the functions inside the d -cells incident in p (e.g., in 2D, the
function inside a 2-cell can be elliptic, parabolic, or hyperbolic, and a fixed set of
cases may occur for p, which are formalized through specific rules).
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2.3 Handling the Domain Boundary

A special case in the detection and classification of critical points is represented
by the boundary of the domain of the scalar field. Boundary vertices do not have a
complete link (homeomorphic to a circle in 2D and to a spherical surface in 3D),
but they have an incomplete one (homeomorphic to a segment in 2D and to a disc
in 3D). A similar problem arises with boundary pixels and voxels in regular stepped
models.

Some methods assume that the domain of the scalar field is a manifold without
boundary (e.g., [10]), and, thus, there are no boundary points. However, in most real
cases, the domain of a scalar field has a boundary, and thus we must deal with this
special case.

The boundary-based methods by Takahashi et al. in 2D [27] and in 3D [28]
introduce a virtual minimum (or maximum) which is considered to be adjacent to
all boundary vertices of the given simplicial model. This solution, however, causes a
non-symmetric treatment of minima and maxima lying on the boundary, depending
on the type (minimum or maximum) of the virtual extremum introduced.

Another solution consists of mirroring the function values of adjacent grid points
across the boundary (as, for instance, in [13]).

2.4 Presence of Plateaus

Real data often present connected components of vertices (or d -cells in a stepped
regular model) all having the same field value. Having in mind the case of a 2D
scalar field representing a terrain, these configurations are called plateaus, and an
edge connecting two vertices with equal field value is called a flat edge.

Different solutions are used:

• the notion of a critical point is replaced with that of a critical area, and algorithms
use ad-hoc solutions to deal with plateaus (e.g., watershed algorithms consider
regional minima and other plateaus [18, 19, 23]);

• data are perturbed in a preprocessing step, in order to eliminate flat edges [9,12].

The first solution implies that connected components of vertices with equal field
value (and, thus, of higher-dimensional cells with constant interpolating function)
must be identified, classified, and consistently handled. For instance, watershed
through simulated immersion [26] can easily identify and treat plateaus during the
flooding process. Region-growing methods can identify plateaus which are minima
and maxima, and grow regions from them. For plateaus that are not minima or
maxima, it is necessary to artificially define one or more entering and/or exiting
point [1].

The first solution is very difficult to implement for boundary-based methods,
because they should follow lines of steepest slope, which is intrinsically not defined
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in a plateau. Even in approaches that can be easily adapted to deal with plateaus,
the conventions used to process them are somehow arbitrary (especially for plateaus
that are not minima or maxima), and may lead to quite different results (as shown
in Sect. 7.4.2).

The second solution (i.e., data perturbation) can be achieved by adding random
noise to field values, but this introduces many new critical points, which lead to
spurious regions in the computed Morse complexes. Thus, a post-processing step is
then required to merge such spurious regions.

Another way to perturb data consists of introducing a conventional order among
two points with equal function value, in order to decide that one of them is “above”
the other one. For instance, a lexicographic order on the spatial coordinates of points
can be used [12]. This has the drawback that a regional minimum (or maximum)
may give rise to more minima (or maxima), depending on the relative position of
points composing it. Again, a post-processing stage is required to merge regions
associated with different minima (or maxima) belonging to the same plateau.

Recently, an algorithm for eliminating flat edges from a 2D scalar field in a
morphologically consistent way has been proposed by Magillo et al. [17], which
represents a valid alternative solution as it does not introduce new critical points.
Experiments presented in [17] show that the similarity between the results of
different approaches on the same data increases after using such a method as a
preprocessing step.

The method is described for terrains (height fields) although it applies to 2D
scalar fields in general. It is based on the observation that changing the elevation of
a vertex slightly (i.e., of a smaller amount than the minimum elevation difference
between v and its adjacent vertices) is sufficient to eliminate flat edges incident
in v (by giving a slope to them), while it does not change the uphill or downhill
orientation of other edges incident in v.

Plateaus are progressively reduced and eventually eliminated by iteratively
changing the elevation of a vertex v lying on the boundary of a plateau. A vertex
v is a candidate for this task if either all flat edges incident in v are consecutive
around v (the elimination of v does not change the topology of the plateau), or has
exactly two incident flat edges (the elimination of v from the plateau either removes
a hole or splits the plateau into two). These situations are illustrated in Fig. 2.2.

The highest priority is given to moves which do not change the topology of
plateaus, and make v a regular vertex. Such moves are sufficient to eliminate
plateaus without holes which are maxima, minima, or regular, or act as simple
saddles. Other plateaus need the application of moves where v becomes a saddle, or
the topology of the plateau changes. The priority scheme gives preference to cases
in which v becomes a saddle with low multiplicity and/or the topology of plateau
does not change.

A plateau which was a maximum or minimum gives rise to a set of regular
vertices plus a single maximum or minimum vertex, plus as many simple saddles as
holes in the original plateau. A regular plateau gives rise to a set or regular vertices.
In other cases, a plateau gives rise to a set or regular vertices plus a number of saddle
vertices, whose total multiplicity depends on the total number of terrain portions
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around the original plateau having an elevation above/below the plateau itself, in
the original configuration.

v2

v1

v3

Fig. 2.2 A plateau (formed by bold edges and shaded triangles) and candidate vertices for
elimination. Black circles denote vertices, like v1 , which do not change the topology of the plateau.
Black squares denote vertices, like v2 , which remove a hole from the plateau. White squares denote
vertices, like v3, which split the plateau
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Chapter 3
Boundary-Based and Region-Growing
Algorithms

This chapter describes two approaches to morphology computation which lead
to dimension-specific algorithms: the boundary-based and the region-growing
approach. Both approaches have been developed in the context of geographic
information systems for 2D scalar fields, intended as height fields representing
terrains. In this context, ascending (descending) 2-cells of minima (maxima)
correspond to basins (mountains) associated with pits (peaks) of the terrain, and
separatrix lines bounding them correspond to ridge (valley) lines. Later, some
algorithms were extended to 3D scalar fields, which gained attention in geographic
information systems to represent, for instance, atmospheric or geological data, and
in scientific data visualization and analysis.

The first approaches developed for height fields used the idea of tracing ridge
and valley lines on the terrain. Thus, they used a boundary-based approach. Such
algorithms were developed either for regular grids or for simplicial models. Later,
region-growing methods were developed for simplicial terrain models, based on the
idea of growing a basin or a mountain, starting from a seed minimum (pit) or from
a maximum (peak), respectively.

Unlike watershed and Forman-based approaches, which are dimension-indepen-
dent, both boundary-based and region-growing algorithms are dimension-specific,
and they have been designed either for 2D scalar fields or for 3D scalar fields.

In Sects. 3.1 and 3.2, we review boundary-based and region-growing algorithms,
respectively, by referring mainly to 2D scalar fields.
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3.1 Boundary-Based Algorithms

Boundary-based algorithms compute an approximation of the Morse-Smale com-
plex by computing its 1-skeleton, i.e., an approximation of the separatrix lines
connecting critical points of the input scalar field. In 3D, the 2-skeleton, composed
of surface patches, is also generated.

All boundary-based methods start by identifying the critical points (minima,
saddles and maxima). Then, they extract integral lines by starting from saddles and
following (an approximation of) the direction of steepest ascent/descent, until they
reach a maximum/minimum.

Boundary-based algorithms exist for simplicial models (triangle meshes in 2D,
tetrahedral meshes in 3D) and for regular models (square grids). We review the two
cases in the following subsections. Methods reviewed in this section are summarized
in Table 3.1.

3.1.1 Boundary-Based Methods on Simplicial Models

The input of these algorithms is a triangle or tetrahedral mesh ˙ with manifold
domain and field values given at its vertices.

Algorithms use the primal graph of ˙ , i.e., the graph whose nodes and arcs
correspond to the vertices and edges of ˙ , respectively. They extract first the critical
points of all types, and then integral lines by starting from saddles. In most methods
[2, 12, 21], extracted lines are constrained to follow the edges of the triangle mesh.
In [3, 4, 17], the lines are also allowed to traverse the interior of triangles.

In 2D, the output is the 1-skeleton of the Morse-Smale complex. This is a graph
where nodes are the critical points (each node is also a vertex of ˙) and arcs are

Table 3.1 Summary of reviewed boundary-based algorithms

Algorithm Input Path tracing

Takahashi et al. [21] 2D Simplicial (3D
extension in [20])

Based on elevation difference,
follow edges

Bajaj and Shikore [2] 2D Simplicial Based on elevation difference,
follow edges

Edelsbrunner et al. [12] 2D Simplicial Based on slope, follow edges

Bremer et al. [3],Pascucci [17] 2D Simplicial Based on slope, split triangles

Edelsbrunner et al. [10, 11] 3D Simplicial Based on elevation difference,
follow edges and triangles

Bajaj et al. [1] 2D / 3D Regular Bi- and tri-cubic interpolation

Schneider [18] 2D Regular Bi-linear interpolation

Schneider and Wood [19] 2D Regular Bi-quadratic interpolation

The output of all algorithms is the 1-skeleton of the Morse-Smale complex
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separatrix lines, which are described as polylines formed by chains of triangle edges
(or also by segments crossing the triangles in the output of some methods).

In 3D, the output is the 1-skeleton as above (where separatrix lines are composed
of edges of ˙), and the 2-skeleton where each separating surface is a collection of
triangles from ˙ .

The cell complex, whose skeleton is generated by boundary-based algorithms,
may or may not satisfy the conditions of a quasi-Morse-Smale complex. Indeed,
not all 2D algorithms guarantee that the regions bounded by the 1-skeleton are
quadrangles with alternated saddle-minimum-saddle-maximum on their boundaries,
and that all saddles are connected to two minima and two maxima. Moreover, the
resulting 2-cells may not be uniformly two-dimensional (they may have dangling
edges). Similar problems exist in the 3D case.

3.1.1.1 The Algorithm by Takahashi et al.

The boundary-based algorithm for triangle meshes by Takahashi et al. [21] consists
of three main steps:

1. extraction and classification of critical points;
2. unfolding of multiple saddles;
3. tracing of separatrix lines.

In Step 1, the critical points are extracted and classified as maxima, minima and
saddles, through Banchoff’s method (as described in Sect. 2.2). In each connected
component of the upper link of a vertex p, only the vertex with highest elevation
is retained. Symmetrically, in each connected component of the lower link of p,
only the vertex with lowest elevation is retained. In this way, a reduced list of the
neighbors of p is obtained, that will be used for further processing in the next stages
of the algorithm. The elements of such a reduced list are called the representative
neighbors of p.
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Fig. 3.1 Unfolding a two-fold saddle s, having initially six representative neighbors
p1; q1; p2; q2; p3; q3, where each pi has a larger field value than s and each qi has a smaller field
value. A copy of s is created which has four representative neighbors of s (namely q2; p3; q3; p1)
and is a simple saddle. Point s looses two representative neighbors (here p3; q3), and its multiplicity
decreases to 1 (it becomes a simple saddle)
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In Step 2, each multiple saddle is decomposed into a number of simple saddles.
This operation is done in order to guarantee that exactly four separatrix lines (two
ridges and two valleys) intersect at a saddle point, which is one of the properties of
a quasi-Morse-Smale complex.

The procedure to unfold multiple saddles decomposes a k-fold saddle s into
k simple saddles. The algorithm iteratively takes four consecutive representative
neighbors of s, creates with them a copy of s which is a simple saddle, and deletes
two representative neighbors from the original instance of s, thus decreasing its
multiplicity. This idea is illustrated in Fig. 3.1.

More precisely, given a k-fold saddle s, the algorithm operates as follows:

• Set h D k;
• Let p1; q1; : : : ; phC1; qhC1 be the current (circular) list of representative neigh-

bors of s, where points pi and qi belong to the upper and lower link of s,
respectively;

• while h > 1, do the following:

1. take elements qh; phC1; qhC1; p1 from the list;
2. make a copy of s, mark it as a simple saddle, and set the list of its

representative neighbors as qh; phC1; qhC1; p1.
3. eliminate elements phC1; qhC1 from the neighbor list of s;
4. decrease the value of h to h � 1;

Now, all saddles are simple. In Step 3 of the main algorithm, the 1-skeleton of
the Morse-Smale complex is constructed. Starting from each (simple) saddle p,
four lines are traced in a greedy manner along the edges of the triangle mesh until a
minimum or a maximum is reached, each time choosing a highest (lowest) neighbor
of the current point. More precisely, for each saddle point p:

1. retrieve the four representative neighbors of p;
2. trace the ridge lines from the two upper representative neighbors up to maxima,

choosing at each step the neighbor of highest elevation;
3. trace the valley lines from the two lower representative neighbors down to

minima, choosing at each step the neighbor of lowest elevation.

Note that the same portion of a (descending or ascending) path can be traced
several times, because in the discrete case two paths going in the same direction
may join (see Fig. 3.4b). As an optimization, we can avoiding tracing a path when
we reach a vertex from which another path in the same direction has already been
traced.

The complexity of Step 1 of the algorithm (identifying the critical points) is
in O.m/ for a triangle mesh with m vertices. Step 2 (unfolding multiple saddles)
requires a time proportional to the total multiplicity over all saddles. This is still in
O.m/ because the multiplicity of a saddle vertex cannot exceed the number of its
incident edges. Step 3 (tracing integral lines) is also in O.m/ because the total length
of traced (descending or ascending) lines is bounded by the number of edges in the
input triangle mesh. This holds under the hypothesis that the algorithm is optimized
as explained above.
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The algorithm proposed in [2] is similar to the just described one [21]. The
difference is that in [2] the classification of critical points is formulated based on
vectors normal at the triangles incident in the point (see Sect. 2.2).

3.1.1.2 The Algorithm by Edelsbrunner et al.

The algorithm for triangle meshes by Edelsbrunner et al. in [12] differs from the one
in [21] (described in the previous subsection) in the following parts:

• A different criterion is used to define the representative neighbors of a vertex
(based on edge slope rather than on difference in field value).

• Unfolding multiple saddles is performed after path tracing. Thus, kC1 ascending
lines and k C 1 descending lines are traced from each k-saddle.

• A final stage is performed in order to improve the slope of traced separatrix lines.
This is done through an operation called “handle slide”.

Thus, the main steps of the method are:

1. extraction and classification of critical points;
2. tracing of separatrix lines;
3. unfolding multiple saddles;
4. modification of the resulting 1-skeleton through handle slides.

In Step 1, each vertex p of the triangle mesh ˙ is classified as regular, minimum,
maximum or saddle according to Banchoff’s method, as explained in Sect. 2.2.
For each connected component of the upper and of the lower link of p, only one
representative neighbor is retained, which is defined as the one such that the edge
connecting it to p has the maximum slope (whereas [21] retains the one having
maximum elevation difference with p).

In Step 2 of the algorithm, starting from each k-fold saddle, k C 1 ascending and
k C 1 descending paths are traced along the edges of the triangle mesh, each time
choosing an edge of the steepest ascending or descending slope.

The path tracing algorithms in [12,21] are similar. The difference is that, in [21],
at every vertex, the neighboring vertex with highest elevation is chosen, while in
[12], at every vertex, the steepest edge is chosen.

In addition, an elaborate book-keeping procedure is performed to guarantee that
two ascending (descending) paths do not split after they have merged, and that
there is no intersection of an ascending and a descending path except at a saddle
that started them both. It consists of concatenating and duplicating the paths when
needed.

The procedure used to unfold multiple saddles in Step 3 has the following
difference from the one in [21]. In [21], each step takes a k-fold saddle and
decomposes it into a simple saddle and a .k �1/-fold saddle, where the latter will be
further decomposed if necessary. In [12], each step decomposes a k-fold saddle into
two saddles, which have total multiplicity equal to k, and both of them may not be
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simple. The procedure will iterate on both, if necessary. When duplicating a saddle
point s, the algorithm duplicates ascending and descending paths starting from s.

Because the paths are constructed in a greedy manner, by choosing the steepest
edge at each vertex, they are not necessarily the ones of steepest ascent or descent.
Thus, the result of the previous stages is further modified in Step 4 by using a
sequence of local transformations, called handle slides. The quadrangular regions
are processed in the order of decreasing elevation (where the elevation of a region
is the elevation of its lower saddle). A handle slide transforms one quasi-Morse-
Smale complex into another, by rerouting the paths within an octagon determined
by a quadrangular region R D abcd and two of its adjacent regions, as illustrated
in Fig. 3.2.

Fig. 3.2 Handle slide:
rerouting of the paths in the
octagon AdaDCbcB . (a)
Before and (b) after the
operation

bc

A a Dd A d a D

B C B c b C
a b

The time complexity of the algorithm is in O.m/ for Steps 1, 2 and 3, where
m is the number of vertices in the input triangle mesh, according to the same
considerations as the algorithm in [21]. The complexity of Step 4 (the number of
handle slides) is evaluated in [12] as linear in the number of crossings of separatrix
lines between the initial quasi-Morse-Smale complex and the final complex.

The approach in [12] has been extended to computing a quasi-Morse-Smale
complex for a three-dimensional scalar field [11]. The resulting algorithm is
described in Sect. 3.1.1.4.

3.1.1.3 The Algorithm by Bremer et al.

The algorithm for triangle meshes fields proposed by Bremer et al. in [4] is similar,
in its overall structure, to the one in [21]. The difference is that integral lines traced
from saddle points do not necessarily follow the edges of the triangle mesh, but they
can traverse the interior of triangles. Thus, they are not constrained to the edges
of the triangle mesh, but are computed along the actual paths of steepest ascent
(descent).
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The main steps of the algorithms are:

1. extraction and classification of critical points;
2. unfolding of multiple saddles;
3. tracing of separatrix lines.

The first two steps are performed in a similar way as in [21] (see Sect. 3.1.1.1).
We describe now Step 3.

Saddle points are sorted according to the elevation. Two ascending (descending)
paths are computed from each saddle, starting from the lowest (highest) saddle p,
until they reach a minimum (maximum). The magnitude of the gradient is computed
for each edge and for each triangle in the star of p, and the descending (ascending)
path from p is continued in the direction where the magnitude of the gradient is
maximal. Thus, it may continue either along an existing edge or across a triangle. In
the latter case, the triangle is split.

Similar criterion for the continuation of a path is given, when the current path
vertex is on the edge of the triangle mesh. In this case, the gradient along the edge,
and across the two adjacent triangles, is compared.

If the steepest slope happens to be at an edge, then the edge chosen in [3] is the
same as the one chosen in [12]. But, differently from [12], here the path follows
the actual direction of steepest ascent or descent, by going across triangles when
necessary.

The ascending paths are computed in a similar way, by considering the descend-
ing paths of the function �f .

The details of the computation of the paths of steepest ascent (descent) are
described by Pascucci et al. in [17].

The time complexity of Steps 1 and 2 is in O.m/ as in [21]. The complexity of
Step 3 is proportional to the total number of segments drawn inside triangles. Note
that more segments (all parallel to the unique direction of steepest slope) can be
drawn in each triangle t , arriving at t from different points. De Berg et al. [7,8] have
shown that the complexity of the river network on a triangulated terrain can be up
to O.m2/ in the worst case, but it is in O.m/ in real cases. Thus, the overall time
complexity is in O.m/ in practical cases.

Although more precise, tracing separatrix lines inside triangles increases the
computational complexity. De Berg et al. [9] compare various practical methods
that trace separatrix lines only along edges, with the exact one tracing separatrix
lines inside triangles as well. They also present a hybrid approach which tries to
balance computational time and precision.

3.1.1.4 The Algorithm for 3D Scalar Fields by Edelsbrunner et al.

The algorithm proposed by Edelsbrunner et al. in [11] for tetrahedral meshes,
computes the 1- and 2-cells which bound the 3-cells in the Morse-Smale complex.
The extracted complex has the correct combinatorial structure described by a quasi-
Morse-Smale complex. Each 3-cell in the extracted complex has quadrangular faces.
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The quasi-Morse-Smale complex is constructed during two sweeps over the input
simplicial complex ˙ . The first sweep (in the direction of decreasing function value)
computes the descending 1- and 2-cells and the second sweep (in the direction of
increasing function value) the ascending 1- and 2-cells of the Morse complexes.

During the first sweep, the descending 1-cells and 2-cells are computed simul-
taneously. Let p be the current vertex in the sweep. If p is a 1-saddle, then the
descending 1-cell associated with p is built. Such a 1-cell consists of two chains of
edges starting at p and ending at two (not necessarily distinct) minima. It is built as
follows:

• The 1-cell of p is initialized by taking the two edges connecting p to the lowest
vertex in each connected component of the lower link of p, as illustrated in
Fig. 3.3a.

• If a descending arc arrives at a minimum q, then it ends at q.
• If a descending arc arrives at a non-minimum vertex q, then the descending 1-cell

is continued by adding the edge from q to the lowest vertex in its lower link (note
that, in the discrete case, q is not necessarily regular).
Indeed, if q is a 1-saddle, some additional operations are done to prepare the
ascending 2-cell which will be later built from p (here, details are omitted for
brevity).

