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Abstract

Morse and Morse-Smale complexes have been recognized as a suitable tool for
modeling the topology of a manifold M through a decomposition of M induced
by a scalar field f defined over M. We consider here the problem of representing,
constructing and simplifying Morse and Morse-Smale complexes in 3D. We first
describe and compare two data structures for encoding 3D Morse and Morse-Smale
complexes. We describe, analyze and compare algorithms for computing such com-
plexes. Finally, we consider the simplification of Morse and Morse-Smale com-
plexes by applying coarsening operators on them, and we discuss and compare the
coarsening operators on Morse and Morse-Smale complexes described in the litera-
ture.

1 Introduction
Topological analysis of discrete scalar fields is an active research field in compu-

tational topology. The available data sets defining the fields are increasing in size
and in complexity. Thus, the definition of compact topological representations for
scalar fields is a first step in building analysis tools capable of analyzing effectively
large data sets. In the continuous case, Morse and Morse-Smale complexes have
been recognized as convenient and theoretically well founded representations for
modeling both the topology of the manifold domain M, and the behavior of a scalar
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2 Lidija Čomić, Leila De Floriani, Federico Iuricich

field f over M. They segment the domain M of f into regions associated with critical
points of f , which encode the features of both M and f .

Morse and Morse-Smale complexes have been introduced in computer graphics
for the analysis of 2D scalar fields [EHZ01, BEHP03], and specifically for terrain
modeling and analysis, where the domain is a region in the plane, and the scalar
field is the elevation function [TIKU95, EDP+03]. Recently, Morse and Morse-
Smale complexes have been considered as a tool to analyze also 3D functions
[EHNP03, GNP+05]. They are used in scientific visualization, where data are ob-
tained through measurements of scalar field values over a volumetric domain, or
through simulation, such as the analysis of mixing fluids [BWP+10]. With an appro-
priate selection of the scalar function, Morse and Morse-Smale complexes are also
used for segmenting molecular models to detect cavities and protrusions, which in-
fluence interactions between proteins [CCL03, NWB+06]. Morse complexes of the
distance function have been used in shape matching and retrieval.

Scientific data, obtained either through measurements or simulation, is usually
represented as a discrete set of vertices in a 2D or 3D domain M, together with
function values given at those vertices. Algorithms for extracting an approximation
of Morse and Morse-Smale complexes from a sampling of a (continuous) scalar
field on the vertices of a simplicial complex Σ triangulating M have been exten-
sively studied in 2D [TIKU95, BS98, EHZ01, BEHP04, Pas04, CCL03, DDM03].
Recently, some algorithms have been proposed for dealing with scalar data in higher
dimensions [EHNP03, GNPH07, GBHP08, EJ09, ČomićDI10].

Although Morse and Morse-Smale complexes represent the topology of M and
the behavior of f in a much more compact way than the initial data set at full res-
olution, simplification of these complexes is a necessary step for the analysis of
noisy data sets. Simplification is achieved by applying the cancellation operator on
f [Mat02], and on the corresponding Morse and Morse-Smale complexes. In 2D
[TIKU95, EHZ01, BEHP04, Wol04, GNP+05], a cancellation eliminates critical
points of f , reduces the incidence relation on the Morse complexes, and eliminates
cells from the Morse-Smale complexes. In higher dimensions, surprisingly, a can-
cellation may introduce cells in the Morse-Smale complex, and may increase the
mutual incidences among cells in the Morse complex.

Simplification operators, together with their inverse refinement ones, form a basis
for the definition of a multi-resolution representation of Morse and Morse-Smale
complexes, crucial for the analysis of the present-day large data sets. Several ap-
proaches for building such multi-resolution representations in 2D have been pro-
posed [BEHP04, BPH05, DDVM07]. In higher dimensions, such hierarchies are
based on a progressive simplification of the initial full-resolution model.

Here, we briefly review the well known work on extraction, simplification,
and multi-resolution representation of Morse and Morse-Smale complexes in 2D.
Then, we review in greater detail and compare the extension of this work to three
and higher dimensions. Specifically, we compare the data structure introduced
in [GNP+06] for encoding 3D Morse-Smale complexes with a 3D instance of
the dimension-independent data structure proposed in [ČomićDI10] for encoding
Morse complexes. We review the existing algorithms for the extraction of an ap-
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proximation of Morse and Morse-Smale complexes in three and higher dimensions.
Finally, we review and compare the two existing approaches in the literature to the
simplification of the topological representation given by Morse and Morse-Smale
complexes, without changing the topology of M. The first approach [GNP+05] im-
plements a cancellation operator defined for Morse functions [Mat02] on the corre-
sponding Morse-Smale complexes. The second approach [ČomićD11] implements
only a well-behaved subset of cancellation operators, which still forms a basis for
the set of operators that modify Morse and Morse-Smale complexes on M in a topo-
logically consistent manner. These operators also form a basis for the definition of
a multi-resolution representation of Morse and Morse-Smale complexes.

2 Background Notions
We review background notions on Morse theory and Morse complexes for C2

functions, and some approaches to discrete representations for Morse and Morse-
Smale complexes.

Morse theory captures the relationships between the topology of a manifold M
and the critical points of a scalar (real-valued) function f defined on M [Mat02,
Mil63]. An n-manifold M without boundary is a topological space in which each
point p has a neighborhood homeomorphic to Rn. In an n-manifold with boundary,
each point p has a neighborhood homeomorphic to Rn or to a half-space Rn

+ =
{(x1,x2, ...,xn) ∈ Rn : xn ≥ 0} [Kel55].

Let f be a C2 real-valued function (scalar field) defined over a manifold M. A
point p ∈ M is a critical point of f if and only if the gradient ∇ f = ( ∂ f

∂x1
, ..., ∂ f

∂xn
)

(in some local coordinate system around p) of f vanishes at p. Function f is said
to be a Morse function if all its critical points are non-degenerate (the Hessian ma-
trix Hessp f of the second derivatives of f at p is non-singular). For a Morse func-
tion f , there is a neighborhood of each critical point p = (p1, p2, ..., pn) of f , in
which f (x1,x2, . . . ,xn) = f (p1, p2, ..., pn)− x2

1− . . .− x2
i + x2

i+1 + . . .+ x2
n [Mil63].

The number i is equal to the number of negative eigenvalues of Hessp f , and is called
the index of critical point p. The corresponding eigenvectors point in the directions
in which f is decreasing. If the index of p is i, 0 ≤ i ≤ n, p is called an i-saddle.
A 0-saddle is called a minimum, and an n-saddle is called a maximum. Figure 1
illustrates a neighborhood of a critical point in three dimensions.

(a) (b) (c) (d) (e)

Fig. 1 Classification of non-degenerate critical points in the 3D case. Arrowed lines represent
integral lines, green regions contain points with the lower function value. (a) A regular point, (b) a
local maximum, (c) a local minimum, (d) a 1-saddle and (e) a 2-saddle.
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(a) (b) (c) (d)

Fig. 2 A portion of (a) a descending Morse complex; (b) the dual ascending Morse complex; (c)
the Morse-Smale complex; (d) the 1-skeleton of the Morse-Smale complex in 2D.

(a) (b) (c)

Fig. 3 A portion of (a) a descending and (b) ascending 3D Morse complex, and (c) the correspond-
ing Morse-Smale complex, defined by a function f (x,y,z) = sinx+ siny+ sinz.

An integral line of a function f is a maximal path that is everywhere tangent to
the gradient ∇ f of f . It follows the direction in which the function has the maximum
increasing growth. Two integral lines are either disjoint, or they are the same. Each
integral line starts at a critical point of f , called its origin, and ends at another
critical point, called its destination. Integral lines that converge to a critical point p
of index i cover an i-cell called the stable (descending) cell of p. Dually, integral
lines that originate at p cover an (n− i)-cell called the unstable (ascending) cell
of p. The descending cells (or manifolds) are pairwise disjoint, they cover M, and
the boundary of every cell is a union of lower-dimensional cells. Descending cells
decompose M into a cell complex Γd , called the descending Morse complex of f on
M. Dually, the ascending cells form the ascending Morse complex Γa of f on M.
Figure 2 (a) and (b) and Figure 3 (a) and (b) show an example of a descending and
dual ascending Morse complex in 2D and 3D, respectively.

A Morse function f is called a Morse-Smale function if and only if each non-
empty intersection of a descending and an ascending cell is transversal. This means
that each connected component of the intersection (if it exists) of the descending
i-cell of a critical point p of index i, and the ascending (n− j)-cell of a critical point
q of index j, i≥ j, is an (i− j)-cell. The connected components of the intersection
of descending and ascending cells of a Morse-Smale function f decompose M into
a Morse-Smale complex. If f is a Morse-Smale function, then there is no integral
line connecting two different critical points of f of the same index. Each 1-saddle is
connected to exactly two (not necessarily distinct) minima, and each (n−1)-saddle
is connected to exactly two (not necessarily distinct) maxima. The 1-skeleton of the
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Morse-Smale complex is the subcomplex composed of 0-cells and 1-cells. It plays
an important role in the applications, as it is often used as a graph-based represen-
tation of the Morse and Morse-Smale complexes. Figure 2 (c) in 2D and Figure 3
(c) in 3D illustrate the Morse-Smale complex corresponding to the ascending and
descending Morse complexes of Figure 2 (a) and (b) and Figure 3 (a) and (b), re-
spectively. Figure 2 (d) shows the 1-skeleton of the Morse-Smale complex in Figure
2 (c).