Note that, in the discrete case, a descending path may traverse other saddle points
before ending at a minimum. The used rule ensures that, after two descending paths
have joined, they never split.

s2

p

s1

p

a b

Fig. 3.3 (a) The descending 1-cell associated with 1-saddle p is initialized by connecting p to the
two lowest vertices s1 and s2 in its lower link in [11]. (b) The descending 2-cell associated with a
2-saddle p is initialized by the triangles determined by p and a cycle of edges in the lower link of
p in [11]

Again, let p be the current vertex p in the sweep. If p is a 2-saddle, then the
descending 2-cell of p is built. Such 2-cell consists of a collection of triangles from
˙ , which is progressively expanded from its current boundary. Edges of the current
boundary are either frozen (i.e., final) or unfrozen (i.e., the 2-cell must expand from
them). The descending 2-cell of a 2-saddle p is built as follows:
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• To initialize the 2-cell � of p, a cycle of edges encircling the lower link is
constructed, which contains the lowest vertex in the lower link of p. Triangles
determined by p and edges of such a cycle form the initial 2-cell � , as illustrated
in Fig. 3.3b. Initially, the entire boundary of � is unfrozen.

• Cell � is expanded by constructing a shortest-path tree in the lower link of the
current (highest) vertex q on the unfrozen boundary of � , and connecting q to the
edges of this tree. If q is a critical point (a 1-saddle or a minimum), it is declared
frozen together with its two incident edges on the boundary.

• When the complete boundary of a 2-cell is frozen the 2-cell is completed.

In the second sweep, ascending 1-cells and 2-cells are constructed piecewise
inside the descending 2-cells and 3-cells.

At each 2-saddle p, the construction of an ascending 1-cell is started. An
ascending 1-cell is built in a symmetric way with respect to a descending 1-cell
in the first sweep, with the difference that traced paths must not cross any already
established descending 2-cell.

At each 1-saddle p, an ascending 2-cell is built similarly to descending 2-cells
during the first sweep. The difference is that any ascending 2-cell is decomposed
into quadrangles by the (pre-computed) intersection curves between descending and
ascending 2-cells, and by the ascending 1-cells. Thus, ascending 2-cells are built one
quadrangle at a time.

The running time of the algorithm is in O.m log m C mi C mo/, where m is the
number of vertices of ˙ (and the logarithmic factor is due to sorting of vertices by
function value), mi is the input size, i.e., total number of vertices and triangles of
˙ , and mo is the output size (which may exceed the input size, since a simplex in ˙

may belong to several descending/ascending cells, and it may belong several times
to a single cell).

Edelsbrunner et al. propose another algorithm in [10] for building the descending
Morse complex of a 3D scalar field represented through a simplicial model. In some
sense, the algorithm is both watershed-based and boundary-based. The vertices are
processed in the decreasing order of function values. After labeling the simplices in
the lower link of the current vertex that belong to the boundary between descending
3-cells, it marks the simplices that belong to 3-cells. The final output of the
algorithm are the 3-cells in the descending Morse complex, which are topological
cells, i.e., homeomorphic to a ball.

3.1.2 Analysis and Comparisons

Since the saddles of triangle mesh may be multiple saddles, in general .k C 1/

ascending integral lines, and .k C1/ descending integral lines should start from a k-
fold saddle. This would lead to a violation of the properties of a quasi-Morse-Smale
complex, according to which a saddle must have exactly four incident separatrix
lines (namely two ridges and two valleys). For this reason, boundary-based methods
unfold multiple saddles to decompose each of them into a number of simple saddles.
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Starting from the saddle points, all methods construct separatrix lines as lines of
steepest descent and lines of steepest ascent. The methods in [2, 12, 21] compute
them along the edges of the triangle mesh, while the methods in [3, 17] let them
cross the triangles.

If separatrix lines are constrained to follow the edges of the input triangle mesh,
then the result is not the 1-skeleton of a Morse-Smale complex because some
extracted lines may connect two saddles (see Fig. 3.4a). This violates the conditions
of a quasi-Morse-Smale complex because the sequence saddle-saddle is not allowed
on the boundary of a 2-cell. Moreover, two ascending or descending paths may join
before reaching the final maximum or minimum (see Fig. 3.4b). This is an intrinsic
limitation due to the discretization of the scalar field, as a vertex in the triangle mesh
may have fewer edges than the number of separatrix lines which should converge
at it. As a result, the constructed 2-cells may not be uniformly two-dimensional
and may have dangling one-dimensional parts. In Fig. 3.4b, two descending paths
overlap from the vertex at elevation 3 to their final minimum at elevation 0. Finally,
the same portion of a path can be traversed both as an ascending and as a descending
path, starting from two different (and connected) saddles (see Fig. 3.5a), and an
ascending and a descending path may intersect in a point which is not a saddle.
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Fig. 3.4 Green squares mark saddle vertices, plain and dashed arrows denote descending and
ascending paths, respectively, traced from saddles by the algorithm in [21]. (a) The ascending path
from saddle at elevation 3 reaches the saddle at elevation 5; the 2-cell of minimum at elevation 1 has
two consecutive saddles on its boundary. (b) The two descending paths from saddles at elevations
6 and 5 join at a vertex before reaching the minimum at elevation 0; the 2-cell of the maximum at
elevation 9 has dangling edge 3–0. (Color figure online)

The algorithm in [21] depends only on the field values and on the connectivity
of the triangle mesh, while the actual shape of the triangles does not affect the
result. The methods in [3, 12] consider the actual slope of edges (and possibly
of triangles), so the geometry underlying triangulation is relevant for the result.
Because of this, the two approaches in [21] and [12], both tracing separatrix lines
along triangle edges, produce two different critical nets, as illustrated in Fig. 3.6. In
[12], the saddle at elevation 2 is connected to the maximum at elevation 20, while
in [21] it is connected to the maximum at elevation 21 (if the distance between
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points at elevation 2 and 20 is sufficiently smaller than the distance between points
at elevation 2 and 21, so that the corresponding slope is greater).

The advantage of tracing separatrix lines across the interior of triangles,
as done by Bremer et al. [3], is the extraction of the actual steepest lines.
The algorithm explicitly forbids merging of two paths going in opposite directions,
i.e., the situation in Fig. 3.5a cannot arise. Thanks to this fact, the quadrangular
2-cells obtained have connected interiors, i.e., the situation of Fig. 3.5b cannot
occur. However, it is still possible that two paths, which are both ascending or both
descending, join, as in Fig. 3.4b.
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Fig. 3.5 Green squares mark saddle vertices, plain and dashed arrows denote descending and
ascending paths, respectively, traced from saddles. (a) The edge connecting saddles at elevation 5
and 3 is traversed both as an ascending and as a descending path. (b) A Morse-Smale region with
disconnected interior. (Color figure online)
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Fig. 3.6 (a) The saddle at elevation 2 is connected to the maximum at elevation 20 in [12]. (b) It
is connected to the maximum at elevation 21 in [21]
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Unlike region-growing methods, boundary-based algorithms guarantee that sad-
dles are on the 1-cells of the output complex, but the 2-cells may be non-manifold
and not uniformly two-dimensional (see Fig. 3.4b).

Boundary-based algorithms assume that the triangle mesh has no flat edges. If flat
edges are present, as it happens with most real data sets, Takahashi et al. [21] suggest
to introduce a difference by using a lexicographical order on the xy-coordinates
of vertices having equal field value. However, this procedure may introduce extra
critical points (it may generate more minima for a single minimum plateau), and
thus lead to over-segmentation in the output (see Sect. 2.4). Edelsbrummer et al.
and Bremer et al. [3, 12] use the simulation of simplicity technique [13], where the
idea is an infinitesimal perturbation of data.

3.1.3 Boundary-Based Methods on Regular Grids

The input of the following algorithms is a regular grid with field values located at
its vertices. Some type of interpolating function is used within each square of the
grid. The various algorithms differ in the function they use. Two important issues
exist. One issue is avoiding the creation of new critical points inside grid squares,
or keeping their number low. The other issue is guaranteeing a certain degree of
continuity along the edges of the grid. These two issues are in conflict and the
various algorithms try to balance them.

The general structure of boundary-based algorithms on regular grids is similar to
the case of simplicial models (revised in Sect. 3.1.1), i.e., they trace separatrix lines
starting at saddles. The difference is that they extract critical points, and follow
separatrix lines, by referring to analytic functions defined on the grid.

The output is the 1-skeleton of an approximation of the Morse-Smale complex.
Similarly to Sect. 3.1.1, this is a graph where nodes correspond to the critical points
and arcs, joining pairs of critical points, correspond to sequences of segments.
Depending on the specific algorithm, such segments may be constrained to grid
edges, or they may traverse square cells of the grid.

3.1.3.1 The Algorithm by Bajaj et al.

In [1], Bajaj et al. proposed a method for 2D or 3D grids, using bi-cubic interpolation
in 2D and tri-cubic interpolation in 3D. The method is described in detail in the 2D
case and results are presented in both dimensions.

In the 2D case, the interpolating surface is a globally C 1-differentiable Bernstein-
Bézier bi-cubic function. The aim is to interpolate the original gridded data, in such
a way that:

• the gradient at the boundaries of the cells is C 0-continuous;
• no critical points are removed, and the number of critical points introduced is

kept small.
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If the derivatives were computed by classical central differencing, a unique C 1-
differentiable bi-cubic interpolant would be obtained, but this interpolant is likely
to introduce a large number of (new) critical points. So, the authors develop a
“damped” central differencing scheme which they use to compute the first and
second order partial derivatives of the interpolating function. The basic idea of
“damping” is to keep the interpolant monotone inside grid cells whenever possible.

Integral lines are computed following a Runge-Kutta technique. From each
saddle point four integral lines are traced in the direction of the appropriate eigen-
vectors. Computation of an integral line ends when the line reaches a neighborhood
of another critical point or the boundary of the domain. Degenerate critical points
and plateaus are ignored.

The algorithm extracts a critical net which is not the 1-skeleton of a Morse-Smale
complex, since it uses a C 1-differentiable (and not C 2-differentiable) interpolant.
Moreover, the method can generate new critical points with respect to the initial
point set.

The algorithm is used in [1] for the enhancement of visualization tools for
rendering both 2D and 3D scalar fields.

3.1.3.2 The Two Algorithm by Schneider and Wood

The first method proposed by Schneider and Wood for square grids in [18, 19]
uses, for each 2-cell of the grid, a bilinear C 0-differentiable interpolating function
of the form f .x; y/ D axy C bx C cy C d: Coefficients a; b; c; d are obtained
unambiguously for each 2-cell from the elevation values of the vertices of the 2-
cell. This interpolating function cannot introduce additional minima or maxima
(for a ¤ 0), so minima and maxima can only occur at the vertices of the square
grid, but it may introduce additional saddles inside cells at a point with coordinates
.� c

a
; � b

a
/. A grid point p is classified by considering only the elevation of its 4-

adjacent neighbors, while a 2-cell, which contains a saddle, can be detected by
considering the elevation of its four vertices.

Separatrix lines are traced and constructed point by point and they can follow
grid edges, or go through 2-cells. When a separatrix line crosses a square cell, it can
be approximated with small (linear) steps, or computed exactly, by solving a linear
system of differential equations. The exact solution (integral line) is a hyperbolic
function inside a square.

Unlike the method in [1], this method computes the first and second derivatives
analytically. Then, a step-by-step numerical procedure is used to trace separatrix
lines.

The second method for square grids described by Schneider and Wood in [19]
uses, for each 2-cell of the grid, a bi-quadratic approximation of the form f .x; y/ D
ax2 C by2 C cxy C dx C ey C f . This approximating function is constructed by
fitting a bi-quadratic polynomial to the 8-connected neighbors to each point of the
grid. The method produces a globally discontinuous approximation, formed by local
surface patches. In this approach, all the critical points are constrained to lie on the
grid vertices.
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The coefficients of the bi-quadratic polynomial are determined by least square
differences, using a window around each grid point p. In this way, scale dependency
is introduced, as a larger window corresponds to a smaller level of scale.

On the basis of the coefficients of the bi-quadratic polynomial, each surface patch
is classified as elliptic, parabolic or hyperbolic, if 4ab � c2 is > 0, D 0, or < 0,
respectively.

The algorithm works in three main steps:

1. Extract the critical points. Each vertex p is classified, based on the type of the
corresponding conic section and the number of intersections of the semi-axes
with a circle around p with user defined radius r , called the region of interest
(see [19] for details).

2. Starting at the saddles, trace two paths of steepest ascent and two paths of steepest
descent as follows:

• If no semi-axis intersects the region of interest, follow the gradient direction,
• If one semi-axis intersects the region of interest, move parallel to the semi-

axis,
• If two semi-axes intersect the region of interest, this means that a minimum

or maximum has been reached (or the line hits the border of the grid). Thus,
stop tracing.

The extracted critical net depends on the thresholds used to classify the grid
points, on the size of the window, and the radius of the region of interest. This may
cause topological inconsistencies in the extracted network. Various post-processing
heuristics are proposed to correct such inconsistencies. For example, if there is
no valley line separating two maxima, then the two maxima can be topologically
merged.

As the method described before from [18, 19], this algorithm computes the
first and second derivatives analytically. Then, it uses this information to trace the
separatrix lines, while the first method in [19] proceeds in a step-by-step numerical
manner.

3.2 Region-Growing Algorithms

Region-growing algorithms extract an approximation of the descending (or ascend-
ing) Morse complex. In this context, the maximal cells of the descending (ascend-
ing) Morse complex are called regions. Regions are computed by progressively
growing them around the maximum (minimum) they are associated with. Algo-
rithms properly denoted as “region-growing” operate on simplicial models. How-
ever, algorithms following a region-growing paradigm, and operating on regular
grids, can be found in the watershed approach. For instance, the simulated immer-
sion method (see Sect. 4.1) can be seen as a region-growing paradigm and it can be
applied to a regular grid.

Region-growing algorithms work on a simplicial model ˙ with a function f

whose values are given on the vertices of ˙ . They operate on the dual graph
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G D .N; A/ of the simplicial model, i.e., on the graph whose nodes correspond to
d -simplices (triangles in 2D, tetrahedra in 3D), and two nodes are connected by an
arc if and only if the two corresponding d -simplices are adjacent along a .d � 1/-
dimensional face.

Region-growing algorithms for 2D and 3D scalar fields compute the ascending
or the descending Morse complex by building its 2-cells as collections of triangles
from ˙ , or 3-cells as collections of tetrahedra, respectively. The result of the
algorithm is a triangle classification in 2D, or tetrahedron classification in 3D, where
each triangle or tetrahedron t is labeled with the (minimum or maximum) vertex p,
such that t belongs to the (ascending or descending) 2-cell or 3-cell of p.

The only exception is the 3D algorithm by Gyulassy et al. [14]. This algorithm
uses the primal graph of the scalar field model and computes the i -cells of the
Morse-Smale complex (for all dimensions i D 0; 1; 2; 3) by vertex labelling.

We describe here how the algorithms compute the descending Morse complex.
The ascending one is computed in a completely symmetric way. In the following,
the term region is used as a synonym for a d -cell of the descending Morse complex.

3.2.1 The Two Algorithms by Danovaro et al.

Two region-growing algorithms for triangle meshes have been proposed by
Danovaro et al. in [5,6]. The general approach is the same. They start a region from
a seed that is the highest unprocessed vertex, but is not necessarily a maximum.
After the 2-cell of the current seed has been built, it is possibly merged with an
already existing and adjacent 2-cell, if the seed was not a maximum. The key point
is that seeds are processed in decreasing order of field value.
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Fig. 3.7 (a) Construction of the descending 2-cell � for vertex at elevation 9. An arrow pointing
to a triangle from an edge (or from a vertex) means that it is included into � when reached from that
edge (or in the initialization of � from the seed point). (b) Construction of the 2-cells of vertices
at elevations 8 and 6. (c) The 2-cell of vertex at elevation 8 is merged into the one of vertex at
elevation 9, because its seed vertex lies on the boundary (it is not a maximum)

The algorithm in [6] works as follows:

1. Sort all vertices by decreasing elevation.
2. Mark all triangles as unlabeled.
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3. Iteratively pick the highest unprocessed vertex p and do the following:

a. Initialize the tentative descending 2-cell � of vertex p, with the unlabeled
triangles among those in the star of p.

b. Grow � by adding an adjacent triangle according to the following criterion: the
current 2-cell � is extended to include the triangle t D abc which is adjacent
to � along the edge ab if the remaining vertex c of t is at lower elevation than
a and b.

c. Stop the region growing process when 2-cell � cannot be extended any more.

4. For each constructed 2-cell � , if its seed vertex p lies on the boundary of another
2-cell � 0, then merge � into � 0 (p was not a maximum). If p lies on the boundary
of more than one 2-cell, choose � 0 as the one corresponding to the highest
maximum.

The region-growing process is illustrated in Fig. 3.7.
The algorithm in [5] has the same general structure, but it uses a discrete gradient

defined on triangles, whereas [6] simply considers the difference in vertex elevation.
The (negative) gradient vector for a triangle t is computed as the gradient of the

linear function which interpolates f within t . Each triangle t is traversed by a bundle
of integral lines which are parallel to the gradient vector. Every edge of a triangle is
labeled by the algorithm as being an entrance or an exit edge (see Fig. 3.8), based on
the sign of the inner product of the gradient vector and the outer normal to the edge.
If a triangle has two exit edges, then the best exit is determined with a heuristics
which considers the size of the angle between the normals to the edges and the
gradient vector of the triangle (as illustrated in Fig. 3.9).
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Fig. 3.8 The possible configurations of integral lines traversing a triangle
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Fig. 3.9 A triangle t D abc with its gradient, and the outer normals to its three edges. Edge ab

is an entrance, while ac and bc are exits. The best exit is bc, since its normal minimizes the angle
with the gradient of t (i.e., maximizes the inner product)
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After this, the algorithm performs the same steps as the algorithm in [6]. The
criterion for extending the current 2-cell � considers an edge e on the boundary of
� . If e is an edge, shared by triangles t and t 0, and if e is the best exit of triangle t

which is inside � , then the descending 2-cell � is extended across e to include t 0 if
e is the entrance of t 0.

A kind of discrete gradient vector field can be defined starting from the steps
performed by the algorithm to include triangles into 2-cells, by taking all pairs .e; t/

where triangle t has been added to a 2-cell from edge e, and all pairs .p; t/ where p

is a seed vertex of a 2-cell and t is an incident triangle added to the 2-cell of p.
If m denotes the number of vertices in the input triangle mesh, the time

complexity of both algorithms is in O.m log m/. Such complexity is dominated
by the time needed to preliminarly sort the vertices by field value (Step 1). In the
subsequent region-growing process (Step 3), each vertex is examined once, each
triangle can be considered at most three times (i.e., from each of its three edges)
before being added to some 2-cell, and a triangle is added to just one 2-cell. Thus,
the time complexity of this stage is in O.m/. Step 4 (merging) is linear in the number
of the 2-cells (and the number of triangles in such 2-cells) built at Step 3, i.e., it is
in O.m/.

The algorithm in [6] works in three dimensions with time complexity in O.m2/.
It seems not difficult to extend the method to higher-dimensional scalar fields as
well.

The description of the algorithms in [5, 6] assumes that no flat edges are present
in the input triangle mesh. If they are present, the authors suggest to remove them by
perturbing the data in a preprocessing step. However, this may lead to the creation
of new minima and maxima and, thus, to over-segmentation (see Sect. 2.4).

On the other hand, it is not difficult to extend the algorithm to deal with flat edges.
Indeed, the special case here is represented by plateaus composed of flat triangles.
These can be detected in a preprocessing step. When the next highest seed p is
picked, and p is on the boundary of a plateau, then the 2-cell of p is initialized with
the entire plateau. The subsequent merging of 2-cells will guarantee that the 2-cells
constructed from non-maxima plateaus are merged to some adjacent 2-cell.

3.2.2 The Algorithm by Magillo et al.

Another region-growing algorithm for 2D scalar fields has been presented in [15].
Initially, the algorithm labels the vertices of each triangle t based on their relative
elevation: the highest, lowest, and middle vertex of t is labeled as S, D, and T,
respectively (the intuition behind such labeling is that water flow traversing t has
source in S, drain in D, and passes through T).
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Then, the following steps are performed:

1. Extract the maxima, that are vertices labeled S in all their incident triangles.
2. As long as there is a maximum vertex p that has not yet been processed, take p

as the seed for a new descending 2-cell � , and build � in the following way:

a. Initialize � with all the triangles incident in p.
b. Iteratively examine each edge e of the current boundary of � , and check

whether the triangle t , externally adjacent to e, can be added to � . Criteria
used for the inclusion of t are illustrated later.

c. When no triangle can be further added, stop.

To illustrate the region growing criteria, let e D ab be the current boundary edge
of 2-cell � , and let t D abc be the triangle to be tested for inclusion into � . Triangle
t is not included if vertex c is labeled S in t (see Fig. 3.10a). If c is the labeled D in
t , then it is included (see Fig. 3.10b).

If c is labeled T in t , we note that the S-vertex of t is one of the two endpoints
of e, say a. The algorithm assumes to have included t and, under this assumption,
repeats the inclusion test with edge e0 D ac and the triangle t 0 externally adjacent to
t along e0. This process ends when a triangle tend is found such that its third vertex
cend is either the D-vertex or the S-vertex of tend . In the first case, all the triangles in
the traversed chain from t to tend are included (see Fig. 3.10c). In the second case,
no triangle is included (see Fig. 3.10d).

T

e

T

S
e

c
DS

D

tt

c

D

e

T

S

t

S
S

T
T

D
c

c_end

t_end

D

D

e

T

S

t

S
D

T
T

D
c

c_end

t_end

S

a b

c d

Fig. 3.10 Test used in [15] for the inclusion of a triangle t , sharing an edge e with a triangle
already belonging to � (white triangle). In (a) triangle t is not included as its third vertex is labeled
S in t . In (b) t is included as its third vertex is labeled D in t . In (c) t is included along with all
green triangles. In (d) no triangle is included. (Color figure online)

The time complexity of the algorithm is in O.m/, where m is the number of
vertices in the input triangle mesh. Vertex labelling requires a single scan of all
triangles, and maxima are found with a single scan of all vertices, in O.m/ time.
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The cost of Step 3 is also in O.m/, because each triangle is tested at most three
times, and it is added to exactly one 2-cell.

The description, given above, assumes that no flat edges exist in the input triangle
mesh. In [15], rules are provided to handle flat edges and flat triangles as special
cases. Plateaus, i.e., connected components of flat edges and/or flat triangles are
found in a preprocessing stage, and they are tagged as maxima or non-maxima. The
algorithm starts growing 2-cells from plateau maxima as well as for point maxima.
A non-maximum plateau is assigned to the same 2-cell as the triangle t , which is
edge-adjacent to the plateau, and has the highest third vertex. In addition, special
cases of the inclusion rules are defined for the inclusion of triangles having one flat
edge (see [15] for details).

An extension of this algorithm to three dimensions would need more vertex
labels, and more cases to be considered for the inclusion of a new tetrahedron into
the current 3-cell. An extension to higher dimensions would cause an explosion of
the number of cases, and so seems not viable.

3.2.3 The Algorithm by Gyulassy et al.

The algorithm proposed by Gyulassy et al. [14] computes the Morse-Smale complex
on a tetrahedral mesh ˙ . The output of this algorithm represents the ascending and
descending cells of all dimensions in the Morse complexes, where each cells is
encoded as a collection of vertices of ˙ .

The ascending cells are computed iteratively in order of decreasing dimension
through a region-growing process. Descending cells are computed inside the
ascending 3-cells using the same region-growing approach.

The computation of the ascending 3-cells consists of two steps:

1. The set of minima of f are identified; each minimum is used as the origin to
build a set of vertices representing its ascending 3-cell, and they are processed in
order of increasing field value.

2. Each vertex p of ˙ is classified as an internal vertex of an ascending cell, or
as a boundary vertex. This depends on the number of connected components of
the set of internal vertices in the lower link of p which are already classified as
interior to some ascending 3-cell. The classification is performed by sweeping ˙

in order of ascending function values.

Vertices classified as boundary by the above algorithm are the input for the
algorithm which builds the ascending 2-cells. An ascending 2-cell is created for
each pair of adjacent 3-cells. The vertices of the 2-cells are classified as interior or
boundary based on local neighborhood information, similarly to the classification
done with respect to the 3-cells.

Then, the algorithm computes the ascending 1-cells. A 1-cell is created at every
crossing of ascending 2-cells. Each 1-cell is composed of vertices classified as
boundary in the previous step. Finally, each vertex p of an ascending 1-cell is
classified as interior or boundary. Maxima are created at the boundaries between
ascending 1-cells.
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For each ascending 3-cell, the descending cells are computed in their interior.
The region-growing steps are symmetric. Again here, the iteration is performed in
the order of decreasing dimension.

Each vertex is examined by the algorithm at most three times. Under the
assumption that the size of the link of each vertex is bounded by a constant, the
overall time complexity is dominated by the cost of sorting, i.e., O.m log m/, where
m is the number of vertices in the tetrahedral mesh.

3.2.4 Analysis and Comparisons

The algorithms reviewed in this section are summarized in Table 3.2. The two
methods in [5, 6] (see Sect. 3.2.1) use the same basic approach, but the former
considers simply the difference of function values between two triangle vertices,
while the latter considers the slope of triangles. This leads to a difference in their
results, as illustrated in Sect. 3.1.2 for the case of boundary-based algorithms.

The criteria for including triangles used in [15] (see Sect. 3.2.2) are based just
on vertex elevation, as in [6]. There is only one difference between the criteria for
including a triangle used in [6, 15]. In [6], a candidate triangle t is never included if
the third vertex of t is labeled T (i.e., in the situation of Fig. 3.10c and d). Instead,
as long as unclassified triangles exist, [6] restarts from one vertex (not necessarily
a maximum) that is labeled S in all its incident triangles that have not yet been
classified. This is equivalent to examining fans in [15]. The real difference is that
[6] assigns a whole fan to one maximum (the one with the highest elevation), while
[15] divides the fan in correspondence of the lowest valley edge, which is a more
intuitive behavior (see Fig. 3.11).

Unlike boundary-based methods, region-growing algorithms do not guarantee
that saddle points lie on the 1-cells of the computed Morse complex, but they
guarantee that the resulting 2-cells are uniformly two-dimensional, without dangling
one-dimensional parts. For example, in Fig. 3.4b, the boundary edge chain of the

Table 3.2 Summary of reviewed region-growing algorithms

Algorithm Input Output Region-growing process

Danovaro et al. [6] 2D/3D Morse Based on elevation difference, partial
regions with final merging

Danovaro et al. [5] 2D/3D Morse Based on slope, partial regions with
final merging

Magillo et al. [15] 2D Morse Based on elevation difference, entire
regions

Gyulassy et al. [14] 3D Morse-Smale Iteratively compute ascending cells of
dimension 3, 2, 1, and then descending
cells inside ascending cells

For all algorithms, the input is a simplicial complex
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Fig. 3.11 (a) A triangle mesh with two maxima p1 and p2. (b) Danovaro et al. [6] build the 2-
cells of vertices p1, p2, and p3; later, the 2-cell of the last vertex (which is not a maximum) will
be merged into the 2-cell of p2. (c) Magillo et al. [15] further enlarge the 2-cell of each maximum;
edge p3p4 (lowest valley line) marks the boundary between the two 2-cells of p1 and p2

2-cell of maximum at elevation 9, found by boundary-based algorithms, connects
vertices at elevations 2 (minimum), 5 (saddle), 3, 0 (minimum), 3, 6 (saddle), 1
(minimum), and the 2-cell includes the dangling edge (3,0). The 2-cell constructed
by region-based algorithms is bounded by 2 (minimum), 5 (saddle), 3, 6 (saddle),
1 (minimum): one minimum is missing and there are two consecutive saddles, but
there are no dangling edges.

In [16], it has been experimentally found that the boundary-based approach using
elevation difference [21] and the region-growing approach in [15] give the same
classification of triangles on a triangle mesh which does not contain flat edges.
This result refers just to triangle classification, and does not consider the fact that
boundary-based 2-cells may have dangling edges.

Region-growing methods either are designed with, or they can be easily equipped
with ad-hoc solutions for dealing with flat edges. It is sufficient to identify plateaus
in a preprocessing stage, and then to treat them as special cases both in the
initialization and in the growing process of 2-cells. An analysis and experimental
results about the problems caused by the presence of flat edges are presented in
Sect. 7.4.
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Chapter 4
Watershed Algorithms

The watershed approach has been developed in image processing for segmentation
of grey-level images, which can be viewed as 2D scalar fields modeled as regular
grids. It extends directly to higher dimensions, for instance to 3D scalar fields. The
theoretical counterpart for smooth functions has been presented in Sect. 1.4.

The intuitive idea is computing the ascending Morse complex of the scalar field
by simulating the diffusion of water, where the scalar field is considered as a height
field (e.g., a terrain). A first approach is based on the idea of flooding the terrain.
This is somehow a region-based approach, in the sense that it takes the minima as
seeds, and progressively grows the 2-cells of the ascending Morse complex (called
catchment basins) from them. The approach based on topographic distance does a
similar thing by computing shortest paths from minima. Another approach is based
on the opposite idea of simulating the descent of water from any point of the terrain
down to a minimum.

Most watershed algorithms work on d -dimensional regular grids, where the field
values are associated with d -cells. The adjacency relations between d -cells can
be modeled in two ways: each d -cell � is considered as adjacent either to the
d -cells which share a .d � 1/-face with it, or to all the d -cells sharing a face of
any dimension with � (that is, 4- and 8-connectivity for square grids, see Sect. 1.2).

The output is a classification of the d -cells of the grid as belonging to the
catchment basin (ascending d -manifold) of a certain minimum, or as belonging to
the boundary between catchment basins.

Few watershed algorithms are defined for simplicial models. In that case, they
work on the primal graph of the model and their output is a classification of the
vertices as belonging to the catchment basin (ascending d -manifold) of a certain
minimum, or as belonging to the boundary between catchment basins.

In general, we can say that watershed algorithms operate on a labeled graph
G D .V; E; f /, where V is the set of reference cells (d -cells for a grid, vertices for
a simplicial model), E describes the adjacency relation, and function f W V �! R

is the field value. Similarly, the output of such algorithms can be considered as a
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labeling of the nodes of the graph, i.e., a function lab W V �! V [fwatershedg that
associates each node u with the minimum node of the catchment basin containing
u, or with the special value denoting that u is a watershed node. Not all watershed
approaches, however, produce watershed labels.

In Sects. 4.1–4.3, respectively, we present algorithms belonging to the three
approaches to watershed computation, i.e., by simulating water raising from
minima, by topographic distance, and by simulating water descent to minima. In
Sect. 4.4 we compare the various approaches.

4.1 Watershed by Simulated Immersion

The intuition behind the simulated immersion approach is the following. On a
terrain, we drill holes in place of local minima, immerse this terrain in a pool,
let water raise from drilled holes, and build dams to prevent water coming from
different minima to merge. Then, the watershed of the terrain is described by these
dams (labeled as watershed nodes), and the catchment basins are delineated by the
dams.

More formally, simulated immersion relies on a definition of the watershed trans-
form in the discrete domain, where the catchment basins are defined recursively,
using the concept of skeleton by influence zones [1]. The following definitions refer
to the input scalar field as a labeled graph G D .V; E; f /.

Definition 17. Given a graph G D .V; E; f / and two nodes a; b 2 V , the geodesic
distance d.a; b/ between a and b is the length of the shortest path connecting a and
b in G.

In the above definition, the length of a path is computed in co-domain space (i.e., in
3D for a terrain model).

The geodesic distance of a node a from a set of nodes B � V is the minimum
geodesic distance between a and nodes b 2 B .

Given k disjoint subsets of nodes Bi � V (i D 1; : : : k), where each Bi forms a
connected subgraph of G, the geodesic influence zone of Bi is defined as the set of
all nodes a 2 V such that a is closer to Bi than to any other Bj with j ¤ i :

Definition 18. The geodesic influence zone of Bi is:

IZ.Bi / D fa 2 V jd.a; Bi/ < d.a; Bj / for all j ¤ ig

The simulated immersion algorithm presented by Vincent and Soille [12, 14]
expands catchment basins by processing the nodes of G by increasing elevation.
In the stage in which a certain elevation h is processed, all catchment basins of
minima at elevations h0 < h have been started and, up to now, contain just nodes
at elevations lower than h. Processing elevation h will add new nodes, lying at
elevation h, to existing basins, and will start new basins from minima having an
elevation equal to h.
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A recursive definition of catchment basins is used. Let h1; : : : ; hk be the ordered
set of values assumed by function f . The union Xi of all catchment basins up to
elevation hi (and its complement Wi D V n Xi of watershed nodes up to elevation
hi ) is incrementally constructed, where Xk is the final watershed of graph G.

Definition 19. Set Xh � V is recursively defined as follows:

• For the lowest function value h D h1, X1 contains the minima at elevation h1

(absolute minima of the function).
• For any subsequent function value h D hi , Xi contains the minima at elevation

hi , plus all the nodes v which have f .v/ � hi and belong to the geodesic
influence zone IZ.Xi�1/ of Xi�1.

The two terms in the construction of Xi correspond to initialization of new basins
from seeds at elevation hi , and to the expansion of existing basins by including
adjacent nodes at elevation hi . Minima can be isolated nodes of G, or plateaus.

The algorithm performs the following steps:

• Sort nodes by increasing elevation.
• Process elevations, starting from the lowest one and ending at the highest one.

For the current elevation h:

1. Initialize the label lab.v/ of each node v at elevation h with a special mask
value (meaning “to be set”).

2. Initialize a FIFO (First In-First Out) queue Q containing all nodes v at
elevation h, which have some neighbor already labeled with a basin.

3. While queue Q is not empty, extract a node v and do the following: if all
neighbors of v, which are labeled with a basin, have the same basin label
b, then set lab.v/ D b; otherwise (i.e., there are more basins among the
neighbors of v), then set lab.v/ D watershed. Then, insert into the queue
all neighbors of v that are labeled with the mask.

When the queue is empty, all nodes at elevation h that could be reached
from an existing basin (with seed at a lower elevation than h) have been
labeled. Now, basins whose seed is at elevation h have to be initialized.

4. Start another loop over nodes v at elevation h. If v is still marked with the
mask, then set lab.v/ to a new basin label b (v is a seed of a new basin),
and assign label b to all nodes of the same connected component of nodes at
elevation h, which are labeled with the mask (found through a breadth first
search from v).

The FIFO management of queue Q guarantees that nodes belonging to the same
(non-minimum) plateau at elevation h are processed in order of increasing distance
from the boundary of the plateau. This permits to place watershed pixels near the
middle of the plateau, in case the plateau must be split among different catchment
basins.

This algorithm has been originally defined on grey-level images (2D scalar
fields), and it extends to 3D scalar fields in a straightforward way. It has also been
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extended to triangle meshes in [14]. A version for simplicial models (using the
primal graph and generating a vertex classification), both in 2D and in 3D, has been
developed in [6, 7].

The computational complexity includes the cost for the preliminary sorting of
elevations, which is in O.m log m/ as the m nodes of the graph may have m distinct
elevations. The main loop of the algorithm has a cost in O.m C e/ where m and
e denote the number of nodes and arcs of graph G, respectively. If G corresponds
to a 2D scalar field (either modeled as a square grid, or as a triangle mesh), then
e D O.m/ and the total cost is thus in O.m log m/. If G corresponds to a 3D scalar
field, then e D O.m/ for a grid (each cubic cell is connected to a fixed number of
adjacent cells). In practice, it is linear in m for a tetrahedral mesh as well, although
it can be e D O.m2/ in the worst case.

4.2 Watershed by Topographic Distance

This approach, due to Meyer [10], tries to mimic the definition of catchment basins
given in the smooth case, by referring to a discrete version of the topographic
distance.

First, we define the lower slope at node p, which is the maximal slope linking p

to any of its neighbors of lower elevation.

Definition 20. Given a graph G D .V; E; f / and a node p 2 V , the lower slope
LS.p/ is defined as

LS.p/ D
(

0 if no neighbor p0 exists with f .p0/ < f .p/

maxf f .p/�f .p0/

d ist.p;p0/
j .p; p0/ 2 E; f .p0/ < f .p/g otherwise

In the above definition, distance dist.p; p0/ is computed in domain space (i.e., on
the 2D plane in case of a terrain).

The cost for walking from node p to an adjacent node p0, i.e., the cost for
traversing the directed arc .p; p0/, is given by:

cost.p; p0/ D

8
<̂

:̂

LS.p/ dist.p; p0/ if f .p/ > f .p0/
LS.p0/ dist.p; p0/ if f .p/ < f .p0/

LS.p/CLS.p0/

2
dist.p; p0/ if f .p/ D f .p0/

In practice, the above cost function considers the actual elevation difference for the
steepest edge, while it “stretches” other edges by a factor which gets larger if their
slope is smaller.

Given a path � D .p D p0; : : : ; pl D q/ between two nodes p and q in the
graph G, the �- topographic distance TD�.p; q/ of path � is given by the sum of
costs for traversing all directed arcs .pi ; piC1/:
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T �.p; q/ D
l�1X

iD0

cost.pi ; piC1/:

Definition 21. The topographic distance T .p; q/ between p and q is the minimum
of the topographic distances along all paths between p and q:

T .p; q/ D min
�D.p;:::;q/

T �.p; q/:

For any path � from p to q, we have that T �.p; q/ � jf .p/ � f .q/j, and the
equality holds if and only if � is a path of steepest descent.

The topographic distance is not a true distance function because it is zero on
distinct nodes, if they belong to the same plateau.

The definition of a catchment basin in a graph is similar to the definition given in
the smooth case.

Definition 22. Let fmigi2I be the set of minima of function f , where each mi can
be a single node or a plateau.
The catchment basin CB.mi / of a minimum mi is defined by:

CB.mi / D fp 2 D W f .mi / C T .p; mi/ < f .mj / C T .p; mj /; j 2 I � figg:

The image integration algorithm by Meyer [10,11] is a variation of the Dijkstra-
Moore algorithm [4] for computing the shortest path from a source node to every
other node within a graph. In this case, topographic distance is used.

Dijkstra-Moore algorithm is incremental. For each node, there exists a current
(tentative) shortest path, that is possibly finalized. The distance along the current
(finalized or tentative) shortest path, and its previous node in such path are recorded.
The algorithm uses a priority queue sorted by increasing distance.

The image integration algorithm [10] computes all shortest paths from each
minimum simultaneously, and records, for every node, its closest minimum instead
of the previous node along the path (since we are not interested in reconstructing
the path). The idea is that of a moving wavefront. If two or more wavefronts reach
the same node, we compare the two path lengths and assign the node to the closest
minimum.

The algorithm stores two items associated with each node v: its current (tentative)
topographic distance td.v/, and its source node lab.v/. It also uses a priority queue
based on td.v/. The main steps of the algorithm are:

1. Compute the minima (including plateau minima).
2. For each minimum v, set td.v/ D f .v/, and lab.v/ D v (if v belongs to a

plateau, use a representative vertex of the plateau). If v has no adjacent vertices at
a higher elevation (i.e., v lies in the interior of a plateau minimum), then finalize
v; otherwise, insert v in a priority queue Q.

3. For each other node v, set td.v/ to infinity and lab.v/ as undefined.
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4. While the priority queue Q is not empty, pop the first node v from Q (it is the
one with minimum distance), and do the following:

a. Finalize v.
b. For each adjacent node u of v, such that u is not finalized, update its

information as follows: let d D td.v/ C cost.u; v/; if d > td.u/ then set
td.u/ D d and lab.u/ D lab.v/.

c. If u is in the priority queue Q, update its position based on its new priority.
Otherwise, insert u into Q.

The algorithm accepts plateaus. When the line separating two catchment basins
should run through a (non-minimum) plateau, then the line drawn by the algorithm
depends on the order in which nodes belonging to the plateau are picked from the
queue, and, in general, is not the intuitively best one (i.e., equidistant from the
boundaries of the plateau). In order to avoid this problem, nodes belonging to a
plateau are further sorted, in a priority queue, based on their distance from the
boundary of the plateau.

The hill climbing algorithm [10] is a simpler and faster version of the image
integration algorithm, which applies to grids, since the distance dist.p; p0/ between
two adjacent pixels p and p0 in domain space is constant. Hill climbing does not
compute td.v/, but inserts a node v into the priority queue based on the value of
f .v/. Step (b) in the previous algorithm is simply replaced with:

b. For each adjacent node u of v, whose label is still undefined (this implies
f .v/ < f .u/), set lab.u/ D lab.v/.

The hill climbing method replaces topographic distance with elevation difference
between nodes. This gives the same result only on regular grids.

The worst-case computational complexity of these approaches is the same as that
of simulated immersion.

The presented algorithms have been originally defined in 2D, and extend to
higher dimensional scalar fields in a straightforward way.

4.3 Watershed by Rain Falling Simulation

All approaches presented so far have in common the idea of starting from the
minima and letting the catchment basins grow until all nodes have been classified
into catchment basins (or as watershed nodes). The approaches presented in [9, 13]
use the opposite idea, called rain falling paradigm, where the steepest descending
path is constructed from each node until it arrives either at a minimum, or at a node
which has already been inserted in a catchment basin. The label of each minimum
is propagated backwards along the steepest path. The result of this process is a
segmentation of the nodes of graph G into catchment basins associated with the
minima of f . No watershed nodes are generated.
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The algorithm proposed by Mangan and Whitaker [9] has been designed for
triangle meshes. The one by Stoev and Strasser [13] for regular grids.

The main steps of the two algorithms are:

1. Find the minima and label each minimum as belonging to the basin of itself.
2. For each node u, which is still unlabeled, perform a descent from u:

• find the lowest neighbor v of u;
• if v is labeled, give the label of v to u and, through backtracking, to all

previously traversed nodes during the descent;
• otherwise, recursively continue the descent from v (until it ends into a labeled

node).

Possible issues with the rain falling paradigm are the non-uniqueness of the
lowest neighbor q of a node p, and the occurrence of plateaus.

If a node p has more than one lowest neighbor, the algorithm in [9] does not
explicitly show how to solve this ambiguity, while the one in [13] tries to continue
the path ahead from all candidate lowest neighbors, and chooses the one that would
go lowest.