The first approaches to develop a discrete version of Morse theory aimed at a
generalization of the notion of critical points (maxima, minima, saddles) to the case
of a scalar field f defined on the vertices of a simplicial complex Σ triangulating a
2D manifold (surface) M. This generalization was first done in [Ban70] in 2D, and
has been used in many algorithms [TIKU95, EHZ01, NGH04]. The classification
of critical points is done based on the f value at a vertex p, and the vertices in the
link Lk(p) of p. The link Lk(p) of each vertex p of Σ can be decomposed into three
sets, Lk+(p), Lk−(p), and Lk±(p). The upper link Lk+(p) consists of the vertices
q ∈ Lk(p) with higher f value than f (p), and of edges connecting such vertices.
The lower link Lk−(p) consists of the vertices with lower f value than f (p), and of
edges connecting such vertices. The set Lk±(p) consists of mixed edges in Lk(p),
each connecting a vertex with higher f value than f (p) to a vertex with lower f
value than f (p). If the lower link Lk−(p) is empty, then p is a minimum. If the
upper link Lk+(p) is empty, then p is a maximum. If the cardinality of Lk±(p) is
2 + 2m(p), then p is a saddle with multiplicity m(p) ≥ 1. Otherwise, p is a regular
point. The classification of a vertex based on these rules is illustrated in Figure 4.

Fig. 4 The classification of a vertex based on the function values of the vertices in its link (min-
imum, regular point, simple saddle, maximum, 2-fold saddle). The lower link Lk− is marked in
blue, the upper link is red.

There have been basically two approaches in the literature to extend the results
of Morse theory and represent Morse and Morse-Smale complexes in the discrete
case. One approach, called Forman theory [For98], considers a discrete Morse func-
tion (Forman function) defined on all cells of a cell complex. The other approach,
introduced in [EHZ01] in 2D, and in [EHNP03] in 3D, provides a combinatorial
description, called a quasi-Morse-Smale complex, of the Morse-Smale complex of
a scalar field f defined at the vertices of a simplicial complex.

The main purpose of Forman theory is to develop a discrete setting in which
almost all the main results from smooth Morse theory are valid. This goal is achieved
by considering a function F defined on all cells, and not only on the vertices, of a cell
complex Γ . Function F is a Forman function if for any i-cell σ , all the (i−1)-cells
on the boundary of σ have a lower F value than F(σ), and all the (i + 1)-cells in
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the co-boundary of σ have a higher F value than F(σ), with at most one exception.
If there is such an exception, it defines a pairing of cells of Γ , called a discrete
(or Forman) gradient vector field V . Otherwise, i-cell σ is a critical cell of index
i. Similar to the smooth Morse theory, critical cells of a Forman function can be
cancelled in pairs. In the example in Figure 5 (a), a Forman function F defined on a
2D simplicial complex is illustrated. Each simplex is labelled by its function value.
Figure 5 (b) shows the Forman gradient vector field defined by Forman function F
in Figure 5 (a). Vertex labelled 0 and edge labelled 6 are critical simplexes of F .

(a) (b)

Fig. 5 (a) Forman function F defined on a 2D simplicial complex, and (b) the corresponding
discrete gradient vector field. Each simplex is labelled by its F value.

Forman theory finds important applications in computational topology, computer
graphics, scientific visualization, molecular shape analysis, and geometric model-
ing. In [LLT04], Forman theory is used to compute the homology of a simplicial
complex with manifold domain, while in [CCL03], it is used for segmentation of
molecular surfaces. Forman theory can be used to compute Morse and Morse-Smale
complexes of a scalar field f defined on the vertices of a simplicial or cell complex,
by extending scalar field f to a Forman function F defined on all cells of the com-
plex [KKM05, GBHP08, RWS11, ČomićMD11].

The notion of a quasi-Morse-Smale complex in 2D and 3D has been introduced
in [EHZ01, EHNP03] with the aim of capturing the combinatorial structure of a
Morse-Smale complex of a Morse-Smale function f defined over a manifold M. In
2D, a quasi-Morse-Smale complex is defined as a complex whose 1-skeleton is a
tripartite graph, since the set of its vertices is partitioned into subsets corresponding
to critical points (minima, maxima, and saddles). A vertex corresponding to a saddle
has four incident edges, two of which connect it to vertices corresponding to min-
ima, and the other two connect it to maxima. Each region (2-cell of the complex) is
a quadrangle whose vertices are a saddle, a minimum, a saddle, and a maximum. In
3D, vertices of a quasi-Morse-Smale complex are partitioned into four sets corre-
sponding to critical points. Each vertex corresponding to a 1-saddle is the extremum
vertex of two edges connecting it to two vertices corresponding to minima, and du-
ally for 2-saddles and maxima. Each 2-cell is a quadrangle, and there are exactly
four 2-cells incident in each edge connecting a vertex corresponding to a 1-saddle
to a vertex corresponding to a 2-saddle.
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3 Related Work
In this section, we review related work on topological representations of 2D scalar

fields based on Morse or Morse-Smale complexes. We concentrate on three topics
relevant to the work presented here, namely: computation, simplification and multi-
resolution representation of Morse and Morse-Smale complexes.

Several algorithms have been proposed in the literature for decomposing the do-
main of a 2D scalar field f into an approximation of a Morse or a Morse-Smale com-
plex. For a review of the work in this area see [BFF+08]. Algorithms for decompos-
ing the domain M of field f into an approximation of a Morse, or of a Morse-Smale,
complex can be classified as boundary-based [TIKU95, BS98, EHZ01, BEHP04,
Pas04], or region-based [CCL03, DDM03]. Boundary-based algorithms trace the
integral lines of f , which start at saddle points and converge to minima and max-
ima of f . Region-based methods grow the 2D cells corresponding to minima and
maxima of f , starting from those critical points.

One of the major issues that arise when computing a representation of a scalar
field as a Morse, or as a Morse-Smale, complex is the over-segmentation due to the
presence of noise in the data sets. Simplification algorithms eliminate less signifi-
cant features from these complexes. Simplification is achieved by applying an op-
erator called cancellation, defined in Morse theory [Mat02]. It transforms a Morse
function f into Morse function g with fewer critical points. Thus, it transforms a
Morse-Smale complex into another, with fewer vertices, and it transforms a Morse
complex into another, with fewer cells. It enables also the creation of a hierarchi-
cal representation. A cancellation in 2D consists of collapsing a maximum-saddle
pair into a maximum, or a minimum-saddle pair into a minimum. Cancellation is
performed in the order usually determined by the notion of persistence. Intuitively,
persistence measures the importance of the pair of critical points to be cancelled,
and is equal to the absolute difference in function values between the paired critical
points [EHZ01]. In 2D Morse-Smale complexes, the cancellation operator has been
investigated in [TIKU95, EHZ01, BEHP04, Wol04]. In [DDVM07], the cancella-
tion operator in 2D has been extended to functions that may have multiple saddles
and macro-saddles (saddles that are connected to each other).

Due to the large size and complexity of available scientific data sets, a multi-
resolution representation is crucial for their interactive exploration. There have
been several approaches in the literature to multi-resolution representation of the
topology of a scalar field in 2D [BEHP04, BPH05, DDVM07]. The approach in
[BEHP04] is based on a hierarchical representation of the 1-skeleton of a Morse-
Smale complex, generated through the cancellation operator. It considers the 1-
skeleton at full resolution and generates a sequence of simplified representations
of the complex by repeatedly applying a cancellation operator. In [BPH05], the in-
verse anticancellation operator to the cancellation operator in [BEHP04] has been
defined. It enables a definition of a dependency relation between refinement modifi-
cations, and a creation of a multi-resolution model for 2D scalar fields. The method
in [DDVM07] creates a hierarchy of graphs (generalized critical nets), obtained as
a 1-skeleton of an overlay of ascending and descending Morse complexes of a func-
tion with multiple saddles and saddles that are connected to each other. Hierarchical
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watershed approaches have been developed to cope with the increase in size of both
2D and 3D images [Beu94].

There have been two attempts in the literature to couple the multi-resolution topo-
logical model provided by Morse-Smale complexes with the multi-resolution model
of the geometry of the underlying simplicial mesh. The approach in [BEHP04]
first creates a hierarchy of Morse-Smale complexes by applying cancellation opera-
tors to the full-resolution complex, and then, by Laplacian smoothing, it constructs
the smoothed function corresponding to the simplified topology. The approach in
[DDMV10] creates the hierarchy by applying half-edge contraction operator, which
simplifies the geometry of the mesh. When necessary, the topological representation
corresponding to the simplified coarser mesh is also simplified. The data structure
encoding the geometrical hierarchy of the mesh, and the data structure encoding
the topological hierarchy of the critical net are interlinked. The hierarchical criti-
cal net is used as a topological index to query the hierarchical representation of the
geometry of the simplicial mesh.