Both methods have been designed for graphs which may contain plateaus, and
handle them directly. In [9], all plateaus are found in a preliminary stage, and each of
them is treated as a single node. Plateaus that are minima are processed in Step 1 by
labeling all nodes of the plateau with the same basin label. In Step 2, plateaus which
are not minima are processed before all other vertices. From each such plateau, a
descent to its adjacent node of lowest elevation is performed.

In [13], plateaus are found during the descent. Step 1 considers just minima
located at isolated nodes. In Step 2, when processing a node u having some neighbor
with equal elevation, the plateau containing u is computed and its boundary is
checked. If the plateau is a minimum, then a new basin label is given to that plateau
and propagated backwards to the previous nodes of the path. If the plateau is not a
minimum, then the descent continues to the lowest node adjacent to its boundary. If
this node is not unique, the plateau is split into parts.

In [9], each non-minimum plateau is assigned entirely to a unique catchment
basin, while in [13], a non-minimal plateau can be split among different catchment
basins.

The advantage of the rain-falling approach, over the approaches based on
flooding or topographic distance, is that it does not require a preliminary sorting
of vertices, nor a priority queue. Therefore, these algorithms do not have an
O.m log m/ term in their computational complexity.

Also this method was first developed for grids, but it extends easily to simplicial
models (by considering the primal graph and producing a vertex classification). An
implementation for triangle meshes has been used in [8], where triangles are then
classified based on the labels of their vertices. A similar approach can also be applied
for tetrahedral meshes [7].
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4.4 Summary and Comparisons

Table 4.1 presents a summary of reviewed algorithms. All watershed algorithms are
dimension-independent.

Simulated immersion and rain falling simulation consider just the elevations and
are independent on the shape of the underlying regular grid or simplicial model.
The image integration method considers the length of edges as well, and thus it
is somehow comparable to approaches for triangle meshes based on the discrete
gradient, such as [2, 3, 5] (see Chap. 3). On regular grids with the 4-connectivity
model, using the topographic distance (or gradient simulation) is equivalent to using
the elevation difference.

Rain falling algorithms construct catchment basins by moving downwards, while
the other two approaches do it by going upwards. We examine how such two choices
lead to different results.

We have highlighted the problem on a small triangle mesh with 11 vertices and
11 triangles, having two minima in vertices v0 and v1 (see Fig. 4.1). Here, letter z
denotes elevation. The rain falling and simulated immersion algorithms give two
different vertex classifications.

Table 4.1 Summary of reviewed watershed algorithms

Algorithm Input Approach

Vincent and Soille [12, 14] Grid (simplicial complex) Simulated immersion

Meyer [10] (image integration) Grid (simplicial complex) Topographic distance

Meyer [10] (hill climbing) Grid Topographic distance

Mangan and Whitaker [9] Triangle mesh (grid) Rain falling

Stoev and Strasser [13] Grid (simplicial complex) Rain falling

We report the input format considered in the original definition of the algorithm, and
(in brackets) the acceptable input

z=2v2

z=8

v9
v8

z=7
z=6

v7

z=4

v5

v3 z=1

z=5v6

z=9v10

v1

z=0v4
z=3

z=0v0

z=2v2

z=8

v9 v8

z=7
z=6

v7

z=4
v5

v3 z=1

z=5v6

z=9v10

v1

z=0v4
z=3

z=0v0

a b

Fig. 4.1 Executing the two algorithms on a toy example: (a) simulated immersion, (b) rain falling.
Circled yellow and squared cyan nodes correspond to the basins of minima v0 and v1, respectively.
In (a), black nodes are watershed. (Color figure online)
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Figure 4.1a shows three stages of the simulated immersion process, and the final
vertex labeling. The three stages are: after processing z D 1 and just before labeling
v2 (z D 2) as watershed; after processing z D 3 and just before labeling v5 (z D 4)
as watershed; after processing z D 6. Vertices v2; v5; v8; v10 are labeled as watershed
vertices, and vertex v7 (z D 6) is classified as belonging to the basin of v1 because,
when water reaches it, its labeled neighbor vertices are v5 (watershed) and v6 (whose
basin is v1).

Figure 4.1b shows the steepest descent from each vertex, and the final vertex
labeling produced by the rain falling algorithm. The steepest descent from v7

.z D 6/ is towards v5 (z D 4), and from v5 to minimum v0. Therefore, vertex v7

is labeled with the basin of v0 (whereas it is labeled v1 by the simulated immersion
algorithm).

Fig. 4.2 Lines of steepest
ascent (dashed red) and
descent (plain blue) through
vertex v7 on the toy example.
(Color figure online)

z=2v2

z=8

v9
v8

z=7
z=6

v7

z=4
v5

v3 z=1

z=5v6

z=9v10

v1

z=0v4
z=3

z=0v0

The key reason why we have two different vertex classifications is that the
simulated immersion algorithm classifies a vertex v by taking into account which
minimum m first reaches v when water raises from m, while the rain falling
algorithm classifies v based on which minimum m0 is first reached when water falls
from v. The two perspectives are not equivalent on a discretized terrain, because the
line of steepest ascent through a vertex v may not be the same as the line of steepest
descent through v. In the continuous case, the two lines are the same. On our toy
example, the line of steepest ascent through vertex v7 is v1 ! v6 ! v7 ! v10 and
the line of steepest descent through v7 is v10 ! v7 ! v5 ! v0 (see Fig. 4.2).
Therefore, depending on the approach used, vertex v7 is assigned to minimum
v1 or v0.

References

1. S. Beucher and C. Lantuejoul. Use of watersheds in contour detection. In International
Workshop on Image Processing: Real-Time Edge and Motion Detection/Estimation, Rennes,
France, September 17-21, 1979.



68 4 Watershed Algorithms

2. P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A multi-resolution data structure
for two-dimensional Morse functions. In Proc. IEEE Visualization’03, pages 139–146. IEEE
Computer Society, October 2003.

3. E. Danovaro, L. De Floriani, P. Magillo, M. M. Mesmoudi, and E. Puppo. Morphology-driven
simplification and multiresolution modeling of terrains. In E.Hoel and P.Rigaux, editors, Proc.
ACM GIS 2003 - The 11th International Symposium on Advances in Geographic Information
Systems, pages 63–70. ACM Press, 2003.

4. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

5. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piecewise
linear 2-manifolds. In Proc. 17th ACM Symposium on Computational Geometry, pages 70–79,
2001.

6. L. De Floriani, F. Iuricich, P. Magillo, and P. D. Simari. Discrete Morse versus watershed
decompositions of tessellated manifolds. In ICIAP (2), pages 339–348, 2013.

7. F. Iuricich. Multi-resolution shape analysis based on discrete Morse decompositions. PhD
thesis, University of Genova – DIBRIS, Italy, 2014.

8. P. Magillo, L. De Floriani, and F. Iuricich. Morphologically-aware elimination of flat edges
from a tin. In Proc. 21st ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (ACM SIGSPATIAL GIS 2013), November 5-8 2013.

9. A. Mangan and R. Whitaker. Partitioning 3D surface meshes using watershed segmentation.
Transactions on Visualization and Computer Graphics, 5(4):308–321, 1999.

10. F. Meyer. Topographic distance and watershed lines. Signal Processing, 38:113–125, 1994.
11. F. Meyer and S. Beucher. Morphological segmentation. J. of Visual Communication and Image

Representation, 1:21–45, 1990.
12. P. Soille. Morphological Image Analysis: Principles and Applications. Springer-Verlag, Berlin

and New York, 2004.
13. S. L. Stoev and W. Strasser. Extracting regions of interest applying a local watershed

transformation. In Proc. IEEE Visualization’00, pages 21–28. ACM Press, 2000.
14. L. Vincent and P. Soille. Watershed in digital spaces: An efficient algorithm based on

immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(6):583–598, 1991.



Chapter 5
A Combinatorial Approach Based on Forman
Theory

In this chapter, we review algorithms based on Forman theory. These algorithms are
combinatorial in nature and dimension-independent. They can be applied to both
2D and 3D scalar fields. We refer to Sect. 1.6 for the background notions on Forman
theory.

The input scalar field f is defined at the vertices of a cell complex. All algorithms
based on Forman theory include a preliminary step which, starting from f , builds a
Forman function F defined on all the cells of the complex, or directly a Forman
gradient vector field V (see Sect. 1.6). Given a field V , they then produce the
descending and ascending Morse complexes, and the Morse-Smale complex. Such
complexes are called discrete Morse and discrete Morse-Smale complexes.

In Sect. 5.1 we describe an encoding for Morse and Morse-Smale complexes
on a cell complex, and, in more detail, for triangle and tetrahedral meshes. The
primal/dual relationship between the descending and ascending Morse complexes
has been expressed in terms of the primal simplicial complex ˙ , and its dual
complex ˙� (see Sect. 1.1). The combinatorial structure of the Morse-Smale
complex is expressed as a collection of cells in the complex obtained by the
intersection of ˙ and ˙�, which we refer to as the dually subdivided mesh ˙S .
According to the primal/dual representation, these complexes can be fully described
in terms of vertices and d -simplices of the complex. In Sect. 5.2 we describe the
encoding for a Forman gradient defined over simplicial complexes proposed in [17].
Such representation stores information only at maximal simplices, and has been
used as a compact representation for the Forman gradient of a Forman function
defined over a simplicial complex.

In Sect. 5.3, we describe the most important algorithms in the literature for
computing a Forman gradient on 2D and 3D scalar fields. In Sect. 5.4, we present
existing approaches which, given a Forman gradient F , extract the collection of
cells of the ascending and descending Morse complex, the Morse-Smale cells, or
the 1-skeleton of the Morse-Smale complex.

© The Author(s) 2014
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5.1 Representing Morse Complexes in the Discrete Case

Representations for descending and ascending Morse complexes can be defined
independently of the representation used to discretize the domain of the Morse
function. However in application domains simplicial complexes and regular grids
are used in order to optimize both the computation and the analysis of such
complexes. As described in [10], computing the Morse and Morse-Smale complexes
on a cell complex � means to group the i -cells, with 0 � i � d , forming all the
ascending and descending Morse cells or the cells of the Morse-Smale complex. In
[17] a new interpretation of the Morse and Morse-Smale complexes in terms of the
input cell complex and its dual complex has been presented.

5.1.1 Representing Discrete Ascending and Descending
Morse Complexes

Let us consider a simplicial complex or a regular grid as underlying decompositions
of a scalar field model. We first observe some properties of the ascending and
descending Morse complexes of a Forman function F (and the corresponding
Forman gradient field V ). As described in Sect. 1.6, in the 2D case, a descending
2-cell corresponds to a maximum, and thus to a collection of primal 2-cells
(triangles or squares) in the underlying simplicial complex or regular grid. An
ascending 2-cell corresponds to a minimum, and thus to a collection of dual
2-cells, each of which corresponds to a primal vertex. A descending 1-cell cor-
responds to a saddle, and thus to a sequence of primal edges. An ascending
1-cell corresponds to a saddle as well, and thus to a sequence of dual edges,
each of which corresponds to a primal edge. Therefore, the descending Morse
complex consists of elements from the primal complex, while the ascending
Morse complex consists of elements from the dual complex.

Fig. 5.1 The primal/dual relationships in a tetrahedral mesh. (a) The dual of a tetrahedron is a
vertex, (b) the dual of a triangle shared by two tetrahedra is an edge (dotted line), (c) the dual of
an edge is a polygon and (d) the dual of a vertex is a 3-cell
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In the 3D case:

• A descending 3-cell corresponds to a maximum, and, thus, to a collection of
(primal) 3-cells (see Fig. 5.1a). Dually, an ascending 3-cell corresponds to a
minimum, and thus to a collection of dual 3-cells (i.e., primal vertices) (see
Fig. 5.1d).

• A descending 2-cell corresponds to a 2-saddle, and, thus, to a collection of primal
2-cells (see Fig. 5.1b), each of which can be expressed as a pair of primal 3-cells.
An ascending 2-cell corresponds to a 1-saddle, and thus to a collection of dual
2-cells (see Fig. 5.1c), each of which can be expressed as a pair of dual 3-cells,
corresponding to a primal edge.

• A descending 1-cell corresponds to a 1-saddle and, thus, to a sequence of primal
edges (see Fig. 5.1c), or, equivalently, to a sequence of primal vertices. An
ascending 1-cell corresponds to a 2-saddle and thus to a sequence of dual edges
(see Fig. 5.1b), which can be seen as a pair of dual vertices (i.e., as a sequence of
primal 3-cells).

Note that, since the primal edges can be expressed as pairs of primal vertices and
the primal faces can be expressed as pairs of primal maximal cells, all the Morse
cells can be expressed in terms of primal vertices and primal maximal cells of the
underlying complex.

a b c d

e f g

Fig. 5.2 Two-dimensional example of the scheme for simplicial complexes. (a) The triangle mesh
˙ (solid lines) is overlapped with the dual complex ˙� (dashed lines). (b) Encoding the Forman
gradient field entirely with the triangles enables the use of compact topological data structures for
morphological extraction. The cells of the descending Morse complex are associated with the cells
of ˙ ((c)–(d)) and those of the ascending Morse complex with the cells of ˙� ((e)–(f)). Finally,
the Morse-Smale complex is associated with the dually subdivided tetrahedral mesh ˙S (g) whose
quad-cells are defined by a triangle and one of its vertices. All relations are encoded strictly in
terms of the vertices and triangles of ˙
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Figure 5.2 illustrates the above observations for a Forman gradient field defined
on a triangle mesh ˙ , where the descending 2-cells (see Fig. 5.2c) are collections
of triangles from ˙ associated with the maxima (red critical points), while the
ascending 2-cells (see Fig. 5.2e) are collections of dual 2-cells (corresponding to
vertices from ˙) associated with the minima (blue critical points). Similarly, the
descending (see Fig. 5.2d) and ascending 1-manifolds (see Fig. 5.2e) correspond to
collections of primal and dual edges, respectively, associated with the saddles (green
critical points).

Using the above correspondence, it can be noted that the i -saddles of the Forman
gradient correspond to i -cells in the primal complex ˙ and to .d � i/-cells in the
dual complex ˙�. Equivalently a descending i -cell corresponds to an i -saddle, thus
it corresponds to a collection of primal i -cells or, equivalently, to a collection of dual
.d � i/-cells. Dually, an ascending i -cell corresponds to a .d � i/-saddle, and thus
to a collection of dual i -cells or, equivalently, to a collection of primal .d � i/-cells.

Note that all the descending and ascending manifolds are expressed entirely in
terms of d -cells and vertices. This is a relevant issue from an implementation point
of view, since there is no need to encode the primal i -cells (where 0 < i < d ), and,
of course, no need for encoding the dual complex.

5.1.2 Representing the Discrete Morse-Smale Complex

We define the dually subdivided mesh, denoted as ˙S , as the cell complex obtained
by the intersection of the primal complex ˙ and its dual ˙� (see Fig. 5.2a for a 2D
example).

Each maximal cell of ˙S , called maximal micro-cell, is the intersection of a
maximal cell � and of a maximal cell �� (corresponding to a primal vertex).
A micro-d -cell can be completely described by a pair of indices < d -cell,vertex>,
both within the primal complex.

For the 2D case, the micro-2-cells are quadrilateral cells (quads) called micro-
quads whose boundary consists of four micro edges. Micro-quads are defined by
a primal 2-cell � and a 2-cell in the dual complex ˙� (which is a vertex v in the
primal complex). Micro-quads are encoded as a pair .�; v/. Each primal 2-cell � is
decomposed into a micro-quad for each primal vertex on the boundary of � .

If the cells of the Morse complexes consist of elements from the primal complex
˙ and from the dual complex ˙�, the (macro) cells of the Morse-Smale complex
consist of elements from the dually subdivided mesh ˙S .

In the 2D simplicial case: a Morse-Smale 2-cell is a collection of micro-quads;
a Morse-Smale 1-cell is a collection of micro-edges on the boundary of two micro-
quads. Figure 5.2g illustrates the Morse-Smale complex associated with the Forman
gradient field of Fig. 5.2b. Note that each micro-quad is defined by the intersection
of a triangle (a primal 2-cell) and a dual 2-cell associated with one of its boundary
vertices, and that each (macro) 2-cell of the Morse-Smale complex is defined by
a maximum (red critical point), a minimum (blue critical point) and two saddles
(green critical points).
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5.2 Encoding the Forman Gradient

According to the primal/dual representation for discrete Morse and Morse-Smale
complexes described in Sect. 5.1 on a d -dimensional simplicial complex or regular
grid � , these complexes can be fully described in terms of vertices and d -cells
of � . On the contrary, for encoding a Forman gradient which is defined on all the
cells of � , a natural representation for � would be the incidence graph.

An Incidence Graph (IG) [4] is a topological data structure encoding explicitly
all the cells of a cell complex � and all the incidence relations among such cells.
For each i -cell � , it stores:

– the relation with the .i � 1/-cells in the combinatorial boundary of � , and
– the relation with the .i C 1/-cells in the star of � .

If we consider as discrete model a cubic grid, we can implicitly represent all such
boundary/co-boundary relations among its cells. Due to its regularity, all relations
can be represented by indexing the 3D cells of the grid. Moreover, since a Forman
gradient V defines a pairing between incident cells, V can be defined on such
representation as a bit vector based on the same indexing [5].

When encoding simplicial complexes, the incidence graph can be verbose,
since we would need to explicitly encode all simplices in the complex plus the inci-
dence relations above. Data structures, which encode only vertices and d -simplices
[6, 13], have been shown to be much more compact [1]. Thus, a new encoding for a
Forman gradient defined over simplicial complexes has been defined in [17], called
a compact gradient.

5.2.1 Encoding Triangle and Tetrahedral Meshes

The underlying simplicial complex ˙ is represented through an Indexed data
structure with Adjacencies (IA) introduced in [12]. The IA data structure is
a dimension-independent data structure encoding the 0- and d -simplices of ˙

explicitly, plus the following relations:

• for each d -simplex � :

– the d C 1 vertices of � ;
– the d C 1 d -simplices which share a .d � 1/-simplex with � ;

• for each 0-simplex v:

– the n coordinates of v plus its fields value, where n � d is the dimension of
the embedding space.

– one d -simplex incident in v;
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All the 0-simplices (vertices) of ˙ are stored in an array ˙0. Similarly, all the
d -simplices of ˙ are stored in an array ˙d . Note that each vertex v of a d -simplex
� defines a unique .d � 1/-face of � , which is the one that does not contain v.

5.2.2 Compact Gradient Encoding

When using the IA data structure for a triangle or a tetrahedral mesh, information
regarding the Forman gradient V are attached only to the d -simplices [10, 17]. Let
us consider a d -dimensional simplicial complex ˙ and a d -simplex � in ˙ . The
encoding associates with � a subset of the pairs involving its faces. Specifically, it
encodes all pairs of the discrete vector field of the form:

• .�i ; �j /, with �i ; �j belonging the star �� of simplex � ;
• .�i ; � 0/, where � 0 is one of the d -simplices adjacent to � and �i is the common

.d � 1/-face between � and � 0.

In a d -dimensional simplicial complex ˙ , a d -simplex � has
�

dC1
iC1

�
faces of

dimension i , and each face has in turn .i C 1/ faces of dimension .i � 1/. Since
each i -simplex can be paired with any of the simplices on its boundary or co-
boundary, there are

Pd�1
iD1

�
dC1
iC1

� � .i C 1/ possible pairs in the restriction of the
Forman gradient V to � . Adding the d C 1 additional pairs from a .d � 1/-
simplex on the boundary of � to an adjacent d -simplex provides a total ofPd�1

iD1

�
dC1
iC1

� � .i C 1/ C d C 1 possible pairs.
Let us consider a triangle mesh ˙ as an example. The encoding associates with

a triangle (2-simplex) � in ˙ a subset of the pairs involving its faces. Specifically,
� encodes all the pairs:

– .�1; � 0/, corresponding to an arrow from an edge �1 to a triangle � 0 (dotted arrows
in Fig. 5.3);

– .�0; �1/, corresponding to an arrow from a vertex �0 to an edge �1 (bold arrows in
Fig. 5.3).

Fig. 5.3 Set of arrows per triangle � . Bold blue arrows indicate pairs involving simplices
belonging to the boundary of � (and possibly � itself). Dotted red arrows indicate pairs involving
the edges of � and the adjacent triangles of � . (Color figure online)
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Then, in a triangle mesh, a triangle has
�

3
iC1

�
faces of dimension i , and each face

has .i C 1/ simplices of dimension .i � 1/ on its boundary. Thus, there are

2X

iD1

 
3

i C 1

!
� .i C 1/ D 3 � 2 C 1 � 3 D 9

possible pairs in the restriction of vector field V to � . Adding the three additional
pairs from an edge of � to an adjacent triangle gives a total of 12 possible pairs.