4 Representing Three-Dimensional Morse and Morse-Smale
Complexes
In this section, we describe and compare two data structures for representing the

topology and geometry of a scalar field f defined over the vertices of a simplicial
complex Σ with manifold domain in 3D. The topology of scalar field f (and of
its domain Σ ) is represented in the form of Morse and Morse-Smale complexes.
The two data structures encode the topology of the complexes in essentially the
same way, namely in the form of a graph, usually called an incidence graph. The
difference between the two data structures is in the way they encode the geometry:
the data structure in [ČomićDI10] (its 3D instance) encodes the geometry of the
3-cells of the descending and ascending complexes; the data structure in [GNP+06]
encodes the geometry of the ascending and descending 3-, 2- and 0-cells in the
descending and ascending Morse complexes, and that of the 1-cells in the Morse-
Smale complexes.

4.1 A Dimension-Independent Compact Representation for Morse
Complexes

The incidence-based representation proposed in [ČomićDI10] is a dual repre-
sentation for the ascending and the descending Morse complexes Γa and Γd . The
topology of both complexes is represented by encoding the immediate boundary
and co-boundary relations of the cells in the two complexes in the form of a Morse
Incidence Graph (MIG). The Morse incidence graph provides also a combinatorial
representation of the 1-skeleton of a Morse-Smale complex. In the discrete case the
Morse incidence graph is coupled with a representation for the underlying simpli-
cial mesh Σ . The two representations (of the topology and of the geometry) are
combined into the incidence-based data structure, which is completely dimension-
independent. This makes it suitable also for encoding Morse complexes in higher
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dimensions, e.g. 4D Morse complexes representing time-varying 3D scalar fields.

A Morse Incidence Graph (MIG) is a graph G= (N,A) in which:

• the set of nodes N is partitioned into n+1 subsets N0, N1,...,Nn, such that there
is a one-to-one correspondence between the nodes inNi (i-nodes) and the i-cells
of Γd , (and thus the (n− i)-cells of Γa);

• there is an arc joining an i-node p with an (i + 1)-node q if and only if the
corresponding cells p and q differ in dimension by one, and p is on the boundary
of q in Γd , (and thus q is on the boundary of p in Γa);

• each arc connecting an i-node p to an (i + 1)-node q is labelled by the number
of times i-cell p (corresponding to i-node p) in Γd is incident to (i + 1)-cell q
(corresponding to (i+1)-node q) in Γd .

In Figure 6, we illustrate a 2D ascending complex, and the corresponding in-
cidence graph of function f (x,y) = sinx + siny. In the ascending complex, cells
labeled p are 2-cells (corresponding to minima), cells labeled r are 1-cells (corre-
sponding to saddles), and cells labeled q are 0-cells (corresponding to maxima).

(a) (b)

Fig. 6 (a) Ascending 2D Morse complex of function f (x,y) = sinx+ siny and (b) the correspond-
ing Morse incidence graph.

The data structure for encoding the MIG G = (N,A) is illustrated in Figure 7.
The nodes and the arcs of G are encoded as two lists. Recall that each node in the
graph corresponds to a critical point p of f and to a vertex in the Morse-Smale
complex. When p is an extremum, the corresponding element in the list of nodes
contains three fields, G0, Gn and A. The geometry of the extremum (its coordinates)
is stored in field G0, and the geometry of the associated n-cell (ascending n-cell of
a minimum, or a descending n-cell of a maximum), which is the list of n-simplexes
forming the corresponding n-cell in the ascending or descending complex, is stored
in field Gn. The list of the pointers to the arcs incident in the extremum is stored in
field A. If p is a maximum (n-saddle), these arcs connect p to (n−1)-saddles. If p
is a minimum (0-saddle), they connect p to 1-saddles. When p is not an extremum,
element in the node list contains fields G0, A1 and A2.The geometry of i-saddle p (its
coordinates) is stored in field G0. A list of pointers to the arcs connecting i-saddle p
to (i+1)-saddles and to (i−1)-saddles is stored in fields A1 and A2, respectively.
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Each arc in the MIG corresponds to integral lines connecting two critical points
of f , which are the endpoints of the arc. Each element in the list of arcs has three
fields, CP1, CP2 and L. If the arc connects an i-saddle to an (i+1)-saddle, then CP1
is a pointer to the i-saddle, and CP2 is a pointer to the (i + 1)-saddle. The label of
the arc (its multiplicity) is stored in field L.

Fig. 7 Dimension-independent data structure for storing the incidence graph. The nodes corre-
sponding to i-saddles are stored in lists, as are the arcs. Each element in the list of nodes stores
the geometry of the corresponding critical point, and the list of pointers to arcs incident in the
node. A node corresponding to an extremum stores also a list of pointers to the n-simplexes in the
corresponding n-cell associated with the extremum. Each element in the list of arcs stores pointers
to its endpoints, and a label indicating its multiplicity.

The manifold simplicial mesh Σ discretizing the graph of the scalar field is en-
coded in a data structure which generalizes the indexed data structure with adja-
cencies, commonly used for triangular and tetrahedral meshes [DH07]. It stores the
0-simplexes (vertices) and n-simplexes explicitly plus some topological relations,
namely: for every n-simplex σ , the n + 1 vertices of σ ; for every n-simplex σ , the
n+1 n-simplexes which share an (n−1)-simplex with σ ; for every 0-simplex, one
n-simplex incident in it.

The vertices and n-simplexes are stored in two arrays. In the array of vertices,
for each vertex its Cartesian coordinates are encoded, and the field value associated
with it. In the array of n-simplexes, with each n-simplex σ of the underlying mesh Σ
the indexes of the minimum and of the maximum node inG are associated such that
σ belongs to the corresponding ascending n-cell of the minimum, and descending
n-cell of the maximum.

The resulting data structure is completely dimension-independent, since both the
encoding of the mesh and of the graph are independent of the dimension of the mesh
and of the algorithm used for the extraction of Morse complexes. The only geom-
etry is the one of the maximal cells in the two Morse complexes, from which the
geometry of all the other cells of the Morse complexes can be extracted. The ge-
ometry of these cells can be computed iteratively, from higher to lower dimensions,
by searching for the k-simplexes that are shared by (k + 1)-simplexes belonging to
different (k +1)-cells.

The incidence-based data structure encodes also the topology of the Morse-Smale
complex. The arcs in the graph (i.e., pairs of nodes connected through the arc) cor-
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respond to 1-cells in the Morse-Smale complex. Similarly, pairs of nodes connected
through a path of length k correspond to k-cells in the Morse-Smale complex. The
geometry of these cells can be computed from the geometry of the cells in the Morse
complex through intersection. For example, the intersection of ascending n-cells
corresponding to minima and descending n-cells corresponding to maxima defines
n-cells in the Morse-Smale complex.

4.2 A Dimension-Specific Representation for 3D Morse-Smale
Complexes

In [GNP+06] a data structure for 3D Morse-Smale complexes is presented. The
topology of the Morse-Smale complex (actually of its 1-skeleton) is encoded in a
data structure equivalent to the Morse incidence graph. The geometry is referred to
from the elements of the graph, arcs and nodes. We illustrate this data structure in
Figure 8.

The data structure encodes the nodes and arcs of the incidence graph in two ar-
rays. Each element in the list of nodes has four fields, G0, TAG, G2/G3 and A. The
geometry (coordinates) of the corresponding critical point is stored in field G0. The
index of the critical point is stored in field TAG. A reference to the geometry of
the associated Morse cell (depending on the index of p) is stored in field G2/G3: a
descending 3-cell is associated with a maximum; an ascending 3-cell is associated
with a minimum; a descending 2-cell is associated with a 2-saddle; an ascending
2-cell is associated with a 1-saddle. A pointer to an arc incident in the node (the first
one in the list of such arcs) is stored in field A. Thus, the geometry of 0-, 2-, and
3-cells in the Morse complexes is referenced from the nodes.

Each element in the list of arc has five fields, G1,CP1, CP2, A1 and A2. The ge-
ometry of the integral line (corresponding to a 1-cell in the Morse-Smale complex)
encoded by the arc is stored in field G1. The pointers to the nodes connected by the
arc are stored in fields CP1 and CP2. Fields A1 and A2 contain pointers to the next
arcs incident in nodes pointed at by CP1 and CP2, respectively.

Fig. 8 Dimension-specific data structure for storing the incidence graph. Nodes and arcs are stored
in lists. Each element in the list of nodes stores the geometry of the corresponding critical point,
tag indicating the index of the critical point, geometry of the associated 2- or 3-cell in the Morse
complex, and a pointer to one incident arc. Each element in the list of arcs stores the geometry of
the arc, two pointers to its endpoints, and two pointers to the next arcs incident in the two endpoints.
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The data structure in [GNP+06] is dimension-specific, because it represents 0-
cells, 2-cells and 3-cells of the Morse complexes in the nodes, and 1-cells of the
Morse-Smale complexes in the arcs of the incidence graph. The descending 1-cells
in the Morse complex can be obtained as union of (the geometry associated with)
two arcs incident in a node corresponding to a 1-saddle, and ascending 1-cells can
be obtained as union of two arcs incident in a 2-saddle.

4.3 Comparison
The data structure in [GNP+06] encodes the combinatorial representation of the

1-skeleton of the Morse-Smale complex, which is equivalent to the encoding of the
Morse incidence graph in [ČomićDI10].

Let us denote as n the number of nodes, and as a the number of arcs in the in-
cidence graph. Both data structures encode the nodes and arcs of G in lists. Thus,
the cost of maintaining those lists in both data structures is n + a. In the incidence-
based representation in [ČomićDI10], for each arc there are two pointers pointing
to it (one from each of its endpoints) and there are two pointers from the arc to its
two endpoints. Thus, storing the connectivity information of the Morse incidence
graph requires 4a pointers in [ČomićDI10]. In the data structure in [GNP+06], for
each node there is a pointer to one arc incident in it, and for each arc there are four
pointers, two pointing to its endpoints, and two pointing to the next arcs incident in
the endpoints. This gives a total cost of n + 4a pointers for storing the connectivity
information of the graph in [GNP+06].

The difference between the two representations is how geometry is encoded. In
the 3D instance of the incidence-based data structure, only the list of tetrahedra
forming the ascending and descending 3-cells are encoded. This leads to a cost of
twice the number of tetrahedra in the simplicial mesh Σ since each tetrahedron be-
longs to exactly one ascending and one descending 3-cell. The data structure in
[GNP+06] encodes the geometry of the arcs (i.e., the 1-cells in the Morse-Smale
complex), the geometry of the ascending and descending 3-cells in the Morse com-
plexes, associated with the nodes encoding the extrema, and the geometry of the
ascending and descending 2-cells in the Morse complexes associated with the nodes
encoding the saddles. We cannot evaluate precisely the storage cost of this latter
data structure, since in [GNP+06] it is not specified how the underlying geometry is
encoded. However, the combinatorial part of the two data structures has almost the
same cost. Thus, it is clear that the incidence-based representation is more compact
since it encodes fewer geometric information.

5 Algorithms for Building 3D Morse and Morse-Smale
Complexes
In this section, we describe and compare algorithms for extracting Morse and

Morse-Smale complexes from a scalar field f defined on the vertices of a manifold
simplicial mesh Σ in 3D. Similarly to the 2D case, extraction and classification
of critical points is a usual preprocessing step. An algorithm performing this task
is proposed in [EHNP03]. For each vertex p of Σ , the lower link Lk−(p) of p is
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considered. It consists of the vertices q in the link Lk(p) of p such that f (q) < f (p),
and of the simplexes of Lk(p) defined by these vertices. Vertex p is classified as
a minimum if its lower link is empty. It is classified as a maximum if its lower
link is the same as Lk(p). Otherwise, p is classified based on the Betti numbers of
Lk−(p) as a critical point composed of multiple 1- and 2-saddles. Intuitively, the
Betti numbers β0 and β1 of Lk−(p) count the number of connected components and
holes in Lk−(p), respectively.

The algorithms presented here can be classified, according to the approach they
use, as region-based [GNPH07, ČomićDI10], boundary-based [EHNP03, EJ09],
or based on Forman theory [KKM05, GBHP08, RWS11]. Region-based algorithms
extract only the minima and maxima of f , and do not explicitly extract saddle points.
Boundary-based algorithms [EHNP03, EJ09] first extract and classify critical points
of f (minima, maxima, and multiple 1- and 2-saddles) in the preprocessing step
(using the method in [EHNP03]), and then compute the ascending and descending
1-cells and 2-cells associated with saddles. The algorithms in [KKM05, GBHP08,
RWS11] construct a Forman gradient vector field V and its critical cells starting
from a scalar field f .

The output of the algorithm in [GNPH07] is a decomposition of the vertices
of Σ into 0-, 1-, 2- and 3-cells of the Morse complexes of f . Algorithms in
[EHNP03, EJ09] produce 3-, 2-, 1- and 0-cells of the Morse and Morse-Smale
complexes composed of tetrahedra, triangles, edges and vertices of Σ , respectively.
The output of the algorithms based on Forman theory [KKM05, GBHP08, RWS11]
(Forman gradient vector field V ) can be used to obtain also the decomposition of the
underlying mesh K into descending cells associated with critical cells of V . Each de-
scending cell of a critical i-cell σ is composed of all i-cells of K that are reachable
by tracing gradients paths of V starting from the boundary of σ . The algorithms
in [GBHP08, ČomićDI10] produce the graph encoding the connectivity of Morse
and Morse-Smale complexes. In [GBHP08], an algorithm based on Forman theory
has been developed to obtain the nodes and arcs of the graph. The algorithm in
[ČomićDI10] obtains the graph starting from any segmentation of the tetrahedra of
Σ in descending and ascending 3-cells of the Morse complexes of f .

5.1 A Watershed-Based Approach for Building the Morse
Incidence Graph

In [ČomićDI10], a two-step algorithm is described for the construction of the
Morse incidence graph of a scalar field f , defined on the vertices of a simplicial
complex Σ with a manifold carrier. The first step is the decomposition of Σ in de-
scending and ascending n-cells of the Morse complexes. In [ČomićDI10], this de-
composition is obtained by extending the well-known watershed algorithm based on
simulated immersion from image processing to n-dimensional manifold simplicial
meshes [VS91]. The first step of the algorithm is, thus, dimension-independent. The
second step of the algorithm, developed for the 2D and 3D cases, consists of the
construction of the Morse incidence graph.
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The watershed algorithm by simulated immersion has been introduced in [VS91]
for segmenting a 2D image into regions of influence of minima, which correspond
to ascending 2-cells. We describe the extension of this algorithm from images to
scalar fields defined at the vertices of a simplicial mesh in arbitrary dimension. The
vertices of the simplicial mesh Σ are sorted in increasing order with respect to the
values of the scalar field f , and are processed level by level in increasing order of
function values. For each minimum m, an ascending region A(m) is iteratively con-
structed through a breadth-first traversal of the 1-skeleton of the simplicial mesh Σ
(formed by its vertices and edges). For each vertex p, its adjacent, and already pro-
cessed, vertices in the mesh are examined. If they all belong to the same ascending
region A(m), or some of them are watershed points, then p is marked as belonging
to A(m). If they belong to two or more ascending regions, then p is marked as a
watershed point. Vertices that are not connected to any previously processed vertex
are new minima and they start a new ascending region.

Each maximal simplex σ (an n-simplex if we consider an n-dimensional simpli-
cial mesh) is assigned to an ascending region based on the labels of its vertices. If
all vertices of σ , that are not watershed points, belong to the same region A(m), then
σ is assigned to A(m). If the vertices belong to different ascending regions A(mi),
then σ is assigned to the region corresponding to the lowest minimum.

Descending regions associated with maxima are computed in a completely similar
fashion.

The algorithm proposed in [ČomićDI10] for the construction of the Morse in-
cidence graph of f works on a segmentation produced by the watershed algo-
rithm, although any other segmentation algorithm can be used. In the (dimension-
independent) preprocessing step, for each descending region in Γd , a maximum node
in the incidence graph is created, and for each ascending region in Γa, a minimum
node is created. The algorithm for the construction of saddle nodes is based on in-
specting the adjacencies between the regions corresponding to maxima and minima,
and is developed for the 2D and the 3D case.

In the 2D case, after the preprocessing step, two steps are performed: (i) creation
of the nodes corresponding to saddles, and (ii) creation of the arcs of the incidence
graph. To create the saddle nodes, 1-cells of the ascending (or of the descending)
complex need to be created. Each 1-cell is a chain of edges of the triangle mesh.
Each edge e of Σ is inspected, and is classified with respect to such chain of edges
based on the labels of the ascending regions to which the two triangles separated by
e belong. Each connected component of edges separating two ascending regions is
subdivided into topological 1-cells. Thus, if necessary, new saddle nodes are created.
Each saddle node (1-cell) p is connected to the two minima it separates. The arcs
between saddle nodes and nodes corresponding to maxima are created by inspecting
the endpoints of the 1-cells. Three cases are distinguished, illustrated in Figure 9:
if the endpoints of 1-cell p are two maxima, the saddle node corresponding to p
is connected to those maxima. If one of the endpoints is not a maximum, a new
maximum is created and connected to the saddle. If there is a maximum inside 1-
cell p, p is split in two 1-cells, each of which with that maximum as endpoint. If
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there is some maximum q not connected to any saddle, then that maximum must be
inside some 2-cell in Γa. In this case, a 1-saddle is created by looking at the 2-cells
corresponding to q and at its adjacent 2-cells in Γd .