Similarly, a tetrahedron � in a tetrahedral mesh has
�

4
iC1

�
faces of dimension i ,

and

3X

iD1

 
4

i C 1

!
� .i C 1/ C 4 D 6 � 2 C 4 � 3 C 1 � 4 C 4 D 32

possible pairs.
Such collection of pairs from the Forman gradient V in the vicinity of a maximal

simplex � is referred to as a local frame of the Forman gradient. Since each such pair
within a local frame encodes a single bit of information (i.e. the presence or absence
of that pair), each local frame can be encoded using

Pd�1
iD1

�
dC1
iC1

� � .i C 1/Cd C1 bit
flags per d -simplex. This bit flag representation simplifies testing for the presence
of pairs as well as updates to the discrete vector field.

The restrictions imposed by discrete vector fields (i.e., that each simplex can be
involved in at most one pair) imply that there are significantly fewer valid local
frame configurations than the possibilities provided by the bit flag representation.
Thus, we can encode a local frame compressed representing only the valid configu-
rations.

In 2D, for example, there are have 12 arrows for a total of 212 D 4;096 cases.
However, for a Forman gradient, there are only 97 valid cases for a triangle. Thus,
all possible configurations can be encoded by using only one byte per triangle.
Similarly, in the 3D case, there are 32 arrows for a total of 232 D 4;294;967;296

possible configurations. Considering the valid configurations, there are only 51; 030

cases that can be represented with 2 bytes per tetrahedron.

5.3 Computing the Forman Gradient

We review the most relevant algorithms in the literature for computing discrete
Morse and Morse-Smale complexes based on a Forman gradient. In order to apply
Forman theory to a function f , which is given on the vertices (0-cells) of a simplicial
complex ˙ , the first step is to extend f to a function F defined on all cells of ˙

(or to a corresponding Forman gradient vector field), such that F.p/ D f .p/ for all
vertices p of ˙ . Note that such function F is not unique.
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The algorithm described in Sect. 5.3.1 is defined for triangle meshes where the
scalar function is computed as a pre-processing step. The algorithm presented in
Sect. 5.3.2 has been defined in a dimension-independent way for d -dimensional
simplicial complexes and computes the Forman gradient V based on the scalar
values given at the vertices of the complex. The algorithms presented in Sect. 5.3.3
and Sect. 5.3.4, have been defined for computing a Forman gradient on cell
complexes and implemented for regular grids. Both of them can be extended to
the simplicial case.

5.3.1 Forman Approach Based on Connolly’s Function

Forman theory has been used to build approximations of Morse and Morse-Smale
complexes by Cazals et al. [2], with the objective of segmenting surfaces of 3D
shapes representing molecules, where a scalar field, the Connolly’s function, is
computed. A triangle mesh ˙ embedded in 3D space is decomposed into an
approximation of a Morse-Smale complex using a discrete Connolly function f

[3] computed at each vertex of ˙ , which is then extended to the edges and triangles
to a Forman function F .

There are two kinds of discrete gradient paths for F . The first kind contains
vertices and edges, and the second kind contains triangles and edges. Thus, primal
and dual graphs G and G� of ˙ are considered. A Forman gradient vector field on a
closed 2-manifold is equivalent to a pair of interlaced primal and dual rooted forests,
which are spanning forests of the primal and dual graph of ˙ , respectively. There
is one tree component T in the primal (dual) forest for each minimum (maximum)
p of F , where p is the root of T . The discrete gradient vector field is directed from
the leaves to the root in the primal forest, and from the root to the leaves in the dual
forest. An example of interlaced forests of a Forman function F defined on a cube
is illustrated in Fig. 5.4. Function F has one maximum (top face), one minimum
(lower left vertex), and no saddles.

Fig. 5.4 Interlaced primal
and dual forest of a Forman
function F defined on a cube.
All edges belong either to the
primal forest (double lines),
or to the dual forest (dashed).
There is one critical vertex
(lower left vertex), and one
critical face (top face), both
marked with a hollow circle

The algorithm, which computes a discrete gradient vector field on ˙ , works in
several steps. First, minima and maxima of F are found. Minima are found among
the vertices of ˙ (and of G), while maxima are found among the triangles of ˙
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(vertices of G�). Second, the dual spanning forest is built, with roots located at the
maxima of F . Edges of ˙ are processed in increasing order with respect to the
function value, and are marked as visited and added to the dual forest if they do
not connect components corresponding to different maxima of F . Third, the primal
forest is constructed in a similar way, with minima of F as roots, considering only
the edges not marked as visited.

Once a discrete gradient field of F is constructed, it can be used to define an
approximation of the Morse-Smale complex on ˙ . Since minima and maxima of
F are located on vertices and faces of ˙ , respectively, ascending and descending
regions are defined on different elements of ˙ . The ascending region of a minimum
p is its component in the primal forest, and it consists of vertices and edges.
The descending region of a maximum q is its component in the dual forest, and
it consists of triangles and edges. These regions are not manifolds. Thus, each
descending region is extended to a manifold by adding inner vertices and edges.
Each ascending region is extended to a manifold by adding the triangles having all
three vertices in the region. The boundary of each ascending cell is then composed
of triangles. Each such triangle may remain unclassified (not belonging to any
ascending cell), may be assigned to all ascending cells it bounds, or may be assigned
to an ascending cell by a majority rule. An approximation of the Morse-Smale
complex of f is defined as the intersection of ascending and descending manifolds.

5.3.2 A Forman-Based Approach for Tetrahedral Meshes

The algorithm proposed by King et al. in [11] takes as input a scalar field f defined
over the vertices of a tetrahedral mesh ˙ . It computes a Forman gradient V by
subdividing the simplices of ˙ into three lists, denoted as A, B and C , such that:

• lists A and B have the same length,
• for each i -simplex �j 2 A, .�j ; �j / 2 V , where �j is an .i C 1/-simplex in B ,
• C is the set of critical simplices.

The algorithm builds the Forman gradient V recursively on the lower link Lk�.v/

of each vertex v in ˙ (see Sect. 2.2.1). Lists A, B and C are initialized as empty.
For each vertex v in ˙ , if Lk�.v/ is empty, then v is a minimum and it is added
to C . Otherwise, v is added to A and the algorithm is recursively applied on the
lower link L�.v/, producing lists A0, B 0, C 0. Such lists define the Forman gradient
V 0 on Lk�.v/. The recursive call is performed until all the lower links are empty.

The Forman gradient V on v is computed as follows (the operation denoted by
symbol � takes two simplices and returns the simplex generated by the union of
their vertices):

• the lowest critical vertex w is chosen from C 0 and the edge v � w is added to B ,
• for each i -simplex � (different from w) in C 0, the .i C 1/-simplex v � � is added

to C ,
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• for each i -simplex � in A0 the .i C1/-simplex v�� is added to A and the .i C2/-
simplex v � V 0.�/ is added to B .

The computed Forman gradient can produce an arbitrary large number of critical
simplices compared to actual critical points of the original scalar function f . Thus,
the algorithm uses a persistence value � � 0 to cancel critical simplices whose
importance is too low. Intuitively, persistence measures the importance of a pair
of critical cells (a definition of persistence is provided in the context of multi-
resolution, in Sect. 6.1.3). Once the lower link of a vertex has been processed, a
persistence-based cancelling step is performed. For each critical i -simplex � , all
the gradient paths to critical .i � 1/-simplices are found. A critical i -simplex �

can be canceled with critical .i � 1/-simplex � if and only if there is only one
gradient path from � to � . The effect of a cancellation is to reverse the gradient
path connecting � and � . This is a discrete version of the cancel lation operator
described for Morse-Smale complexes in Sect. 6.1.1.

In Fig. 5.5, an example of the Forman gradient extraction on the link of a vertex
is illustrated. The star of vertex 9 is shown in Fig. 5.5a. The application of the
algorithm to the lower link of vertex 9, illustrated in Fig. 5.5b, produces the Forman
gradient V 0 defined by the following lists :

A0 D 3; 4; 6; 7; 8
B 0 D Œ3; 2�; [4,1]; [6,5]; [7,1]; [8,2]
C 0 D 1; 2; [4,3]; 5; [7,6]; [8,5]

As shown in Fig. 5.5c, the lists are updated after the cancellations performed
on V 0. Vertex 2 is cancelled with edge (3,4) while vertex 5 is cancelled with edge
(6,7). Then, V 0 is extended to V obtaining the following lists (shown in Fig. 5.5d).

A D 1; [3,9]; [8,9]; [5,9]; [7,9]; [9,4]
B D Œ1; 9�; [3,9,2]; [9,8,2]; [5,9,6]; [9,7,1]; [9,4,1]
C D Œ2; 9�; [5,9]; [3,4,9]; [5,8,9]; [6,7,9]

In Fig. 5.5e, the cancellation is performed also on V on the first pair of critical
simplices, the edge (2,9) and the triangle (3,4,9). In Fig. 5.5f, the final gradient
obtained after performing all the possible cancellations is shown.

5.3.3 The Algorithm by Gyulassy et al.

The algorithm presented by Gyulassy et al. in [7] computes the Morse-Smale
complex starting from a regular d -dimensional cell complex � with scalar field
f defined at the vertices of � . Function f is extended to a Forman function F ,
defined on all cells of � , such that F.�/ is slightly larger than F.�/ for each cell
� and each face � of � . For such function F , all cells of � are critical. A discrete
gradient vector field is computed by assigning gradient arrows in a greedy manner
during sweeps over the cells of � according to increasing dimension and increasing
F value. Each current non-paired and non-critical cell in the sweep is paired with
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Fig. 5.5 (a) The lower star of vertex 9. The Forman gradient V 0 on the link of 9 before (b) and after
(c) the cancellation of critical edge (4,3) and vertex 2, and edge (7,6) and vertex 5. The Forman
gradient V (d) before the cancellation step, (e) after one cancellation and (f) the final Forman
gradient V obtained in the lower star of vertex 9. The critical vertices and edges are depicted with
dotted lines and critical triangles are depicted in grey

its co-face with only one face not marked (as critical or as already paired). If there
are several of such co-faces the lowest one is taken. If there is no such co-face, a cell
cannot be paired, and it is critical. Pairs built in this way define a discrete gradient
vector field.

The order in which the cells in � are processed by the algorithm is not completely
deterministic, since there could be many different i -cells in � with the same value
of function F . As a consequence, some unnecessary critical cells may be produced
by the algorithm. In [15,16] a similar approach for computing a Forman gradient on
two-dimensional and three-dimensional regular grids, respectively, has been defined
dealing with this problem. A weighted discrete function is defined recursively on
all the cells of the complex such that, when two cells share a common face whose
function value is the maximum among both face sets, then the tie is broken using the
second maximum face whose vertex sets are disjoint from the above common face.
It has been proven that the pairs found by the algorithm are unique and independent
of the order in which the cells are considered, thus providing a basis for parallelizing
the algorithm.
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5.3.4 The Algorithm by Robins et al.

Robins et al. [14] propose a dimension-independent algorithm for constructing a
Forman gradient vector field on a regular grid K with scalar field values given at
the vertices, and present applications to the 2D and 3D images. The approach has
been extended to triangle and tetrahedral meshes in [10, 17]. We describe here the
version of the algorithm for regular grids. The algorithm processes the lower star
of each vertex v in K independently. For each cell � in the lower star, the value
max
p2�

f .p/ D f max.�/ is considered. An ascending order is generated based on

the values f max.�/ and the dimension of � , such that each cell � comes after its
faces in the order. An example of such an order is obtained by listing the field values
of the vertices of a simplex � in increasing order, and considering a lexicographic
order on the resulting strings of integers.

If the lower star of vertex v is empty, then v is a local minimum and it is added to
the set C of critical cells. Otherwise, the first edge e in the order is chosen and pair
.v; e/ is added to V .

The star of v is processed using two queues, PQone and PQzero, correspond-
ing to i -cells with one and zero unpaired faces, respectively. All edges in the star
of v different from e are added to PQzero. All co-faces of e are added to PQone

if the number of unpaired faces is equal to one. If queue PQone is not empty, the
first cell ˛ is removed from the queue. If the number of unpaired faces of ˛ has
become zero, ˛ is added to PQzero. Otherwise, .˛; pair.˛// is added to V , where
pair.˛/ is the unique unpaired face of ˛, pair.˛/ is removed from PQzero and
all the co-faces of either ˛ or pair.˛/ with number of unpaired faces equal to one
are added to PQone.

If PQone is empty and PQzero is not empty, one cell ˇ is taken from PQzero.
Cell ˇ is added to the set C of critical points and all the co-faces of ˇ with number
of unpaired faces equal to one are added to PQone.

If both PQzero and PQone are empty, then the next vertex is processed. Result
of the algorithm is the set C of critical cells and the pairing of non-critical cells,
which define the Forman gradient vector field V .
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Fig. 5.6 Processing the lower star of vertex 9 using the algorithm in [14] (a) Input grid with
values of f . (b) Vertex 9 is paired with edge 92. (c) Edge 94 is paired with triangle 9432. (d)
Edge 97 is paired with triangle 9741. (e) Edge 95 is paired with triangle 9765. (f) Face 9852 is
recognized as critical
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In Fig. 5.6, we show the main steps of the algorithm in [14] when processing
the lower star of vertex 9 (see Fig. 5.6a). Each vertex is labeled with its scalar field
value. Other cells are labeled by the lexicographic order. The lower star of 9 is not
empty, and thus 9 is not a minimum. The lowest edge starting from 9 (edge 92),
is chosen to be paired with 9. All the other edges are inserted in PQzero and the
co-faces of 92 with a single unpaired face (faces 9432 and 9852) are inserted in
PQone (Fig. 5.6b). The first face is taken from PQone (face 9432) and coupled
with its single unpaired face (edge 94). The face 9741, which is a co-face of 94
with exactly one unpaired face, is inserted in PQone and edge 94 is removed from
PQzero (Fig. 5.6c). Face 9741 is taken from PQone and paired with edge 97,
which is removed from PQzero. Face 9765 is inserted in PQone and successively
removed to be paired with edge 95 (Fig. 5.6d and e). Face 9852 is removed from
PQone and declared critical, as it has no unpaired faces (Fig. 5.6f).

In the 3D case, the algorithm in [14] does not create spurious critical cells.
The extracted critical cells are in a one-to-one correspondence with the changes
in topology in the lower level cuts of cubical complex K .

Weiss et al. [17] and Iuricich [10] have provided the first efficient implementation
on tetrahedral meshes of the algorithm for computation of the combinatorial
gradient vector field, based on the primal-dual data structure for representing
discrete Morse complexes, described in Sect. 5.2.2.

5.4 Computing Discrete Morse and Morse-Smale Complexes

An additional advantage of Forman theory, in comparison with other approaches, is
an efficient and elegant mechanism for retrieving the cells of the Morse complexes
(i.e., the descending and ascending manifolds), the cells of the Morse-Smale com-
plex, and the Morse incidence graph (see Sect. 1.3) from a d -dimensional complex
� endowed with a local discrete gradient field encoded with a compact gradient
[10, 17]. We discuss here how to extract the descending and ascending manifolds
based on the cells of the primal complex � and the topological relations involved.
Generally speaking, a descending or ascending i -cell is extracted by traversing the
primal/dual complex following the pairs of the gradient field, and starting from the
cell corresponding to the critical point associated with the descending/ascending
i -cell. In 2D, all the V-paths can be visited in linear time visiting all the cell pairs at
most once. However, in three dimensions and higher, gradient paths can branch and
merge multiple times resulting in a many-to-many adjacency relationship, between
critical cells not belonging to the extremal graph, leading to an overall extraction
complexity of O.m2/, where m denotes the number of vertices of � . For these
reasons some proposal have been made for reducing the worst-case time complexity
in 3D [5, 10, 15, 17].
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5.4.1 Descending Morse Complex

The i -cells of the descending Morse complex �d are naturally defined as a collection
of primal i -cells of � . The computation of a descending i -cell always starts from
a critical i -cell � of � . All the .i � 1/-cells in the boundary of � are selected
and, among them, only the .i � 1/-cells paired with an i -cell different from � are
considered. From such i -cells, the breadth-first traversal of the complex continues
until all the V-paths starting from � have been visited.

Figure 5.7 shows the computation of a descending 2-cell on a triangle mesh ˙ .
The computation starts from a critical triangle (maximum) � (dark triangle in
Fig. 5.7). Among the edges on the boundary of � , the edges paired with a triangle
different from � are considered. While navigating such arrows, the triangles reached
are enqueued in a breadth-first traversal of the triangles of ˙ until all the V-paths
starting from � have been visited.

Fig. 5.7 Extraction of the descending 2-cell corresponding to a maximum (critical triangle)

5.4.2 Ascending Morse Complex

The i -cells of the ascending Morse complex �a are naturally defined as a collection
of i -cells of the dual complex � � or equivalently as a collection of .d � i/-cells of
� . The computation of an ascending i -cell starts from a critical .d � i/-cell � of � .
All the .i C 1/-cells in its star are selected and, among them, only the .i C 1/-cells
paired with an i -cell different from � are considered. From such i -cells the breadth-
first traversal of the complex continues until all the V-paths ending in � have been
visited in reverse order.

Figure 5.8 shows the computation of an ascending 2-cell on a triangle mesh ˙ .
The computation starts from a critical vertex (minimum) � (marked by a black dot
in Fig. 5.8). All the edges on the immediate co-boundary of � are considered; among
them only the edges paired with a vertex different from � are considered. Navigating
such arrows, the vertices reached are enqueued in a breadth-first traversal of the
vertices of ˙ until all the V-paths ending in � have been visited in reverse order.
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Fig. 5.8 Extraction of the ascending 2-cell corresponding to a minimum (critical vertex)

The computation of the ascending/descending Morse complex is performed
through constant time operations on each cell on the V-paths visited. In 2D, the
extraction of a descending i -cell is performed in linear time in the number of the
i -cells, since they are visited only once traversing the V-paths. The complexity for
the extraction of an ascending i -cell is the same.

In higher dimensions, the situation is more complex. For instance, in 3D, gradient
paths can branch and merge, potentially resulting in many-to-many adjacency
relationships between critical 1-cells and critical 2-cells. For example, let us
consider a tetrahedral mesh ˙ with m vertices whose discrete Morse function
contains O.m/ critical 1-cells, each of which is connected to O.m/ critical 2-cells.
This produces a discrete Morse complex containing O.m2/ gradient paths between
critical 1- and 2-cells. Since the number of critical 1- and 2-cells is bounded by m,
the number of cells visited during the breadth-first search is also bounded by m and
so the complexity of the whole extraction is in O.m3/. Using a bit flag array to
maintain the visited cells the standard breadth first traversal of the 1- and 2-cells can
be employed. In [5,17] the worst-case time complexity is reduced to O.m2/, where
m2 denotes the number of 2-cells in � , forcing a single path not to visit the same
cell more than once. Cells are marked, as visited or not visited by a V-path, and
this leads to an increase in the storage. Overcoming this increase in the storage cost
is crucial for a parallel implementation. The idea described in [16] is to interpret
the substructure of the gradient paths as a Directed Acyclic Graph (DAG). Then,
avoiding the standard breadth first traversal of the DAG, the path originating from
a DAG node is visited only when all the paths entering it have been visited. In this
way the common paths are visited only once and only the initial cells, where the
common path starts, are visited more than once. This leads to a worst-case time
complexity of O.m2 logm2/ without increasing the storage cost.
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5.4.3 Morse-Smale Complex

The i -cells of the Morse-Smale complex are defined as a collection of the i -cells
of the dually subdivided mesh �S obtained by intersecting the primal complex
Gamma with its dual complex � � (see Sect. 5.1.2).

A maximal cell of the Morse-Smale complex corresponds to a pair of critical
points (a maximum and a minimum) and is encoded as a collection of so-
called micro-d -cells in the dually subdivided mesh �S obtained by intersecting
the descending d -cell (corresponding to the maximum) and the ascending d -cell
(corresponding to the minimum), which are collections of d -cells and vertices,
respectively.

Let us consider a tetrahedral mesh. A 3-cell of the Morse-Smale complex
corresponds to a pair of critical points (a maximum and a minimum) and is encoded
as a collection of micro-hexahedra in the dually subdivided mesh ˙S obtained
by intersecting the descending 3-cell (corresponding to the maximum) and the
ascending 3-cell (corresponding to the minimum), which are collections of 3-cells
and vertices, respectively. Moreover, in the 3D case, the 3-cells of the Morse-
Smale complex are bounded by a set of 2-cells corresponding to pairs of saddles
(1-saddle and 2-saddle) and composed by a collection of micro-quads. Considering
the primal/dual representation described in Sect. 5.1, for each pair of face-adjacent
micro-hexahedra the common micro-quad is part of the Morse-Smale 2-cell if the
labels of the two hexahedra are different.

The 1-skeleton of the Morse-Smale complex is composed of different types
of 1-cells. For the 2D case, the 1-cells corresponding to a maximum-saddle or
a minimum-saddle are the 1-manifolds of the ascending and descending Morse
complex, respectively. In the 3D case, beside 1-cells corresponding to a maximum-
2-saddle or a minimum-1-saddle, there are 1-cells called saddle connectors, which
connect 1-saddles with 2-saddles. A saddle connector, between a 1-saddle p and a
2-saddle q, is computed by extracting the descending and ascending 2-manifolds
associated with p and q. The descending 2-manifold extraction is performed first,
and all the 2-cells traversed are marked as visited. Then, starting from the critical
primal edge e corresponding to p and its adjacent edges, the same process as
for extracting ascending 2-manifolds is performed, but only the 2-cells previously
marked as visited are considered.