(a) (b) (c)

Fig. 9 Connection of the saddle nodes with maxima in 2D: (a) both endpoints of the 1-cell are
maxima; (b) one of the endpoints is not a maximum; (c) there is a maximum in the interior of the
1-cell.

The construction of the Morse incidence graph in 3D requires, after the prepro-
cessing, other three steps, namely, (i) generation of the nodes corresponding to 1-
saddles and 2-saddles, (ii) generation of the arcs between 1-saddles and minima,
and between 2-saddles and maxima, and (iii) generation of the arcs joining 1- and
2-saddles. The first two steps directly generalize the 2D algorithm. The third step
consists of generating the arcs connecting the nodes corresponding to 1-saddles to
those corresponding to 2-saddles. For each 2-cell s1 in Γa (which corresponds to a
1-saddle), the set Ms of maxima connected to s1 is considered, which correspond to
the vertices of 2-cell s1. For each pair of maxima m1 and m2 in Ms, it is verified if
there exists a 2-cell s2 (i.e., a 2-saddle) in the descending complex Γd between the
3-cells corresponding to m1 and m2. If s2 exists, then the two nodes corresponding
to 1-saddle s1 and 2-saddle s2 are connected in the MIG. The third step of the al-
gorithm is illustrated in Figure 10. A technique for processing 2-cells which are on
the boundary of Σ has been also developed; it is not described here for the sake of
brevity.

(a) (b) (c)

Fig. 10 Connection of the 1-saddle and 2-saddle nodes in 3D: (a) maxima on the boundary of
ascending 2-cell of 1-saddle s1; (b) 2-saddles s2, s3, s4 and s5 connected to two maxima on the
boundary of the 2-cell; (c) these 2-saddles are connected to 1-saddle s1.

In summary, the algorithm in [ČomićDI10] is organized in two steps: segmenta-
tion of the simplicial mesh Σ into Morse complexes, and extraction of the incidence
graph. The first step is dimension-independent. It is based on the extension of a
watershed algorithm for intensity images to scalar fields defined on simplicial com-
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plexes in arbitrary dimension. The second step, developed for the 2D and 3D cases,
constructs the nodes and arcs of the MIG encoding the Morse complexes generated
at the first step.

5.2 A Boundary-Based Algorithm
The algorithm proposed in [EHNP03] builds a quasi-Morse-Smale complex (see

Section 2), a complex that reflects the combinatorial structure of the Morse-Smale
complex, but in which the arcs and quadrangles (1- and 2-cells) may not be those of
maximal ascent and descent. The quasi-Morse-Smale complex is constructed dur-
ing two sweeps over a simplicial complex Σ triangulating a 3-manifold M. The first
sweep (in the direction of decreasing function value) computes the descending 1-
and 2-cells and the second sweep (in the direction of increasing function value) the
ascending 1- and 2-cells of the Morse complexes. The algorithm is boundary-based,
as it computes the 1- and 2-cells which bound the 3-cells in the Morse complexes.
During the first sweep, the descending 1-cells and 2-cells are computed simultane-
ously. A 1-cell is built as follows:

• If a current vertex p in the sweep is a 1-saddle, a descending 1-cell is started.
The two arcs of the corresponding 1-cell are initialized by edges from p to the
lowest vertex in each connected component of the lower link of p, as illustrated
in Figure 11 (a).

• If there is a descending arc ending at a current vertex p, it is expanded by adding
an edge from p to the lowest vertex in its lower link. If p is a 1-saddle, later
an ascending 2-cell will start at p and each descending arc is extended to the
lowest vertex in the specific connected component of the lower link of p that is
not separated from the arc by the ascending 2-cell.

• If p is a minimum, it becomes a node of the Morse-Smale complex, and the
descending arcs end at p.

(a) (b) (c)

Fig. 11 (a) The 1-cell associated with 1-saddle p is initialized by connecting p to the two lowest
vertices s1 and s2 in its lower link in [EHNP03]. (b) The 2-cell associated with a 2-saddle p is
initialized by the triangles determined by p and a cycle of edges in the lower link of p in [EHNP03].
(c) Expanding a separating 2-cell at a regular vertex p in [EJ09].

A 2-cell is built as follows:

• If a current vertex p in the sweep is a 2-saddle, a descending 2-cell is started. A
cycle of edges in the lower link is constructed, which contains the lowest vertex
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in the lower link of p. Triangles determined by p and edges of the cycle form
the initial descending 2-cell of p, as illustrated in Figure 11 (b). Initially, the
entire boundary of the descending 2-cell is unfrozen.

• A 2-cell is expanded by constructing a shortest-path tree in the lower link of
the current (highest) vertex q on the unfrozen boundary of the 2-cell associated
with 2-saddle p, and connecting q to the edges of this tree. If q is a critical point
(a 1-saddle or a minimum), it is declared frozen together with its two incident
edges on the boundary.

• When the complete boundary of a 2-cell is frozen the 2-cell is completed.

The next step consist of building the intersections between descending and ascend-
ing 2-cells by tracing ascending paths inside a descending 2-cell, starting from 1-
saddles on the boundary of the descending 2-cell and ending at the 2-saddle that
started the descending 2-cell. These intersections are used to guarantee the struc-
tural correctness of the extracted quasi-Morse-Smale complex. Each 2-saddle starts
two arcs of an ascending 1-cell, which must not cross any already established de-
scending 2-cells. The intersection curves between descending and ascending 2-cells,
and the ascending 1-cells decompose each ascending 2-cell into quadrangles. The
ascending cells are built one quadrangle at a time, similarly to descending 2-cells.

In summary, the algorithm in [EHZ01] extracts the boundaries of the 3-cells in
the Morse-Smale complex. The extracted complex has the correct combinatorial
structure described by a quasi-Morse-Smale complex. Each 3-cell in the extracted
complex has quadrangular faces.

5.3 A Watershed-Based Labeling Algorithm
In [EJ09], an algorithm is proposed that extracts 3-cells in the descending Morse

complex starting from the values of a scalar field f defined over a triangulation Σ of
a manifold M. To this aim the algorithm generates two functions on the simplexes of
Σ : the marking function marks the simplexes of Σ that form the boundaries between
descending 3-cells by 1, and the other simplexes of Σ are marked by 0; the labeling
function labels each simplex σ of Σ marked by 0 by the label of the maximum
whose descending 3-cell contains σ . The vertices are inspected in decreasing order
of function value. Depending on the type of criticality of a current vertex p, the lower
star of p (defined by p and simplexes in the lower link Lk−(p) of p) is processed.

• If p is a maximum, its lower link is equal to its link. Vertex p starts a new
descending 3-cell. All simplexes in the lower star of p are labeled by the label
of this 3-cell.

• If p is a regular point (see Figure 11 (c)), its lower link is a deformation retract
of a disk. If there is a separating 2-cell that reached p, it is extended across p by
creating a spanning tree in the lower link of p. The spanning tree is constructed
so that it contains all vertices that belong to an already marked simplex (i.e., to
a simplex which is part of the boundary between two descending 3-cells). All
triangles and edges connecting p to this spanning tree are marked (extending
a descending 2-cell between two 3-cells). Other non-labeled (and non-marked)
simplexes in the star of p are labeled by copying from the neighbors. Otherwise
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(if there is no separating 2-manifold containing p), non-labeled simplexes in the
star of p are labeled by copying from neighbors.

• If p is a 1-saddle, its lower link has two components, each a deformation retract
of a disk. Each component of the lower link of p is processed in the same way
as in the case of a regular point.

• If p is a 2-saddle, its lower link is a deformation retract of an annulus. Vertex p
starts a new separating 2-cell. A cycle that encircles the whole lower link of p
is created. All triangles and edges connecting p to this cycle are marked. They
form the initial separating 2-cell associated with p. Other non-labeled simplexes
in the star of p are labeled by copying from neighbors.

• If p is a minimum, its lower link is empty, and p is marked.

The descending 3-cells of maxima produced by the algorithm in [EJ09] are topo-
logical cells.

5.4 A Region-Growing Algorithm
The algorithm proposed in [GNPH07] computes the Morse-Smale complex of

a function f defined over the vertices of a simplicial complex Σ triangulating a
manifold M. The ascending cells are computed through region growing, in the order
of decreasing cell dimension. Descending cells are computed inside the ascending
3-cells, using the same region-growing approach. The ascending and descending
cells of all dimensions are composed of vertices (0-simplexes) of Σ .

(a) (b) (c)

Fig. 12 Classification of the vertices of Σ as internal or boundary. (a) All the vertices are classified
as internal to a 3-cell (blue) with the exception of vertices on the boundary of two or more 3-cells,
which are classified as boundary. (b) The boundary vertices in (a) are classified again as internal
(green) or boundary for 2-cells. (c) The boundary vertices of the 1-cells in (b) is classified as
maxima (red).

The computation of the ascending 3-cells consists of two steps. First, the set of
minima of f are identified. Each minimum will be the origin for a set of vertices
representing an ascending 3-cell. Then, each vertex p of Σ is classified as an internal
vertex of an ascending cell, or as a boundary vertex. This depends on the number
of connected components of the set of internal vertices in the lower link of p which
are already classified as interior to some ascending 3-cell (see Figure 12 (a)). The
classification is performed by sweeping Σ in the order of ascending function values.

Vertices classified as boundary in the first step of the algorithm are the input for
the algorithm which builds the ascending 2-cells. An ascending 2-cell is created for
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each pair of adjacent 3-cells. The vertices of the 2-cells are classified as interior
or boundary, based on local neighborhood information, similarly to the classifica-
tion with respect to the 3-cells (see Figure 12 (b)). A 1-cell is created in every
place where ascending 2-cells meet. Each 1-cell is composed of vertices classified
as boundary in the previous step. Finally, each vertex p of an ascending 1-cell is
classified as interior or boundary. Maxima are created at the boundaries between
ascending 1-cells (see Figure 12 (c)). They form a small disjoint clusters of vertices.

For each ascending n-cell, the descending cells are computed in their interior. The
region-growing steps are the same. Again here, iteration is performed in the order
of decreasing dimension.

The main characteristics of the algorithm in [GNPH07] is that all the cells in
the computed Morse complexes are composed of vertices of the simplicial mesh Σ .
These cells are computed iteratively in order of decreasing dimension.

5.5 An Algorithm Based on Forman Theory
The algorithm proposed in [GBHP08] computes the Morse-Smale complex start-

ing from a regular n-dimensional CW-complex K with scalar field f defined at the
vertices of K. Intuitively, a (finite) CW complex is a finite collection of pairwise dis-
joint cells, in which the boundary of each cell is the disjoint union of cells of lower
dimension. Function f is extended to a Forman function F , defined on all cells of
K, such that F(σ) is slightly larger than F(τ) for each cell σ and each face τ of σ .
For the defined Forman function F , all cells of K are critical. A discrete gradient
vector field is computed by assigning gradient arrows in a greedy manner in or-
dered sweeps over the cells of K according to increasing dimension and increasing
F value. Each current non-paired and non-critical cell in the sweep is paired with
its co-facet with only one facet not marked (as critical or as already paired). If there
are several of such co-facets the lowest is taken. If there is no such co-facet, a cell
cannot be paired, and it is critical. This pairing defines a discrete gradient vector
field, as illustrated in Figure 13 (a).

(a) (b)

Fig. 13 (a) Construction of the Forman gradient vector field, and (b) of the incidence graph.

The 1-skeleton of the Morse-Smale complex is computed starting from this gra-
dient vector field. Critical cells of F (and not critical points of f ) and the discrete
gradient paths connecting them determine the nodes and arcs in the 1-skeleton of the
Morse-Smale complex (incidence graph), as illustrated in Figure 13 (b). In [GP12],
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this algorithm has been extended to extract topological 2- and 3-cells from a regular
hexahedral 3D mesh.

The order in which the cells in K are processed by the algorithm is not completely
deterministic, since there could be many different i-cells in K with the same value
of function F . As a consequence, some unnecessary critical cells may be produced
by the algorithm.

5.6 A Forman-based Approach for Cubical Complexes
In [RWS11], a dimension-independent algorithm is proposed for constructing a

Forman gradient vector field on a cubical complex K with scalar field values given
at the vertices, and applications to the 2D and 3D images are presented.

The algorithm processes the lower star of each vertex v in K independently. For
each cell σ in the lower star, the value max

p∈σ
f (p) = f max(σ) is considered. An

ascending order ∆ is generated based on the values f max(σ) and the dimension of
σ , such that each cell σ comes after its faces in the order. If the lower star of vertex
v is v itself, then v is a local minimum and it is added to the set C of critical cells.
Otherwise, the first edge e in ∆ is chosen and vertex v is paired with edge e (the
vector field V at v is defined as V (v) = e).

The star of v is processed using two queues, PQone and PQzero, corresponding
to i-cells with one and zero unpaired faces, respectively. All edges in the star of v
different from e are added to PQzero. All cofaces of e are added to PQone if the
number of unpaired faces is equal to one.

If queue PQone is not empty, the first cell α is removed from the queue. If the
number of unpaired faces of α has become zero, α is added to PQzero. Otherwise,
the vector field at the unique unpaired face pair(α) of α is defined as V (pair(α)) =
α , pair(α) is removed from PQzero and all the co-faces of either α or pair(α) and
with number of unpaired faces equal to one are added to PQone.

If PQone is empty and PQzero is not empty, one cell β is taken from PQzero.
Cell β is added to the set C of critical points and all the co-faces of β with number
of unpaired faces equal to one are added to PQone.

If both PQzero and PQone are empty, then the next vertex is processed. Result of
the algorithm is the set C of critical cells and the pairing of non-critical cells, which
define the Forman gradient vector field V .

In Figure 14 we show the main steps of the algorithm in [RWS11] when process-
ing the lower star of vertex 9 (see Figure 14 (a)). Each vertex is labeled by its scalar
field value. Other cells are labeled by the lexicographic order ∆ . The lower star of 9
is not 9 itself, and thus 9 is not a minimum. The lowest edge starting from 9 (edge
92), is chosen to be paired with 9. All the other edges are inserted in PQzero and
the cofaces of 92 with a single unpaired face (faces 9432 and 9852) are inserted
in PQone (Figure 14 (b)). The first face is taken from PQone (face 9432) and cou-
pled with its single unpaired face (edge 94). The face 9741, which is a coface of 94
with exactly one unpaired face, is inserted in PQone and edge 94 is removed from
PQzero (Figure 14 (c)). Face 9741 is taken from PQone and paired with edge 97,
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(a) (b) (c)

(d) (e) (f)

Fig. 14 Processing the lower star of vertex 9 using the algorithm in [RWS11].

which is removed from PQzero. Face 9765 is inserted in PQone and successively
removed to be paired with edge 95 (Figure 14 (d) and (e)). Face 9852 is removed
from PQone and declared critical, as it has no unpaired faces (Figure 14 (f)).

In the 3D case, the algorithm in [RWS11] does not create spurious critical cells.
The extracted critical cells are in a one-to-one correspondence with the changes in
topology in the lower level cuts of cubical complex K.

5.7 A Forman-based Approach for Simplicial Complexes
The algorithm proposed in [KKM05] takes as input a scalar field f defined over

the vertices of a 3D simplicial complex Σ and a persistence value p≥ 0. It computes
a Forman gradient vector field V by subdividing the simplexes of Σ into three lists,
denoted as A, B and C, such that lists A and B are of the same length, and for each i-
simplex σ j ∈ A, V (σ j) = τ j, τ j is the (i+1)-simplex in B, and C is the set of critical
simplexes.

The algorithm builds the Forman gradient vector field in the lower link Lk−(v) of
each vertex v in Σ , and extends this field to the cone v∗Lk−(v). Lists A, B and C are
initialized as empty. For each vertex v in Σ , if L(v) is empty, then v is a minimum
and it is added to C. Otherwise, v is added to A and the algorithm is recursively
called on the lower link L−(v), producing lists A′, B′, C′ that define the Forman
gradient vector field V ′ on Lk−(v). The lowest critical vertex w is chosen from C′
and edge [v,w] is added to B. Thus, V (v) = [v,w]. For each i-simplex σ (different
from w) in C′ the (i+1)-simplex (cone) v∗σ is added to C. For each i-simplex σ in
A′ the (i+1)-simplex v∗σ is added to A and the (i+2)-simplex v∗V ′(σ) is added
to B. Thus, V (v∗σ) = v∗V ′(σ).
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Once all the lower links of vertices in Σ have been processed, a persistence
canceling step is performed in increasing order of dimension i. For each critical
i-simplex σ , all the gradient paths to critical (i− 1)-simplexes are found. A criti-
cal i-simplex σ can be cancelled with critical (i−1)-simplex γ if and only if there
is only one gradient path from σ to γ . The effect of a cancellation is to reverse
the gradient path connecting σ and γ . Cancellations are applied in the order of in-
creasing persistence. The function that extends the scalar field f to the simplexes
of Σ , and whose values are considered in the definition of persistence, is given by
f max(σ) = max

p∈σ
f (p).

(a) (b) (c) (d)

Fig. 15 (a) The lower star of vertex 9. The Forman gradient vector field V ′ on the link of 9 (b)
before and (c) after the cancellation of critical edge [4,3] and vertex 2, and edge [7,6] and vertex 5.
The critical vertices are blue, and the critical edges are green. (d) The Forman gradient vector field
V in the lower star of vertex 9.