5.4.4 Morse Incidence Graph

The Morse Incidence Graph (MIG) represents the incidence relations between the
cells of the Morse and Morse-Smale complexes defined on � (see Sect. 1.3). In
the discrete case, such relations are computed traversing the V-paths of the compact
gradient V defined on � , computing all the Morse cells in one of the two complexes,
saving one node for each critical simplex and connecting two nodes in the graph with
an arc if there is a separatrix V-path in V connecting the two corresponding critical
simplices.
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Let us consider the 2D case. When computing the MIG G D .N; A; '/ on a
two-dimensional scalar field on which a Forman gradient V has been defined, we
start adding to N one node p for each critical cell � in V . We consider the vertex
v with highest function value in � , and the index of v is stored in p. Then, for each
maximum node p corresponding to a critical 2-cell � , the descending 2-cell of �

is computed. The set of 2-cells visited during the V-path traversal are stored in the
node and p is connected, with an arc in A, to all the saddle nodes corresponding to
critical edges reached by V-paths. Dually, for each minimum node p corresponding
to a critical vertex v, the ascending 2-cell of v is computed. The set of vertices visited
during the V-paths traversal are stored in the node and p is connected, with an arc
in A, to all the saddle nodes corresponding to critical edges reached by the V-paths
ending at v. Note that the descending 2-cells are stored as collections of triangles
while the ascending 2-cells are stored as collections of vertices (and, thus, of dual
2-cells).

In the 3D case, let us consider the extremal graphs, i.e., the subgraphs of the
incidence graph defined between nodes corresponding to minima and those nodes
corresponding to 1-saddles (or maxima and 2-saddles). The extremal graphs are
dimension independent. In the 3D case, these two subgraphs of the MIG are
computed in the same way as in 2D case. A new step is introduced to compute
the saddle connectors, i.e., arcs of the MIG between 1-saddles and 2-saddles.
Considering the 1-skeleton extraction of the Morse-Smale complex described in
the previous section, saddle connectors are extracted in a similar fashion.

Figure 5.9 illustrates examples of the features extracted from the Fighter dataset,
including the 3-cells of the Morse complex (Fig. 5.9b) and the combinatorial
representation (Fig. 5.9c) of the MS complex.

Fig. 5.9 Example of features extracted from the Fighter dataset, representing data from a wind
tunnel model developed at NASA Langley Research Center. (a) The original field values. (b) The
Morse 3-cells, thresholded by region sizes to highlight the larger 3-cells decomposing the parts at
higher turbulence. (c) The graph representing the combinatorial structure of the MS complex

5.5 Summary and Comparisons

In this chapter, we have described some key results obtained in the literature
based on Forman theory. In Sect. 5.2, we have seen that a Forman gradient can
be efficiently encoded for simplicial complexes as well as regular grids. The gap
between the storage costs required for encoding a Forman gradient through the IA
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Table 5.1 Evaluation of the
data structures exemplified on
some real datasets

Dataset j˙0j j˙1j j˙2j j˙3j IA IG

VisMale 5M 36M 62M 31M 1.09 GB 5.89 GB

Foot 5M 33M 57M 28M 1.01 GB 5.4 GB

Bonsai 5.9M 40M 69M 34M 1.21 GB 6.54 GB

For each dataset, we show number of vertices ˙0, number of
edges ˙1, faces ˙2 and tetrahedra ˙3 . Cost in Gigabytes (GB)
of the IA and IG encoding the tetrahedral mesh ˙ and the
Forman gradient

Table 5.2 Algorithms for the extraction of Morse complexes and Morse-Smale complexes

Algorithm Time Input Output

Cazals et al. [2] O.m log m/ Triangle mesh Morse and Morse-Smale
complexes

King et al. [11] O.m/ Simplicial complex Forman gradient

Gyulassy et al. [7] O.m/ Cubic grid Forman gradient

Robins et al. [14] O.m/ Cubic grid Forman gradient

Günther et al. [5] O.mi / Cubic grid Morse and Morse-Smale
complexes

Shivashankar et al. [16] O.mi log mi / Cubic grid Morse and Morse-Smale
complexes

Weiss et al. [17] O.m/ Simplicial complex Forman gradient

The reported time complexity is in the worst case, in terms either of the number m of vertices, or
of the number mi of i -cells of the input complex

data structure (or any other data structure which encodes only d -cells and 0-cells)
and the Incidence Graph (IG), has been evaluated for some real datasets in [10].
Results are subsumed in Table 5.1. We can notice that the IG occupies four to five
times more space than the IA data structure.

In Sect. 5.3, we have described the most widely used algorithms, based on
Forman theory, to extract the cells in the Morse or Morse-Smale complexes, by
computing first a Forman gradient V extending the scalar function f , defined on
the vertices of a d -complex � , to all the cells of � .

Generally speaking, a scalar function defined on the vertices of a cell complex
� is not required in order to compute a discrete Morse complex on � . This is the
case where a discrete Morse complex is used for homology or persistent homology
computation [8, 9]. Since we are interested in the analysis of a scalar field f , we
focused on methods for computing a Forman gradient on the underlying geometry
of the scalar field [2, 7, 11, 14]. Since Forman theory has been defined for cell
complexes, most of the algorithms assume to work on generic cell complexes,
although in practice they will be applied to regular grids or simplicial complexes.

The algorithms described in [7, 11, 14] process each vertex of � independently,
resulting in a worst-time complexity of O.m/, with m number of vertices of � .
The algorithm in [2], instead, needs an ordering of all the edges of the simplicial
complex. It computes directly the ascending and descending regions, intersecting
them to obtain the Morse-Smale 2-cells in a second step. Algorithms focused on the
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Forman gradient computation need traversing the gradient paths to obtain the Morse
and Morse-Smale cells.

In Table 5.2 we show a summary of the algorithms described in this chapter
indicating the input format, the cells of the Morse or Morse-Smale complex
computed as output and the worst-case time complexity. We denote with m the
number of vertices of the d -dimensional complex � and with mi the number of
i -cells.
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Chapter 6
Simplification and Multi-Resolution
Representations

Although Morse and Morse-Smale complexes encode the behavior of a scalar field
f and the topology of its domain while abstracting from fine geometric details,
simplification of these complexes is an important issue to eliminate noise and reduce
over-segmentation. Moreover, different users usually have different requirements in
terms of degree of simplification, which usually vary over time and location within
the field domain. Thus, a multi-resolution representation of the morphology of the
field is critical for supporting interactive analysis and exploration of data.

In Sect. 6.1, we describe two simplification operators for Morse functions, and for
Morse and Morse-Smale complexes, called cancellation and remove, respectively,
and we present some results from their experimental comparison.

In Sect. 6.2, we present multi-resolution models for the morphology of scalar
fields. These have been designed mainly for two-dimensional scalar fields (i.e.,
terrains). We describe two models in more detail: the first one provides a multi-
resolution description of the Morse incidence graph in arbitrary dimensions, while
the second one addresses the problem of coupling a multi-resolution representation
of the geometry and of the morphology of a terrain.

6.1 Simplification Operators

We describe here two simplification operators for Morse and Morse-Smale com-
plexes proposed in the literature, namely cancellation [18] and remove [6]. Both
operators eliminate a pair of critical points of a scalar field, which corresponds to
the elimination of a pair of cells in the Morse complexes and of a pair of vertices
in the Morse-Smale complex. The difference is that cancellation often introduces a
large number of cells (of dimension higher than zero) in the Morse-Smale complex,

© The Author(s) 2014
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while this never happens with remove. On large data sets, cancellation can create
complexes that exceed practical memory capabilities [17], while remove always
reduces the size of the complexes generated by applying it.

6.1.1 cancellation Operator

The cancellation operator [20] simplifies a Morse function f defined on a manifold
M by eliminating two critical points p and q and locally modifying the integral
lines originating at or converging to them [20]. The two critical points p and q can
be cancelled if

1. p is an i -saddle and q is an .i C 1/-saddle, and
2. p and q are connected through a unique integral line of f .

After the cancellation of p and q, each critical point r of index at least i C 1,
which was connected through an integral line to i -saddle p, becomes connected to
each critical point of index at most i , which was connected to .i C1/-saddle q before
the cancellation.

In Morse complexes, a cancellation removes two cells both in the ascending
and descending Morse complexes, and locally modifies the incidence relation
between the remaining cells. In a descending (and, symmetrically, ascending) Morse
complex, an i -cell p and an .i C 1/-cell q can be cancelled if cell p appears exactly
once on the boundary of cell q. After cancellation, each cell r , which was on the
boundary of .i C1/-cell q, becomes part of the boundary of each cell s which was in
the co-boundary of i -cell p. In the Morse-Smale complex, there is a new k-cell for
each two cells s and r that become incident to each other in the Morse complexes
after cancellation and that differ in dimension by k.

In the Morse incidence graph G representing the incidence relation (encoded
by arcs in A) between the cells in the Morse complexes (encoded by nodes in
N ), a cancellation deletes two nodes from N , and locally modifies the connection
between the neighboring nodes. An i -node p and an .i C1/-node q can be cancelled
if node p is connected to node q through an arc with label equal to 1. After
cancellation, each i -node r , which was connected to .i C 1/-node q, becomes
connected to each .i C 1/-node s which was connected to i -node p.

In 2D, a cancellation removes an extremum and a saddle. A cancellation of a
maximum p and a saddle q is feasible on a Morse incidence graph if 1-node q is
connected with two different 2-nodes p and p0. After cancellation, 1-node q (saddle)
and 2-node p (maximum) are deleted. The corresponding cells in the descending
Morse complex are contracted into the cell represented by 2-node p0. All the 1-
nodes connected to p before cancellation are redirected to p0. A cancellation of a
minimum p and a saddle q is entirely dual.

In Fig. 6.1, we show an example of a cancellation of a maximum p and a saddle
q. In the descending Morse complex, shown in Fig. 6.1 (left), 1-cell q is deleted and
2-cell p is merged with the other 2-cell p0 incident in q. In the Morse incidence
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graph (see Fig. 6.1 (right)), nodes p and q are deleted as well as all their incident
arcs. Nodes r1, r2 and r3 are connected to p0 as the corresponding 1-cells become
part of the boundary of p0.

In 3D, there are two instances of cancellation: one instance applies to an
extremum and a saddle (a maximum and a 2-saddle, or a minimum and a 1-saddle),
the other instance applies to two saddle points. The first instance of cancellation is
exactly the same as in 2D case.

Fig. 6.1 Cancellation of a maximum p and a saddle q on a 2D descending Morse complex (left)
and on the corresponding Morse incidence graph (right). Colored regions correspond to the 2-cells
of the descending Morse complex �d . Critical points are depicted as blue down-pointing triangles
(minima), green squares (saddles) and red up-pointing triangles (maxima). (Color figure online)

The second instance of cancellation is more involved. The number of cells in the
Morse complexes that become incident to each other (and thus, the number of cells
in the Morse-Smale complex and the number of arcs in the Morse incidence graph)
may increase after such a cancellation. Let p and q be a 1-node (1-saddle) and a
2-node (2-saddle), respectively. Let R D frj ; j D 1; ::; jmaxg be the set of 2-nodes
connected to p and different from q, and let T D ftk; k D 1; ::; kmaxg be the set
of 1-nodes connected to q and different from p. The application of cancellation to
1-node p and 2-node q removes both p and q from N and removes jmax C kmax C 1

arcs from A, but it adds jmaxkmax arcs to A, i.e., one for each pair .rj ; tk/, where
rj 2 R and tk 2 T .

In Fig. 6.2, we show an example of a cancellation of a 1-saddle p and a 2-saddle
q. In the Morse incidence graph (see Fig. 6.2, left), nodes p and q are removed and
the nodes r1, r2 and r3, previously connected to p, become connected to nodes t1, t2
and t3, previously connected to q. In the corresponding descending Morse complex
(see Fig. 6.2, right) 1-cell p and 2-cell q are removed and the 2-cells r1, r2 and r3

are stretched to fill the space of q, with t1, t2 and t3 becoming part of their boundary.
Several strategies have been proposed in [17], which aim at postponing a

cancellation that would introduce a number of arcs greater than a predefined
threshold, or nodes having more than a certain number of incident arcs.
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6.1.2 remove Operator

In [7], a new dimension-independent simplification operator, called remove, has
been defined. It has two instances, namely removei;iC1 and removei;i�1, for
1 � i � d � 1, defined on a d -dimensional Morse function f , on its associated
Morse complexes and on the corresponding Morse incidence graph.

In Morse complexes, a remove deletes two cells both in ascending and descend-
ing Morse complexes, and locally modifies the incidence relations between the
remaining cells. Differently from a cancellation, the number of cells in the resulting
Morse-Smale complex is constantly reduced also in 3D.

Fig. 6.2 Application of cancellation of a 1-saddle p and a 2-saddle q on a Morse incidence graph
(a) and on the 1- and 2-cells of the descending Morse complex (b) in 3D. Colored cubes correspond
to the 3-cells in the descending Morse complex �d . Critical points are depicted as green squares
(1-saddles) and purple dots (2-saddles). Dotted lines correspond to the arcs of the Morse incidence
graph. (Color figure online)

On the descending Morse complex, removei;iC1 operator deletes an i -cell q and
an .i C 1/-cell p, where q appears exactly once on the boundary of p. It is feasible
if i -cell q is incident to at most one other .i C 1/-cell p0 different from .i C 1/-
cell p. It merges .i C 1/-cell p into .i C 1/-cell p0 by deleting i -cell q. Operator
removei;i�1.q; p; p0/ is dual to the previous one.

On the Morse incidence graph, removei;iC1.q; p; p0/ deletes an i -node q and an
.i C 1/-node p if and only if q is connected to p through an arc labeled with 1, and
to at most one .i C 1/-node p0 different from p. We denote as R the set of i -nodes
rj connected with p, Z the set of .i � 1/-nodes zk connected with q and S the set
of .i C 2/-nodes sh connected with p. Operator removei;iC1.q; p; p0/ deletes all
the arcs of the form .p; sh/, .q; zk/, .p; q/ and .p0; q/. Each node rj connected to p

with an arc of the form .p; rj /, is redirected to p0 with an arc .p0; rj /.
In 2D, remove is equivalent to cancellation described in Sect. 6.1.1: remove1;2

is equivalent to the cancellation of a saddle and a maximum, while remove1;0 is
equivalent to the cancellation of a saddle and a minimum.

In 3D there are four remove operators. remove2;3.q; p; p0/ and remove1;0

.q; p; p0/ are the 3D extension of the same operators present in 2D. They are
equivalent to the cancellation of a 2-saddle and a maximum, and to the cancellation
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of a 1-saddle and a minimum, respectively. Operators remove1;2.q; p; p0/ and
remove2;1.q; p; p0/ are introduced specifically for the 3D case and remove a 1-
saddle and a 2-saddle. On the descending complex, remove1;2.q; p; p0/ is feasible
if 1-cell q is shared by exactly two different 2-cells p and p0, and if q appears
exactly once in the boundary of p. The operator removes 1-cell q and merges 2-
cell p into p0. The boundary of p becomes part of the boundary of p0. Operator
remove2;1.q; p; p0/ is dual.

Fig. 6.3 remove1;2.q; p; p0/ of a 2-saddle p and a 1-saddle q in 3D. Colored regions correspond
to 3-cells of the descending Morse complex �d . Critical points are depicted as blue down-pointing
triangles (minima), green squares (1-saddles), purple dots (2-saddles) and red up-pointing triangles
(maxima). Dotted lines correspond to the arcs of the Morse incidence graph. (Color figure online)

In Fig. 6.3 we show an example of a remove1;2.q; p; p0/ in 3D. In the descending
Morse complex, the 2-cells corresponding to p and p0 are merged by deleting q. In
the Morse incidence graph, nodes p and q are removed and all the arcs connecting
them with the nodes in Z and S are removed as well. Nodes r1, r2 and r3 are then
connected with p0.

6.1.3 Comparison of cancellation and remove Operators

For three and higher dimensional scalar fields, Morse complexes admit a number
of feasible cancellation operators greater than or equal to the number of feasible
remove operators: a cancellation is feasible for any p and q that are connected
through one integral line, while a remove is feasible if, in addition, q is connected to
at most one saddle p0 different from p of the same index as p. As a result, remove
operator constantly reduces the number of arcs in the Morse incidence graph and,
consequently the number of cells in the corresponding Morse-Smale complex. The
same does not hold using cancellation, as shown in Sect. 6.1.1.

Two macro-operators have been defined in [19] to increase the number of viable
remove simplifications at any time. These macro-operators are implemented as a
sequence of extremum-saddle operators followed by a saddle-saddle operator. The
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first macro-operator collapses a 2-saddle p and a 1-saddle q into another 2-saddle
p0. For all the 2-saddles tj connected to q, a remove2;3.tj ; p1; p0

1/ is performed to
eliminate the 2-saddles connected to q and different from p and p0. When p and
p0 are the only 2-saddles connected to q, the remove1;2.q; p; p0/ is performed. The
second macro-operator is dual.

In [8], two simplification algorithms are developed, based on remove and
cancellation, respectively. A persistence value is associated with each simplifica-
tion operator. Persistence measures the importance of the pair of critical points,
candidate for cancellation, and is equal to the absolute difference in function
values between them. Simplification algorithms compute all feasible simplifications,
evaluate their persistence and insert them in an ordered queue in increasing order of
persistence. In [8, 19] a comparison between the two algorithms has been done. It
has been observed that saddle-saddle operators are likely to be performed early in
the simplification process (such simplifications can be interpreted as noise removal).
With a simplification algorithm based on cancellation, a large number of arcs will be
introduced in the Morse incidence graph, affecting both the efficiency (speed) of the
algorithm and its versatility (the number of feasible simplifications). When the data
set is small and the number of simplifications is high compared to the total number
of nodes, the two algorithms behave quite similarly. With the growth of the size
of the data set they start to differ: by using remove instead of cancellation, a 20 %
more compressed Morse incidence graph can be obtained in about half the time. On
several data sets, it has been noticed that by using cancellation the number of arcs
remains approximately the same while by using remove their number immediately
decreases.

6.2 Multi-Resolution Models

The first hierarchical representation of scalar fields, called hierarchical watershed
representation [1], can be found in image analysis to reduce over-segmentation
naturally present when watershed transformation is used as a segmentation tool.
Most common hierarchical models for Morse complexes have been applied to
terrain modeling. Such models can be applied to 2-manifolds with boundary
embedded in 3D space and endowed with a scalar field [2, 4, 7, 11, 12, 14].

In Sect. 6.2.1, we review some approaches to the multi-resolution representations
of 2D scalar fields proposed in the literature. In Sect. 6.2.2, we discuss a topological
multi-scale model for scalar fields in arbitrary dimensions. In Sect. 6.2.3, we discuss
a combined topological and geometric multi-scale model for terrains.

Before that, we introduce the basic idea underlying all such multi-resolution
models. They all rely on a sequence of simplification operators applied to an
initial representation at full resolution of the reference structure (e.g., the Morse-
Smale complex, the Morse incidence graph, etc.), and producing a final coarse
representation of the same structure. They consider:



6.2 Multi-Resolution Models 95

• The coarse representation, called base;
• The reverse refinement operators of the performed simplification operators

(corresponding to recovering the full resolution structure from the base one);
they are also called modifications;

• A direct dependency relation among refinement operators, which is used to relax
the total order of refinements into a partial order;

• A Directed Acyclic Graph (DAG) where the nodes are the refinement operators
and the arcs encode the direct dependency relation: there is an arc .�i ; �j / if and
only if �j directly depends on �i . The DAG is rooted and its root is a dummy
modification corresponding to the creation of the base.

A large number of adaptive representations can be extracted from the DAG by
considering all the closed sets of DAG nodes (refinement operators), where a set
U of DAG nodes is closed if, for �i 2 U , U contains all source nodes of arcs
entering in �i .

A closed subset of refinements (DAG nodes) can be applied to the base
in any total order that extends the partial order (encoded in DAG arcs), thus
producing a representation at an intermediate resolution. This provides a collection
of representations at intermediate uniform and variable levels of detail which can
be obtained from DAG. A selective refinement query consists of extracting the least
refined representation (among those which can be obtained from closed sets of the
DAG), satisfying some application-dependent criterion. Such a query is answered
through a DAG traversal process.

6.2.1 Models for 2D Scalar Fields

In [2, 3], a multi-resolution morphological model for 2D scalar fields has been
described, which is based on the cancellation operator (described in Sect. 6.1.1)
and on the Morse-Smale complex.

The basic component is a diamond, which consists of a saddle s, its adjacent
minima and maxima, and the integral lines connecting them. The lines that connect
the saddle s to the extremal points are the separatrix lines incident in s, while the
lines that connect the extremal points are chosen arbitrarily among the integral
lines in the corresponding quadrangular 2-cell (slope district) in the Morse-Smale
complex. Thus, each quadrangular 2-cell in the Morse-Smale complex is split in
two triangles, by an arbitrary integral line which connects the vertex of the 2-
cell corresponding to a minimum to the vertex corresponding to a maximum, as
illustrated in Fig. 6.4a. The four triangles incident in the same saddle are grouped
together in a diamond. The possible types of diamonds for a Morse-Smale function
f are illustrated in Fig. 6.4b.