We illustrate the algorithm in [KKM05] in Figure 15. The star of vertex 9 is shown
in Figure 15 (a). The application of the algorithm to the lower link Lk−(9) of vertex
9 produces the following lists:

A’ = 3;4;6;7;8
B’ = [3,2]; [4,1]; [6,5]; [7,1]; [8,2]
C’ = 1;2; [4,3];5; [7,6]; [8,5]
The corresponding Forman gradient vector field V ′ on Lk−(9), and V ′ after the

cancellation of vertex 2 and edge [3,4], and cancellation of vertex 5 and edge [6,7],
are shown in Figure 15 (b) and (c), respectively. The extension of V ′ to the cone
9 ∗Lk−(9) (the lower star of vertex 9) is shown in Figure 15 (d). Descending and
ascending regions of critical cells of Forman vector field V constructed in [KKM05]
are computed in [JMK09].

If Σ is a triangulation of a 3D manifold and the scalar field f defined at the vertices
of Σ has no multiple saddles, then there is a critical i-cell of the computed Forman
gradient vector field V for each i-saddle of the scalar field f .

5.8 Analysis and Comparison
We have described seven algorithms for extracting Morse or Morse-Smale com-

plexes of a scalar field f in the discrete case. We summarize the properties of the
reviewed algorithms in Table 1.
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Algorithm Input Dimension Approach Critical Morse
points cells

[ČomićDI10] simplicial 3D region extrema simplexes of Σ
[EHNP03] simplicial 3D boundary all simplexes of Σ
[EJ09] simplicial 3D boundary all simplexes of Σ
[GNPH07] simplicial 3D region extrema vertices of Σ
[GBHP08] CW nD Forman critical cells cells of K
[RWS11] cubical nD Forman critical cells cells of K
[KKM05] simplicial 3D Forman critical cells cells of Σ

Table 1 Reviewed algorithms classified according to the type of the input complex (simplicial or
cell), dimension of the complex, approach used (region-based, boundary-based or based on Forman
theory), type of extracted critical entities (critical points of the given scalar field f or critical cells
of the constructed Forman gradient vector field V ) and type of entities that form the extracted cells
in the Morse complexes (cells or vertices of the input complex).

We can classify the reviewed algorithms based on different criteria. All algorithms
work on a 3D manifold simplicial complex Σ except the ones in [GBHP08, RWS11],
which work on an arbitrary-dimensional CW-complex and cubical complex, respec-
tively.

With respect to the approach used, some of the algorithms we reviewed [ČomićDI10,
GNPH07] can be classified as region-based, as they extract 3-cells corresponding to
extrema. Others [EHNP03, EJ09] are boundary based, as they extract the bound-
aries between the 3-cells corresponding to extrema. The algorithms in [GBHP08,
RWS11, KKM05] compute a Forman gradient vector field V starting from scalar
field f .

The algorithms differ also in the type of critical points they extract before pro-
ducing the segmentation of the input mesh: some algorithms [EHNP03, EJ09]
first classify all critical points of scalar field f (extrema and saddles); others
[ČomićDI10, GNPH07] extract only extrema of f , and obtain the other nodes in
the Morse incidence graph from the adjacency relation between 3-cells associated
with extrema. The algorithms in [GBHP08, RWS11, KKM05] extract the critical
cells of a Forman gradient vector field V (and not the critical points of scalar field
f ) defined through f .

Finally, another difference among the algorithms is given by the entities used in
the segmentation process: the algorithms in [ČomićDI10, EHNP03, EJ09] assign
the simplexes of Σ to cells in the Morse complexes; the algorithm in [GNPH07]
assigns the vertices of Σ to cells in the Morse complexes; the algorithms in
[GBHP08, RWS11, KKM05] assign the cells of the cell complex K to cells in the
descending Morse complex.

The algorithm in [EHZ01] computes the segmentation of the 3D simplicial mesh
with the correct combinatorial structure described by the quasi-Morse-Smale com-
plex. The algorithm in [EJ09] produces 3-cells in the descending Morse complex,
which are topological cells. In the 3D case, the algorithm in [RWS11] computes
the critical cells of the Forman gradient vector field V that are in a one-to-one cor-
respondence with the changes in topology in the lower level cuts of K. If Σ is a
triangulation of a manifold M, and scalar field f has no multiple saddles, then the
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algorithm in [KKM05] produces a critical i-cell of the Forman gradient vector field
for each i-saddle of scalar field f . There are no formal claims about the critical cells
of Forman gradient vector field computed by the algorithm in [GNPH07].

6 Simplification of 3D Morse and Morse-Smale Complexes
Although Morse and Morse-Smale complexes encode compactly the behavior of

a scalar field f and the topology of its domain, simplification of these complexes
is an important issue for two major reasons. The first is the over-segmentation (the
presence of a large number of small and insignificant regions) produced by Morse
and Morse-Smale complexes which is due to the presence of noise in the data sets,
both in case they are obtained through measurements or as a result of a simulation
algorithm. Simplification of the complexes through elimination of pairs of critical
points can be used to eliminate noise. Each simplification is performed guided by
persistence, which measures the importance of the pair of eliminated critical points,
and is equal to the absolute difference in function values between them. Usually
by using a threshold on persistence equal to 5%-10% of the maximum persistence
value, a reduction of the storage cost in the representation of the Morse or Morse-
Smale complexes can be obtained which amounts to 10%-20% for 2D data sets, and
5%-10% for 3D ones.

Even after a simplification which removes insignificant regions considered to be
noise, and leaves regions that correspond to actual features of the scalar field, the
size of Morse and Morse-Smale complexes can still be large, due to the huge size
and amount of available scientific data. Thus, the second requirement is to reduce
the size of the complexes at different levels of resolution, while retaining informa-
tion on important structural features of the field and guaranteeing the topological
correctness of the simplified representations. The size of a Morse complex is about
0.4%-3% the size of the underlying simplicial mesh in 2D and about 2%-8% in 3D.
For large 3D data sets (which have 15M tetrahedra), the size of a Morse complex
can be up to 50 MBytes.

We describe here two approaches to the simplification of Morse and Morse-Smale
complexes in 3D proposed in the literature. The first approach [GNP+05] applies
the cancellation operator of critical points of a Morse function f [Mat02] on the
Morse-Smale complexes of f . The second approach [ČomićD11] applies a new set
of simplification operators, called removal and contraction, which, together with
their inverse refinement ones, form a minimally complete basis of operators for
performing any topologically consistent simplification on Morse and Morse-Smale
complexes.

Both cancellation and removal/contraction operators eliminate a pair of critical
points of scalar field f , i.e., a pair of cells in the Morse complexes and a pair
of vertices from the Morse-Smale complex. The difference between the two ap-
proaches to simplification is that cancellation often introduces a large number of
cells (of dimension higher than zero) in the Morse-Smale complex, while this never
happens with removal/contraction. Cancellation operator applied on large data sets
can create complexes that exceed practical memory capabilities [GBHP11]. Re-
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moval/contraction operator, on the other hand, reduces the size of the complexes
at each step of the simplification process.

6.1 Cancellation in 3D
In this section, we review the cancellation operator, which simplifies a Morse

function f defined on a manifold M by eliminating its critical points in pairs
[Mat02]. Two critical points p and q can be cancelled if

1. p is an i-saddle and q is an (i+1)-saddle, and
2. p and q are connected through a unique integral line of f .

After the cancellation of p and q, each critical point t of index at least i + 1, which
was connected through integral line of f to i-saddle p becomes connected to each
critical point r of index at most i, which was connected to (i+1)-saddle q before the
cancellation. Equivalently, in a descending (and, symmetrically, ascending) Morse
complex, an i-cell p and an (i + 1)-cell q can be simultaneously cancelled if cell p
appears exactly once on the boundary of cell q. After the cancellation, each cell r
which was on the boundary of (i + 1)-cell q becomes part of the boundary of each
cell t which was in the co-boundary of i-cell p. In the Morse-Smale complex, there
is a new k-cell for each two cells t and r that become incident to each other in the
Morse complexes after the cancellation and that differ in dimension by k.

(a) (b)

Fig. 16 (a) Cancellation of a maximum p and saddle q, and (b) cancellation of a minimum p and
a saddle q, on the 2D descending Morse complex illustrated in Figure 2 (a).

In 2D, there are two cancellation operators: cancellation of a maximum and a
saddle, and cancellation of a minimum and a saddle. A cancellation of a maximum
p and a saddle q is illustrated in Figure 16 (a). It is feasible if 1-cell q is shared
by exactly two 2-cells p and p′. After the cancellation, 1-cell q (corresponding to
saddle) is deleted, and 2-cell p (corresponding to maximum) is merged into 2-cell
p′. A cancellation of a minimum p and a saddle q is illustrated in Figure 16 (b).
It is feasible if 1-cell q is bounded by two different 0-cells p and p′. After the
cancellation, 1-cell q is deleted, and 0-cell p is collapsed onto 0-cell p′.