The dependency relation between refinements is defined as follows: two refine-
ments are dependent if the associated diamonds have at least one vertex in common
[2], or if they have an edge in common [3]. The dependency relation in [3] is clearly
less restrictive than the one in [2], and this affects the number of morphological
representations of the scalar field encoded in the multi-resolution model.
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a
b

Fig. 6.4 (a) Splitting a quadrangular 2-cell in two triangles: a generic slope district; an isolated
mountain; a crater. (b) The possible types of diamonds: all four 2-cells incident in the saddle in the
Morse-Smale complex are generic; one of the 2-cells incident in the saddle is an isolated mountain;
one of the 2-cells incident in the saddle is a crater

There have been some proposals in the literature to modify not only the Morse
and Morse-Smale complexes using cancellation, but to modify also the scalar
function f , thus constructing a new function g that corresponds to the simplified
field. The first work in 2D, presented in [2] and improved in [21], modifies function
f numerically, using Laplacian smoothing. In [2], function f is locally modified
after each cancellation in order to agree with the new topology, by minimizing
the error and obtaining a smooth approximation. In [21], the bottleneck of the
smoothing step performed after each cancellation in [2] is solved by constructing
a topologically valid function after all cancellation steps. The two resulting C 0

functions are comparable but the algorithm in [21] is faster. Moreover, in [21], a
novel schema is devised to provide C 1-continuity.

Another approach, presented in [15] for the 2D case, modifies the scalar field f

combinatorially, by changing the order in which the vertices appear in their sorted
list according to function values.

6.2.2 A Multi-Resolution Morphological Model
for Arbitrary Scalar Fields

The Multi-resolution Morse Incidence Graph (MMIG) is a multi-resolution model
representing the morphology of the Morse complexes as well as of the 1-skeleton of
the Morse-Smale complex at different level of detail [7]. The MMIG is generated
from the Morse Incidence Graph (MIG) representing the Morse complexes at
full resolution by iteratively applying the simplification operator remove discussed
in Sect. 6.1.2 (see Fig. 6.5). The MIG obtained as a result of the simplification
sequence is the coarsest representation of the two complexes. It is denoted as
GB D .NB; AB; 'B/, and is the base of the multi-resolution model.

The DAG nodes in the MMIG are the inverse refinements of the remove operators
applied during simplification. The dependency relation is defined as follows. Let �

be a refinement modification, which introduces nodes p and q, inverse to a remove,
and let N � D fp0g[R[S [Z (see Sect. 6.1.2). Refinement modification � directly
depends on refinement modification �0 if and only if �0 creates one or more nodes
in N �.
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Fig. 6.5 Sequence of remove1;2.q; p; p0/, remove1;2.q1; p1; p0

1/ and remove1;0.q2; p2; p0

2/ per-
formed on a relevant part of the Morse incidence graph encoding the descending Morse complex.
For each remove operator, dotted lines connect p and q to the set of nodes considered for the
dependency relation (set N �)

It has been shown in [5] that the dependency relation defining the MMIG is less
restrictive than the one in [2], while there is no containment with the dependency
relation in [3].

Fig. 6.6 MMIG structured as a Direct Acyclic Graph (DAG) where the root encodes the
base complex, each node encodes a refinement modification and each directed arc indicates a
dependency relation

Figure 6.6 shows an example of an MMIG built from the sequence of sim-
plifications illustrated in Fig. 6.5. The refinement modifications are shown on the
descending Morse complex for clarity. In the root, the base complex is stored. Each
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Table 6.1 Experimental results from 2D data sets

Extracted MIG at different resolutions
Uniform Variable

Dataset name Dataset size MMIG size 0.1 (%) 0.001 (%) 0 (%) 0.1 (%) 0.001 (%) 0 (%)

Baia 1.4M 2, 410 27 42 100 12 17 27

Baia 4.4M 9, 333 22 36 100 18 25 38

Baia 8.3M 14, 940 20 31 100 18 21 35

Marcy 0.4M 2, 264 32 61 100 15 20 29

Marcy 0.8M 9, 012 29 63 100 16 19 28

Marcy 1.8M 11, 491 25 55 100 13 17 21

Maui 0.6M 8, 673 20 55 100 15 21 38

Maui 3.4M 16, 540 23 43 100 12 18 24

Maui 4M 16, 623 24 42 100 15 19 25

Sizes of data sets expressed as number of triangles, MMIG sizes expressed as number of DAG
nodes, sizes (expressed as a percentage of the MIG at full resolution) of Morse incidence graphs
extracted at the various persistence thresholds both at uniform and at variable resolution

refinement encoded in the model modifies only a local subset of the complex and
two refinements are connected by an arrow if and only if the refinement pointed by
the arrow depends from the other one. The red lines indicate all closed sets of the
MMIG (each closed set contains the nodes above the line), and the corresponding
complexes, extracted by performing the refinements of the set, are shown.

In [7], results are presented from the extraction of representations at various
persistence levels at both uniform and variable resolution (with persistence threshold
satisfied in 1/10 of the domain) from several 2D and 3D data sets. Variable resolution
queries are the distinctive feature of a multi-resolution model like the MMIG. In
Tables 6.1 and 6.2, the persistence threshold is indicated as a percentage of the field
values range (0.1, 0.001, 0.0001, 0), and for each threshold, the MIG is extracted
concentrating the resolution through the domain (column uniform) or inside a
window query (column variable). The resulting MIG is expressed as a percentage
of the size of the MIG at full resolution. A dramatic reduction of the size of the
extracted MIG at relatively low persistence thresholds at uniform resolution can be
noticed, especially for 2D data sets, indicating the presence of high level of noise in
the data sets.

The results of applying the selective refinement algorithm on Matterhorn 2D
data set are illustrated in Fig. 6.7. The descending Morse complex is shown,
extracted after 10 refinements (Fig. 6.7a), 300 uniformly distributed refinements
(Fig. 6.7b) and 1,200 refinements performed in a selected subset of the domain
(Fig. 6.7c).
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Table 6.2 Experimental results from 3D data sets

Extracted MIG at different resolutions

Dataset Dataset MMIG Uniform Variable
name size size 0.1 (%) 0.01 (%) 0.0001 (%) 0.1 (%) 0.01 (%) 0.0001 (%)

VisMale 1.4M 5,271 12 52 94 9 21 55

VisMale 9M 20,559 13 48 87 8 21 34

VisMale 31M 32,612 32 62 92 18 22 31

XMasTree 2.7M 44,719 27 59 81 9 15 24

XMasTree 10M 121,193 18 37 78 19 18 24

XMasTree 24M 193,338 15 26 68 3 9 13

Bonsai 2.1M 29,127 22 43 79 12 29 38

Bonsai 20M 43,761 17 24 81 9 19 25

Bonsai 28M 45,761 11 26 81 8 12 24

Sizes of data sets expressed as number of tetrahedra, MMIG sizes expressed as number of DAG
nodes, sizes (expressed as a percentage of the MIG at full resolution) of Morse incidence graphs
extracted at the various persistence threshold both at uniform and at variable resolution

Fig. 6.7 (a) The descending Morse complexes extracted after 10 refinements, (b) after increment-
ing the resolution through the whole dataset, and (c) at variable resolution, for the Matterhorn
terrain data set

6.2.3 A Combined Morphological and Geometrical
Multi-Resolution Model for Triangulated Terrains

In the literature, the problem of simplification (and multi-resolution) has mainly
been addressed for geometry and for morphology independently. The approach in
[9] considers an initial triangle mesh ˙ with associated Morse-Smale complex, and
simplifies it through iterative vertex removal while considering ˙ as a constrained
triangulation with separatrix lines acting as constraints. Only the geometric structure
of separatrix lines is simplified simultaneously with the triangle mesh, while the
combinatorial structure of the Morse-Smale complex (described by the Morse
incidence graph) remains the same across all levels of resolution.

A first attempt to couple the inspection of both the topology and the geometry of
a terrain has been studied by Danovaro et al. in [10]. They proposed a model, called
a Multi-resolution Morse Triangulation (MMT), which manages geometry and mor-
phology in a combined and consistent way, and, thus, is able to dynamically select
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consistent geometrical and morphological representations at a desired resolution.
Such a model is presented for 2D scalar fields (terrains), but it can be generalized to
higher dimensions as well.

The MMT [7, 19] combines the Multi-Triangulation (MT) proposed for triangle
meshes in [13] and a 2D version of the Multi-resolution Morse Incidence Graph
(MMIG).

The construction of an MMT starts from a triangle mesh ˙ representing a 2D
scalar field f , and its morphological model in the form of the 1-skeleton K of the
Morse Smale complex (called critical net, see Sect. 1.3) plus the Morse Incidence
Graph (MIG) G. We recall that the MIG is a purely combinatorial structure, while
the critical net also includes the geometry of separatrix lines.

The three components of the model are simultaneously simplified in a combined
and consistent way. The simultaneous simplification of ˙ , K and G is driven by
geometry. Triangle mesh ˙ is simplified through a sequence of half-edge collapse
operations, driven by quadric error metric for accurate error estimation [16]. A half-
edge collapse, denoted .vi ; vj / ! vj , collapses two vertices vi and vj connected
by an edge in ˙ , into vj . Triangles incident in edge .vi ; vj / disappear, and triangles
incident only in vi become incident in vj . The algorithm selects an edge to collapse
on ˙ according to the quadric error metric, and checks the feasibility of such
simplification on K and G. The simplification proceeds as long as there are edges
to be simplified. Simplification operations can be of three types:

1. operations which modify just ˙ (they involve vertices lying in the interior of the
ascending/descending 2-cells);

2. operations which modify ˙ and K (they occur in the interior of the ascend-
ing/descending 1-cells);

3. operations which modify ˙ , K and G (they involve critical vertices, i.e.,
ascending/descending 0-cells).

Simplifications of type 1 are simply half-edge collapses on ˙ . Simplifications of
type 2 modify triangle mesh ˙ and the geometry of the separatrix lines in K . They
consist of half-edge collapses on both ˙ and K . Simplifications of type 3 collapse
a critical point from the 1-skeleton of the Morse Smale complex and, thus, trigger
a simplification operation on the MIG, collapsing a minimum and a saddle into an
adjacent minimum, or a maximum and a saddle into an adjacent maximum.

The MMT multi-resolution model consists of three DAGs M˙ , MK and MG ,
with mutual cross-links. The nodes of such DAGs are the inverse modifications of
simplifications of all types for M˙ , of types 2 and 3 for MK , and of type 3 only for
MG . They are connected through arcs which encode a dependency relation based on
the vertices of ˙ . Modifications of the three DAGs are linked together. Each node of
MK has a link to the node of M˙ corresponding to the same operation performed
during simplification. Similarly, each node of MG has a link to the node of MK

corresponding to the same operation.
The purpose of combining geometry and morphology in a multi-resolution model

is to support the extraction of a geometric representation that conforms to any
simplified morphology. In other words, the level of detail on the morphological
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representation is selected and then a simplified geometrical representation is
extracted which is consistent with the morphological one. Selective refinement
on the MMT produces a triangle mesh ˙ 0, the 1-skeleton K 0 of its Morse-Smale
complex, and its Morse incidence graph G0.

While the construction is guided by geometric error, selective refinement on
the MMT is guided by morphological criteria. A persistence threshold is given for
the morphological component MG . This defines a closed set UG of nodes of MG ,
corresponding to applying all refinement modifications with lower persistence than
the threshold (plus other nodes needed to make a closed set). By exploiting cross
links connecting nodes of MG to nodes of MK , UG defines a closed set UK of
nodes of MK , containing all nodes of MK which are linked from nodes of UG (plus
other nodes needed to make a closed set). In the same way, by exploiting cross links
from nodes of MK to nodes of M˙ , set UK induces a closed set U˙ in M˙ . The
algorithm performing such synchronized traversal of the three DAGs is explained in
details in [10]. The results of the algorithm are: the morphological representation G0
of minimum size satisfying the persistence threshold, the critical net K 0 of minimum
size that is compatible with G0 (i.e., where the path of integral lines is least refined),
and the triangle mesh ˙ 0 of minimum size that is compatible with K (i.e., where
the surface inside Morse regions is the least detailed).
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Fig. 6.8 Selective refinement on a MMT. The red dotted line encloses the closed sets of
modifications UG extracted from MG , UK induced by UG on MK , and U˙ induced by UK on
M˙ . Only relevant cross links are shown. (Color figure online)

A working example is shown in Fig. 6.8:MG is traversed and modifications 1 and
2 are added to the current closed set UG . Since modifications 1 and 2 are associated
with modifications 1 and 3 of MK , 1 and 3 are added to UK , along with their
ancestors 0 and 2. Modifications 1,2, 3 of MK are associated with modifications
2,6,10 of M˙ , so such modifications, and their ancestors, are added to U˙ . Results
shown in [10] on terrains report that, in terms of number of DAG nodes, MG is
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from 2 % to 9 % of MK , and from 0.2 % to 3 % of M˙ ; MK is from 13 % to 37 %
of M˙ .

The multi-resolution model in [10] is the first one integrating a geometric and
a morphological representations of a scalar field. The main drawback is that it
is verbose. As the authors note, an explicit representation of DAG MG could be
avoided by marking those nodes of MK , which correspond to the morphological
modifications. Moreover, simplification operators applied to ˙ may generate new
critical points.

Recently, in [19], a new multi-resolution model for triangle meshes ˙ endowed
with a scalar field has been proposed. The model, rooted in discrete Morse theory,
is called Hierarchical Forman Triangulation (HFT). It is based on a discrete
Morse gradient computed on the given triangle mesh agreeing with the scalar
field values known at the vertices of the mesh. The model is then built through
interleaved sequences of edge-collapses, reducing the size of the triangle mesh, and
of topological simplification operators, reducing the morphological representation.
Edge-collapses applied, called gradient-aware edge-contraction, are a subset of
all the possible edge-contractions applicable on ˙ and avoid deleting or creating
critical simplices, thus maintaining the gradient behavior at each update. The HFT
has a lower storage cost than the mesh at full resolution and provides a high
flexibility in adjusting the geometric resolution of the mesh to comply with the
topological resolution.

6.3 Summary

Scientific data sets are usually noisy and large. The first issue is due to errors in
measurements or simulation that have produced the data, and can be solved through
simplification operators. The second issue is a consequence of growing technical
and computational capabilities of data acquisition, and can be solved through multi-
resolution models.

We have reviewed and compared two simplification operators defined in the
framework of morphological representation of scalar fields as Morse and Morse-
Smale complexes, namely cancellation and remove operators. Both operators delete
two cells from the Morse complexes, and two vertices from the Morse-Smale com-
plex but, unlike cancellation, remove operator never increases incidence relation in
the Morse complexes, or, equivalently, the number of cells in the Morse-Smale ones.
A simplification algorithm based on remove and applied on the Morse incidence
graph, compared to one based on cancellation, produces a Morse incidence graph
which is 20 % more compressed, in half the time.

We have reviewed morphological multi-resolution representations for Morse
and Morse-Smale complexes. Some of them take also geometric considerations in
account. The multi-scale morphological models proposed in [2, 3] are designed for
2D scalar fields. The one in [3] numerically modifies also the scalar field to conform
with the changed morphology. The multi-resolution morphological model proposed
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in [7] is designed for scalar fields in arbitrary dimensions, organizes several
representations of the Morse complex in a hierarchy and is capable of supporting
the extraction of the representation which best approximates the morphology of the
scalar field under application-dependent requirements. The major drawback with
this model is the handling of the geometry, which is always that of the original full-
resolution mesh even when the resolution of the morphological representation is
coarser. Thus, a further issue is designing a model capable of interpreting at different
resolution both the topology and the geometry of a scalar field. A first attempt in this
direction is the hierarchical model for terrains in [10].
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Chapter 7
Experimental Analysis and Comparisons

This chapter presents experimental comparisons of different approaches for
morphology computation, and their use in applications.

The different approaches to morphology computation cannot be accurately
compared, because they work on scalar fields of different dimensions (such as 2D or
3D functions), they accept different input formats (simplicial models or grids), they
assume different properties of input data (such as the absence of flat edges), and/or
generate their output in different formats (e.g., by labeling the vertices, or the d -cells
of the input model). In Sect. 7.1, we analyze the different output formats and their
mutual relations. In Sect. 7.2, we present the metrics used to compare the results of
different algorithms. In Sect. 7.3, we compare the watershed and the Forman-based
approaches, i.e., the two dimension-independent methods, by presenting results in
the 2D and 3D cases from [3]. Here, input data are assumed to be in general position,
i.e., no two adjacent vertices have the same field value (there are no flat edges). In
Sect. 7.4, we compare all approaches in the 2D case with respect to their feasibility
and sensitivity to the presence of flat edges in the input field model by presenting
results from [5].

In Sect. 7.5, we present a brief survey of the use of morphological representations
in application domains.

7.1 Different Output Formats

Algorithms may compute different structures, such as the ascending or descending
Morse complex, or the Morse-Smale complex. For simplicity, we focus on the
ascending or descending Morse complex, since they can be easily derived from
the Morse-Smale complex in case an algorithm computes this latter. Again for
simplicity and brevity, we restrict our discussion to 2D scalar fields described as
triangle meshes, and to the computation of the ascending Morse complex.

© The Author(s) 2014
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As discussed in Sect. 2.1.2, an (ascending) Morse complex is computed by
different methods in different formats.

Region-based methods classify triangles: each triangle is labeled with the seed
minimum of the ascending 2-cell (called, in this approach, region) it belongs to.
We can easily derive a vertex classification, where vertices whose incident triangles
belong to the same region are assigned to that region, and vertices whose incident
triangles belong to different regions are labeled as watershed vertices. A complete
vertex classification (i.e., without watershed vertices) needs heuristic choices.

Boundary-based methods, in some sense, classify edges: they mark edges which
form ascending separatrix lines (if we compute the ascending Morse complex,
we do not trace descending separatrix lines), i.e., ridges forming the boundaries
between regions. We can easily derive a triangle classification, where each region is
defined as a connected component of triangles that are reachable from one another
through edge-adjacencies without traversing marked edges. The seed minimum of
each region is found as the vertex of minimum field value lying inside the region.
Similarly, we can easily derive a vertex classification, where each vertex belonging
to a marked edge is classified as watershed. Other vertices are classified as belonging
to a certain region, if their incident triangles belong to that region.

Watershed methods produce a vertex classification: each vertex is labeled with
the seed minimum or maximum of the region it belongs to. In watershed through
simulated immersion, a vertex can also be labeled as watershed. In order to derive
a triangle classification, we can define edges, whose two endpoints are watershed
vertices, as watershed edges, and let them act like boundaries between regions.
Regions are found as the connected components of triangles reachable from one
another through edge adjacencies, without traversing such edges. However, this
may leave unclassified triangles, i.e., those having all three vertices classified
as watershed vertices. Such unclassified triangles are called watershed triangles.
Watershed triangles are generally very few if the input field does not have flat edges,
but they can form large edge-connected components if the input field contains them.
Also, watershed methods which do not produce watershed vertices, suffer from the
problem of classifying triangles whose three vertices have different labels.

Forman-based methods produce all i -cells of a Morse complex with their
topological relations. If we restrict our attention to d -dimensional cells, these
are represented by a classification of vertices and of d -cells of the input field
model, respectively, in the ascending and in the descending Morse complex. Format
conversions are possible, as explained above.

Fig. 7.1 Format conversions
for the output of Morse
complex computation on a
triangle mesh. Dashed arrows
represent lossy conversion,
leaving watershed (i.e.,
unclassified) vertices or
triangles

Vertex
classification

Edge
classification

Triangle
classification
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In summary, given an edge classification, we can consistently derive both a trian-
gle classification and a vertex classification, this latter containing watershed vertices.
Given a triangle classification, we can derive consistently a vertex classification,
containing watershed vertices.

Given a vertex classification, we can derive a triangle classification, but this
may not be complete. If we want a complete classification of all triangles, then
we must use some heuristic to assign triangles, for which a unique classification
is not implied by the classification of their vertices, to the region of some already
classified adjacent triangle. Any heuristic, used to get a complete classification of
triangles, is a post-processing algorithm producing new information, not contained
in the given vertex classification. In [2] an algorithm for such purpose is presented
for triangle and tetrahedral meshes, which can be extended to arbitrary dimensions
in a straightforward way. Each d -simplex � is labeled with the label of the lowest
vertex of � . As d -simplices with all vertices labeled as watershed may exist, they
are recursively labeled by propagating labels from .d � 1/-adjacent d -simplices.

Figure 7.1 shows the various possibilities of format conversion. Note that some
of them (represented with dashed arrows) may loose information. For instance, let
us start from a triangle classification, get a vertex classification (with watershed
vertices), and then go back to a triangle classification. In the last passage, we may
introduce watershed triangles. In order to force a complete triangle classification,
extra information (like heuristic criteria) are needed, and it is not guaranteed, in
general, to obtain exactly the original triangle classification.