In 3D, there are two instances of a cancellation: one cancels an extremum and a
saddle (a maximum and a 2-saddle, or a minimum and a 1-saddle), the other cancels
two saddle points. Cancellation of a maximum p and a 2-saddle q is feasible if 2-
cell q is shared by exactly two different 3-cells p and p′. In the descending Morse
complex, it removes 2-cell q, thus merging 3-cell p into 3-cell p′, as illustrated in



26 Lidija Čomić, Leila De Floriani, Federico Iuricich

(a) (b)

Fig. 17 Portion of a 3D descending Morse complex before and after (a) a cancellation of maximum
p and 2-saddle q, and (b) a cancellation of a 1-saddle p and 2-saddle q.

Figure 17 (a). Cancellation of a minimum p and a 1-saddle q is feasible if 1-cell q
is bounded by exactly two different 0-cells p and p′. In the descending complex Γd ,
it contracts 1-cell q with the effect of collapsing 0-cell p on 0-cell p′.

Cancellations that do not involve an extremum are more complex. The problem
is that the number of cells in the Morse complexes that become incident to each
other (and thus, the number of cells in the Morse-Smale complex) may increase
after a cancellation. Let p and q be a 1-saddle and a 2-saddle, respectively. Let
R = {r j, j = 1, .., jmax} be the set of 2-saddles connected to p and different from q,
and let T = {tk,k = 1, ..,kmax} be the set of 1-saddles connected to q different from
p. The effect of the cancellation of 1-saddle p and 2-saddle q on a 3D descending
Morse complex is illustrated in Figure 17 (b). 1-cell p and 2-cell q are deleted, and
the boundary of each 2-cell in R incident in p is extended to include 1-cells in T on
the boundary of 2-cell q. Each 1-cell and each 0-cell that was on the boundary of
2-cell q (with the exception of 1-cell p) becomes part of the boundary of each 2-cell
and each 3-cell incident in p (with the exception of 2-cell q), thus increasing the
incidence relation on the descending Morse complex. The effect of the cancellation
on the Morse-Smale complex consists of adding one arc for each pair (r j, tk) of
critical points, where r j belongs to R and tk belongs to T , and deleting p and q,
as well as all the arcs incident in them. Thus, a cancellation of p and q increases
the number of arcs connecting 1-saddles to 2-saddles in the complex by deleting
|R|+ |T |+1 such arcs, but adding |R| · |T | arcs. Similarly, the number of 2-cells and
3-cells in the Morse-Smale complex may increase after the cancellation.

In [GNP+06], a macro-operator is defined, which consists of a 1-saddle-2-saddle
cancellation, followed by a sequence of cancellation involving extrema. These latter
cancellations eliminate the new incidences in the Morse complexes, the new cells in
the Morse-Smale complex, and the new arcs in the incidence graph.

6.2 Removal and Contraction Operators
Motivated by the fact that cancellation operator is not a real simplification oper-

ator, two new basic dimension-independent simplification operators are introduced
[ČomićD11], called removal and contraction. They are defined by imposing addi-
tional constraints on the feasibility of a cancellation, and can be seen as merging of
cells in the Morse complexes. There are two types of both a removal and contraction
operator. For simplicity, we describe only the 3D instances of the operators of the
first type.
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A removal rem(p,q, p′) of index i of the first type of (i+1)-cell p and i-cell q is
feasible if i-cell q appears once on the boundary of exactly two different (i+1)-cells
p and p′. Intuitively, a removal rem(p,q, p′) removes i-cell q and merges (i+1)-cell
p into (i + 1)-cell p′ in the descending Morse complex Γd . In the dual ascending
Morse complex Γa, it contracts (n− i)-cell q and collapses (n− i− 1)-cell p onto
(n− i−1)-cell p′.

In 2D, there is one removal operator (of index 1). It is the same as a cancellation
of a maximum and a saddle, illustrated in Figure 16 (a).

(a) (b)

Fig. 18 Portion of a 3D descending (a) and ascending (b) Morse complex before and after a re-
moval rem(p,q, p′) of index 1. The boundary of 2-cell p, consisting of 1-cells r1, r2 and r3, is
merged into the boundary of 2-cell p′ in Γd . The co-boundary of 1-cell p, consisting of 2-cells r1,
r2 and r3, is merged into the co-boundary of 1-cell p′ in Γa.

In 3D, there are two removal operators: a removal of index 1 of 1-saddle q and
2-saddle p, and a removal of index 2 of 2-saddle q and maximum p. This latter is
the same as the maximum-2-saddle cancellation illustrated in Figure 17 (a).

A removal rem(p,q, p′) of index 1 in 3D is different from a cancellation, since it
requires that 1-cell q bounds exactly two 2-cells p and p′ in the descending complex.
An example of the effect of a removal rem(p,q, p′) of index 1 on a 3D descending
Morse complex is illustrated in Figure 18 (a). After the removal, in the simplified
descending Morse complex Γ ′

d , 1-cell q is deleted, and 2-cell p is merged with the
unique 2-cell p′ in the co-boundary of q and different from p. The boundary of p
becomes part of the boundary of p′. Figure 18 (b) illustrates the effect of removal
rem(p,q, p′) on the dual ascending complex Γa. In Γa, q is a 2-cell bounded by
exactly two different 1-cells p and p′. After the removal, 2-cell q is contracted, 1-
cell p is collapsed onto 1-cell p′. All cells in the co-boundary of p become part of
the co-boundary of p′.

Contraction operators are dual to removal operators. The effect of a contraction
of index i on a descending complex Γd is the same as the effect of a removal of index
(n− i) on an ascending complex Γa. Figure 18 (b) and (a) illustrates the effect of a
contraction con(p,q, p′) of index 2 on a descending and ascending Morse complex,
respectively, and thus also the duality between removal and contraction operators.
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Fig. 19 A sequence consisting of a cancellation of 1-saddle p and 2-saddle q, followed by re-
movals, which eliminate 2-saddles and 3-saddles connected to p, on a 3D descending Morse com-
plex.

In [ČomićD11], it has been shown that removal and contraction simplification
operators, together with their inverse ones, form a basis for the set of topologically
consistent operators on Morse and Morse-Smale complexes on a manifold M. In
particular, the macro-operator defined in [GNP+06], illustrated in Figure 19, which
cancels 1-cell p and 2-cell q and eliminates the cells created by this cancellation in
the Morse-Smale complex, can be expressed as a sequence of removal and contrac-
tion operators, illustrated in Figure 20. 1-cell p is incident to four 2-cells, and 2-cell
q is incident to four 1-cells. To be able to apply one of our operators (e.g. a removal
of 1-cell p), which will eliminate 1-cell p and 2-cell q, we need to have only two
2-cells q and q′ incident to 1-cell p. We can reduce the complex Γd to this situa-
tion by applying two removals of index 2, until all 2-cells incident to 1-cell p, with
the exception of 2-cell q and one other 2-cell q′ are eliminated. Now, we can apply
a removal rem(q, p,q′), which eliminates 1-cell p and 2-cell q. Such sequence of
removals consists of the same number of operators as a macro-operator consisting
of a sequence of cancellations (macro-1-saddle-2-saddle operator), and it maintains
simpler Morse and Morse-Smale complexes at each step.

Fig. 20 A sequence consisting of removals, which eliminate 2-saddles and 3-saddles connected to
p, followed by a removal of index 1 that eliminates 1-saddle p and 2-saddle q on a 3D descending
Morse complex.

We have developed a simplification algorithm on the Morse complexes based
on the removal and contraction simplification operators. Simplifications are applied
in increasing order of persistence [EHZ01]. Our simplification algorithm can be
applied not only to scalar fields representing the elevation, but to any scalar field,
such as for example a discrete distortion [WDM10], which generalizes the notion of
curvature.
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In Figure 21, we illustrate the result of our simplification algorithm on a 3D Bucky
Ball data set, depicted in Figure 21 (a), which represents a carbon molecule having
60 atoms arranged as a truncated icosahedron. The full-resolution graph is shown in
Figure 21 (b). The incidence graphs after 200 and 400 simplifications are shown in
Figure 21 (c) and (d), respectively.

(a) (b) (c) (d)

Fig. 21 (a) Field behavior for the Bucky Ball data set. (b) The incidence graph at full resolution,
and the incidence graph after (c) 200 and (d) 400 simplifications.

7 Concluding Remarks
The problem of modeling and simplifying Morse and Morse-Smale complexes

in 2D has been extensively studied in the literature. Here, we have reviewed some
recent work which extends these results to three and higher dimensions. We have
described and compared data structures for representing Morse and Morse-Smale
complexes. We have described and compared algorithms for extracting these com-
plexes starting from the values of a scalar field f given at the vertices of a simplicial
or a cell complex triangulating a manifold M. Finally, we have described and com-
pared existing simplification operators on Morse and Morse-Smale complexes.

Simplification operators, together with their inverse refinement ones, form a basis
for the definition of a multi-resolution model of Morse and Morse-Smale complexes
[DČomićI12].

The next challenge is how to extract representations of the geometry of the field
which is compatible with the reduced incidence graph extracted from the multires-
olution model [DDMV10, BEHP04, WGS10].
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