Figure 7.2 illustrates the descending Morse complex computed for the knot
model (from the AIM-at-SHAPE repository [http://shapes.aimatshape.net/]) with
respect to its z-field. Figure 7.2a shows the mesh and z-values, rendered in a color-
scale (blue corresponds to low values, red to high values). Figures 7.2b and c show
the vertex classification obtained from watershed methods by simulated immersion
and rain falling, respectively. Figure 7.2d shows the triangle classification obtained
from the region-growing method in [4]. Starting from the vertex classification in
(b), the triangle classification in (d) is obtained as, in this specific case, there are
no watershed triangles. When starting from the vertex classification in (c), there is
a degree of uncertainty in the classification of the strip of triangles having both red
and yellow vertices.

7.2 Metrics for Comparison

Assuming that we have two Morse complexes expressed in the same output format,
i.e., either a classification of vertices of the input model, or a classification of its
triangles, different metrics can be used to evaluate the similarity between them.

We will use three metrics, known in the literature as Region Number (RN),
Rand Index (RI), and Hamming Distance (HD) [1]. All such metrics assume values
between 0 and 1, where 1 corresponds to estimated equality.

http://shapes.aimatshape.net/
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Fig. 7.2 (a) A triangle mesh and its z-field rendered in a color scale (from blue to red). (b) Vertex
classification from simulated immersion, watershed vertices are in black. (c) Vertex classification
from rain falling. (d) Triangle classification from region-growing. (Color figure online)

RN is rather rough, as it considers just the number of different labels (i.e., the
number of regions), present in the two classifications. It is defined as 1 if two
classifications have the same number of regions, or as the ratio between the lower
number of regions over the higher one, otherwise.

RI measures the probability that a pair of elements has either the same label
in both classifications, or has distinct labels in both classifications. It counts the
fraction of pairs of triangles both assigned to the same region, or both assigned to
different regions. This metric has the advantage of intuitive appeal but becomes less
informative as the number of regions grows, going to 1 in the limit as the second
term dominates.

HD finds, for each region of one classification, a corresponding region in the
other classification, and checks the fraction of triangles assigned to the correspond-
ing regions. It maximizes alignment between two regions and then considers the
sum of cardinalities of the symmetric set difference over regions normalized by the
total number of classified elements. The complement to 1 of the metric is taken, so
that 1 indicates maximum agreement.

In case of vertex classifications having watershed vertices (such as the ones
produced by watershed algorithms), the metrics are evaluated considering watershed
vertices as neutral.

7.3 Comparing Watershed and Forman-Based
Approaches

The watershed and the Forman-based approaches have been experimentally com-
pared in [3]. In particular, the authors have considered the watershed method by
simulated immersion [9, 11] and the Forman-based method in [7]. Both methods
have been implemented for simplicial complexes of arbitrary dimension with a field
value at the vertices.
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Such two algorithms have been applied to 2D and 3D scalar fields defined over
domain in R

2 and R
3, respectively, and to 2D surfaces embedded in R

3 with an
associated curvature value.

All datasets used in the experiments satisfy the theoretical conditions that no
two adjacent vertices have the same elevation (i.e., they have no flat edges). For
each dataset, the corresponding ascending and descending Morse complexes are
extracted using the two approaches and they are compared by using RN, RI and HD
metrics.

For the sake of comparison, d -cells of the ascending and descending Morse
complexes computed by the Forman-based algorithm are represented as collections
of vertices from the input model. The metrics have been evaluated considering
watershed vertices as neutral, therefore always considering them as labeled in
agreement with their counterpart derived by the Forman extraction.

In Table 7.1, results obtained on terrains (first five datasets), surfaces in 3D
(second group of four datasets), and 3D datasets (last six ones) are shown. The
two algorithms compute always the same number of ascending and descending
d -manifolds, thus, RN equals 1. This assures a comparability between the two
methods. HD and RI metrics show consistently high similarity values, close to 1,
except for the Neghip and Fuel datasets. Such 3D datasets are characterized by
a large volumetric portion of the scalar field occupied by empty space which can
generate small discrepancies between the two methods.

Table 7.1 Values of RI and HD metrics computed between the output of
watershed and of Forman-based methods, on 2D scalar fields (terrains), 2D shapes
with curvature field, and 3D scalar fields

Model # vert. RI asc. RI desc. HD asc. HD desc.

Eggs (terrain) 5,751 1.00 0.99 1.00 0.99

St.Helen (terrain) 133,308 0.99 0.97 0.82 0.94

Monviso (terrain) 263,169 0.99 0.99 0.97 0.98

Genova (terrain) 433,174 0.99 0.99 0.93 0.97

Maggiore (terrain) 810,000 0.99 0.99 0.91 0.96

Retinal (shape) 3,643 0.99 0.99 0.99 0.99

Camel (shape) 9,770 0.99 0.99 0.98 0.99

Bumby Torus (shape) 16,815 0.99 0.99 0.97 0.98

Octopus (shape) 16,944 0.99 0.99 0.98 0.98

Analytic1 (3D field) 68,921 0.98 1.00 0.96 1.00

Analytic2 (3D field) 68,921 0.97 0.97 0.96 0.96

BuckyBall (3D field) 32,768 0.99 0.99 0.87 0.88

Fuel (3D field) 262,144 0.99 0.80 0.99 0.86

Neghip (3D field) 262,144 0.79 0.95 0.80 0.77

Silicium (3D field) 113,288 0.94 0.99 0.89 0.90



110 7 Experimental Analysis and Comparisons

7.4 Comparing All Approaches in 2D

Five algorithms, which represent all algorithmic approaches, have been compared
in [5]. The used algorithms are: the boundary-based algorithm by Takahashi
et al. [8, 10] (described in Sect. 3.1.1.1), the region-growing method by Magillo
et al. in [4] (described in Sect. 3.2.2), the watershed algorithm based on simulated
immersion by Vincent and Soille [9, 11] (described in Sect. 4.1), the rain falling
watershed algorithm in [6] (described in Sect. 4.3), and the Forman-based algorithm
by Robins et al. [7] (described in Sect. 5.3.4). All algorithms have been implemented
for triangle meshes.

Watershed and Forman-based algorithms label each vertex with the index of a
2-cell, while boundary-based and region-growing algorithms label triangles. For
comparison purposes, the vertex classification provided by watershed and Forman-
based algorithms has been converted to a (complete) triangle classification (see,
Sect. 7.1).

The algorithms have been compared both in presence and in absence of flat
edges. Triangle meshes without flat edges have been obtained from triangle meshes
representing real terrains with flat edges, by applying the method in [5] to remove
flat edges in a morphologically consistent way (see Sect. 3.2.2). Figure 7.3 shows
one of the original triangle meshes (with flat edges).

7.4.1 Comparison on Models Without Flat Edges

For all algorithms, the number of generated ascending and descending 2-cells is the
same. Therefore, RN D 1. However, boundaries between 2-cells may be differently
drawn by each algorithm. Table 7.4 shows triangles classified differently in models
without flat edges. In absence of flat edges, boundary-based and region-growing
algorithms always provide the same output. The outputs of the Forman-based and
rain falling algorithms are also the same. The output of the simulated immersion
algorithm is usually different. There are between 0.5 % and 2.8 % differently-
classified triangles (with just one exception of 6.7 %).

Table 7.3 shows the values of the HD and RI metrics on three triangle meshes
without flat edges. Boundary- and Forman-based algorithms are not shown because
their results are always identical to the region-growing algorithm and to the rain
falling algorithm, respectively. It can be observed that HD � 97 % or � 93 % (for
the descending and ascending Morse complex, respectively), and RI � 99 % or �
95 % (for the descending and ascending Morse complex, respectively).

7.4.2 Handling Flat Edges

Many algorithms assume that no two vertices connected by an edge have the same
field value, i.e., there are no flat edges.
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Fig. 7.3 One of the original
terrains with its flat edges and
plateaus (in red), representing
a portion of Marcy mountain.
(Color figure online)

Table 7.2 Test terrains used
in comparison of the results
of algorithms in presence and
absence of flat edges

Terrain # vertices # flat edges

Ustica 1,128 182

Marcy 3,590 466

Elba 1,335 390

The boundary-based and the Forman-based approaches require that there are
no flat edges. The boundary-based approach identifies saddles by examining the
neighborhood of each vertex. In case of flat edges, a plateau may act as a saddle, but
it is not possible to discover it in a local check. Thus, these non-point saddles will
not be found and separatrix lines will not be drawn from them. The construction of
the Forman gradient in the Forman-based approach assumes that there are no flat
edges in the original field. We see no way for extending it in presence of flat edges.

The region-growing approach in its original definition also assumes that there
are no flat edges. However, ad-hoc rules can be added for dealing with flat edges as
special cases, as done in [4] (see Sect. 3.2.2).

The watershed approach is developed for grey-level images, in which flat edges
are common. Algorithms based on such an approach admit flat edges.

The impact of flat edges on the computed Morse complexes has been experimen-
tally estimated on small-size terrains in order to better highlight issues and features
(see Table 7.2).

The algorithms have been applied directly to the original triangle mesh with flat
edges (by handling flat edges within the algorithm), and to modified meshes without
flat edges (obtained from the method in [5], see Sect. 2.4), and the results have been
compared. The two watershed algorithms and the region-growing algorithm have
been tested, as the boundary-based and Forman-based method cannot be applied in
case of flat edges.

Table 7.3 shows the values of HD and RI metrics on three triangle meshes with
flat edges. It can be observed that HD � 85 % or � 92 % (for the descending
and ascending Morse complex, respectively), and RI � 97 % or � 93 % (for
the descending and ascending Morse complex, respectively). Compared with
the corresponding triangle meshes without flat edges, the absence of flat edges
improves similarity from 0.5 to 13.5 percentage points for HD, and from 0.6 to
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Table 7.3 Values of Rand Index (RI) and Hamming Distance (HD) metrics on pairs of Morse
complexes computed on triangle meshes with flat edges and without flat edges

Immersion/Rainfall Region/Rainfall Immersion/Region

Terrain Ascend. Descend. Ascend. Descend. Ascend. Descend.

Marcy (flat) RI 98.82 RI 97.92 RI 98.53 RI 96.94 RI 98.51 RI 98.08

HD 98.32 HD 95.63 HD 97.56 HD 94.46 HD 98.10 HD 96.67

Marcy (no flat) RI 99.77 RI 98.53 RI 99.77 RI 98.89 RI 99.98 RI 99.51

HD 99.48 HD 97.62 HD 99.45 HD 98.07 HD 99.94 HD 98.72

Ustica (flat) RI 94.34 RI 94.60 RI 91.46 RI 93.73 RI 95.18 RI 97.98

HD 92.28 HD 92.80 HD 88.30 HD 92.47 HD 92.70 HD 97.06

Ustica (no flat) RI 98.81 RI 95.48 RI 99.16 RI 95.56 RI 99.14 RI 99.92

HD 98.15 HD 93.27 HD 98.67 HD 93.46 HD 98.72 HD 99.81

Elba (flat) RI 93.41 RI 98.93 RI 93.58 RI 97.30 RI 93.41 RI 98.93

HD 86.27 HD 94.89 HD 84.98 HD 90.94 HD 86.23 HD 94.89

Elba (no flat) RI 99.39 RI 99.51 RI 99.86 RI 99.84 RI 99.50 RI 99.64

HD 97.62 HD 97.62 HD 98.71 HD 99.15 HD 98.15 HD 98.23

Table 7.4 Percentage of differently classified triangles in the Morse complexes
computed by the various algorithms on terrains with no flat edges

Immersion/Rainfall Region/Rainfall Immersion/Region

Terrain Ascend. Descend. Ascend. Descend. Ascend. Descend.

Marcy 0.50 2.80 0.55 2.00 0.06 1.30

Ustica 1.80 6.70 1.30 6.50 1.30 0.20

Elba 2.40 2.40 1.30 0.85 1.85 1.70

7.7 percentage points for RI, with greater improvement for the ascending Morse
complex. Improved similarity among different approaches suggests more reliability
of computed morphological information on models without flat edges (Table 7.4).

7.5 Summary

Sensor technology and simulation methods continue to improve, resulting in
datasets of growing resolution and richness, and therefore size. This poses chal-
lenges for data analysis. Morphological structures are of interest in a variety
of applications, thanks to their ability to capture the structure of a scalar field
in a concise and complete way. In case of noisy data, simplification techniques
allow eliminating spurious, or less meaningful, features from a morphological
representation. Topological methods are used in spatial data analysis and scientific
visualization for their ability to extract essential features from data.

Two-dimensional scalar fields with a plane domain are used in geographic infor-
mation systems to model relief (so-called height fields, or terrains), atmospheric
data, etc. In the case of a terrain, the ascending and descending Morse complexes
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Fig. 7.4 The 2-cells of the ascending Morse complex (basins) and of the descending one
(mountains) for a terrain representing a portion of the Dolomiti mountains

are direct representations of mountains and basins. Figure 7.4 shows mountains and
basins of a terrain.

Scalar functions defined on a surface embedded in 3D may model phenomenons
existing in the surrounding of the shape (such as, for instance, pressure or tempera-
ture). Other times, a scalar function is computed from the surface itself to represent
some geometric property, such as curvature. In the latter case, Morse complexes
allow to describe the shape in a more concise way, such as the collection of convex /
concave areas and their mutual adjacency relations. Figure 7.5 shows a segmentation
of the shape of a molecule based on its curvature.

Fig. 7.5 The 2-cells of the
descending Morse complex
for Retinal dataset
(representing the 3D structure
of a retinal molecule)
computed from the distortion
field of the triangle mesh

Three- and higher-dimensional scalar fields occur in medical applications (such
as data from CT and MRI scans), earth sciences, physics and fluid dynamics. The
main challenge here is visualization, which is an essential tool for the user to
understand the structure of the data.
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Fig. 7.6 Segmentation of Fuel data set (simulation of fuel injection into a combustion chamber):
the original field, and the descending Morse complex of a distortion field computed on the data

Common methods for visualizing scalar fields belong to two broad classes:
methods that render iso-surfaces or interval volumes (i.e., intervals between iso-
surfaces) extracted from the scalar field, and methods that render directly the entire
volume data through color and opacity. Of course, the two methods can be combined
together. Methods of the first class display incomplete data, and may be suitable for
some applications, such as, for instance, medical data analysis, where the user is
generally interested in some types of tissues (e.g., skin, bones, etc.) corresponding
to known field values. Methods of the second class produce images which need
interpretation from the user and may be sometimes misleading. For example, the
used color-map may give more evidence to a less important feature than to a more
important one.

Morphological structures, such as Morse complexes and the Morse incidence
graph, provide the foundations for a visualization style where, on one hand, the
entire data set contributes to the image, and, on the other hand, the elements
constituting the real data features are highlighted. Figure 7.6 show a volume data
set and its segmentation obtained by means of Morse complexes. Figures 7.7 and
7.8 display the structure of a scalar field directly by showing critical points (saddles,
maxima, and minima) and integral curves connecting them as well as the descending
Morse segmentations.
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Fig. 7.7 Original field values, 1-skeleton of the Morse-Smale complex and segmentation of
the Fighter data set, representing data from a wind tunnel model developed at NASA Langley
Research Center

Fig. 7.8 Original field values, 1-skeleton of the Morse-Smale complex and segmentation of the
Silicium data set, a simulation of a silicium grid
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2. L. Čomić, L. De Floriani, and F. Iuricich. Building morphological representations for 2D and
3D scalar fields. In E. Puppo, A. Brogni, and L. De Floriani, editors, Eurographics Italian
Chapter Conference, pages 103–110. Eurographics, 2010.

3. L. De Floriani, F. Iuricich, P. Magillo, and P. D. Simari. Discrete Morse versus watershed
decompositions of tessellated manifolds. In ICIAP (2), pages 339–348, 2013.

4. P. Magillo, E. Danovaro, L. De Floriani, L. Papaleo, and M. Vitali. A discrete approach to com-
pute terrain morphology. Computer Vision and Computer Graphics Theory and Applications,
21:13–26, 2009.

5. P. Magillo, L. De Floriani, and F. Iuricich. Morphologically-aware elimination of flat edges
from a tin. In Proc. 21st ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (ACM SIGSPATIAL GIS 2013), November 5-8 2013.



116 7 Experimental Analysis and Comparisons

6. A. Mangan and R. Whitaker. Partitioning 3D surface meshes using watershed segmentation.
Transactions on Visualization and Computer Graphics, 5(4):308–321, 1999.

7. V. Robins, P. J. Wood, and A. P. Sheppard. Theory and algorithms for constructing discrete
Morse complexes from grayscale digital images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(8):1646–1658, 2011.

8. B. Schneider. Extraction of hierarchical surface networks from bilinear surface patches.
Geographical Analysis, 37(2):244–263, 2005.

9. P. Soille. Morphological Image Analysis: Principles and Applications. Springer-Verlag, Berlin
and New York, 2004.

10. S. Takahashi, T. Ikeda, T. L. Kunii, and M. Ueda. Algorithms for extracting correct critical
points and constructing topological graphs from discrete geographic elevation data. In Com-
puter Graphics Forum, volume 14, pages 181–192, 1995.

11. L. Vincent and P. Soille. Watershed in digital spaces: An efficient algorithm based on
immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(6):583–598, 1991.


	Preface
	Acknowledgements
	Contents
	1 Background
	1.1 Some Preliminary Definitions
	1.1.1 Manifolds
	1.1.2 Cell Complexes
	1.1.3 Regular Grids and Simplicial Complexes
	1.1.4 Primal and Dual Complex

	1.2 Models for Scalar Fields
	1.3 Morse Theory and Morse Complexes
	1.4 Watershed Transform in the Smooth Case
	1.5 Piecewise-Linear Morse Theory
	1.5.1 Critical Points in a Piecewise-Linear Model
	1.5.2 Quasi-Morse-Smale Complexes

	1.6 Forman Theory
	1.7 Summary
	References

	2 Morphology Computation Algorithms: Generalities
	2.1 Classification of Morphology Computation Algorithms
	2.1.1 Input Dimension, Format and Properties
	2.1.2 Output Information and Its Format
	2.1.3 Algorithmic Approach

	2.2 Detection of Critical Points
	2.2.1 Detecting Critical Points in a Simplicial Model
	2.2.2 Detecting Critical Points in a Regular Grid

	2.3 Handling the Domain Boundary
	2.4 Presence of Plateaus
	References

	3 Boundary-Based and Region-Growing Algorithms
	3.1 Boundary-Based Algorithms
	3.1.1 Boundary-Based Methods on Simplicial Models
	3.1.1.1 The Algorithm by Takahashi et al.
	3.1.1.2 The Algorithm by Edelsbrunner et al.
	3.1.1.3 The Algorithm by Bremer et al.
	3.1.1.4 The Algorithm for 3D Scalar Fields by Edelsbrunner et al.

	3.1.2 Analysis and Comparisons
	3.1.3 Boundary-Based Methods on Regular Grids
	3.1.3.1 The Algorithm by Bajaj et al.
	3.1.3.2 The Two Algorithm by Schneider and Wood


	3.2 Region-Growing Algorithms
	3.2.1 The Two Algorithms by Danovaro et al.
	3.2.2 The Algorithm by Magillo et al.
	3.2.3 The Algorithm by Gyulassy et al.
	3.2.4 Analysis and Comparisons

	References

	4 Watershed Algorithms
	4.1 Watershed by Simulated Immersion
	4.2 Watershed by Topographic Distance
	4.3 Watershed by Rain Falling Simulation
	4.4 Summary and Comparisons
	References

	5 A Combinatorial Approach Based on Forman Theory
	5.1 Representing Morse Complexes in the Discrete Case
	5.1.1 Representing Discrete Ascending and Descending Morse Complexes
	5.1.2 Representing the Discrete Morse-Smale Complex

	5.2 Encoding the Forman Gradient
	5.2.1 Encoding Triangle and Tetrahedral Meshes
	5.2.2 Compact Gradient Encoding

	5.3 Computing the Forman Gradient
	5.3.1 Forman Approach Based on Connolly's Function
	5.3.2 A Forman-Based Approach for Tetrahedral Meshes
	5.3.3 The Algorithm by Gyulassy et al.
	5.3.4 The Algorithm by Robins et al.

	5.4 Computing Discrete Morse and Morse-Smale Complexes
	5.4.1 Descending Morse Complex
	5.4.2 Ascending Morse Complex
	5.4.3 Morse-Smale Complex
	5.4.4 Morse Incidence Graph

	5.5 Summary and Comparisons
	References

	6 Simplification and Multi-Resolution Representations
	6.1 Simplification Operators
	6.1.1 cancellation Operator
	6.1.2 remove Operator
	6.1.3 Comparison of cancellation and remove Operators

	6.2 Multi-Resolution Models
	6.2.1 Models for 2D Scalar Fields
	6.2.2 A Multi-Resolution Morphological Model for Arbitrary Scalar Fields
	6.2.3 A Combined Morphological and Geometrical Multi-Resolution Model for Triangulated Terrains

	6.3 Summary
	References

	7 Experimental Analysis and Comparisons
	7.1 Different Output Formats
	7.2 Metrics for Comparison
	7.3 Comparing Watershed and Forman-BasedApproaches
	7.4 Comparing All Approaches in 2D
	7.4.1 Comparison on Models Without Flat Edges
	7.4.2 Handling Flat Edges

	7.5 Summary
	References


